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Abstract

We give a detailed comparison of the hierarchical quantum master equation (HQME) method

to a continuous-time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these

numerically exact schemes as impurity solvers in practical nonequilibrium calculations. We review

the main characteristics of the methods and discuss the scaling of the associated numerical effort.

We substantiate our discussion with explicit numerical results for the nonequilibrium transport

properties of a single-site Anderson impurity. The numerical effort of the HQME scheme scales

linearly with the simulation time but increases (at worst exponentially) with decreasing temper-

ature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the

cost of going to longer times is also exponential. After establishing the numerical exactness of the

HQME scheme, we use it to elucidate the influence of different ways to induce transport through

the impurity on the initial dynamics, discuss the phenomenon of coherent current oscillations,

known as current ringing, and explain the non-monotonic temperature dependence of the steady-

state magnetization as a result of competing broadening effects. We also elucidate the pronounced

non-linear magnetization dynamics, which appears on intermediate time scales in the presence of

an asymmetric coupling to the electrodes.

PACS numbers: 85.35.-p, 73.63.-b, 73.40.Gk
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I. INTRODUCTION

Impurity problems are ubiquitous in the theoretical description of nonequilibrium sys-

tems [1, 2]. They constitute small entities with a limited number of degrees of freedom

that are coupled to reservoirs with continua of non-interacting degrees of freedom. One

intuitive physical realization of such a model is a molecule adsorbed on a surface or con-

tacted by electrodes [3]. A variety of nonequilibrium scenarios may be described in terms

of impurity models, for instance by preparing the system in an excited initial state or by

initiating different reservoirs in different thermodynamic states. Another intriguing applica-

tion occurs in dynamical mean field theory [2, 4–6], where lattice problems either in or out

of equilibrium are mapped to impurity problems with an environment that is determined

by a self-consistency criterion. This has been important, for instance, in understanding the

metal–insulator transition in materials like transition metal oxides [4, 6, 7] and has become

an important paradigm in studying nonequilibrium effects in extended interacting systems,

including thermalization after an interaction quench [8, 9], the nonequilibrium steady state

[10, 11] and Bloch oscillations [5, 12, 13] under the influence of a static electric field. Thus,

the theoretical description of impurity problems is a key element in understanding a wide

range of phenomena, in particular nonequilibrium effects.

Few exact solutions are available, and a number of methods have been developed in the

past decades to solve nonequilibrium impurity problems. They can be sorted into two broad

categories: approximate and numerically exact methods. Typically, numerically exact meth-

ods allow us to simulate some property of a model in what might be considered a numerical

experiment. Approximate methods, on the other hand, may miss important physics or suffer

from artifacts due to the approximations involved. A combination of methods, which oper-

ate on different levels of approximation is often useful and helps to elucidate the relevant

physical mechanisms [14–20].

The nonequilibrium Anderson impurity model has been treated by several numerically

exact methodologies. Some approaches require a discretization of the electrodes, for example

density-matrix renormalization group [21–26], numerical renormalization group [17, 27, 28]

or multilayer multiconfiguration time-dependent Hartree theory [29, 30]. These methods are

useful at low temperatures and/or voltages. They are restricted by revival oscillations and

a limited spectral resolution of the leads [31]. Other approaches can take advantage of the
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noninteracting nature of the leads and do not require discretization. This includes iterative

path-integral schemes [32–36], which converge only for a limited set of parameters, and

stochastic schemes [37–43], where the growth of the statistical error restricts the accessible

time scales. In the presence of a short memory timescale, long time scales can be accessed

by a combination of reduced dynamics techniques [44] with a short-time numerically exact

scheme; or by the hierarchical master equation method [45] where the numerical effort

scales linearly with the simulation time. The latter, however, can only be converged if the

temperature in the electrodes is not too low [19, 20].

The numerical effort associated with most numerically exact schemes restricts practical

calculations to specific limits [46] or limited ranges of parameters. It is important to delineate

the regimes in parameter space to which each method is applicable, and in particular to find

out where exact results are not available. In this work, we elucidate the practical limitations

of two numerically exact schemes: the continuous-time quantum Monte Carlo (CT-QMC)

method [37, 39, 41, 43, 44, 47–49] and the hierarchical quantum master equation (HQME)

method [19, 20, 50–52]. We will discuss the main features of these approaches, characterizing,

in particular, the associated numerical effort. We find that the range of parameters where

the two methods can be applied overlaps, but also exhibits areas where only one of the

methods can be applied. As we will see, HQME turns out to be the method of choice to

study long-term dynamics if the temperature of the reservoirs is not too low. In contrast,

CT-QMC gives access to the short- and intermediate-time dynamics over a wider range of

temperatures.

We demonstrate our findings using an archetypal nonequilibrium problem: transport

through a single-site Anderson impurity that is coupled to left and right electrodes (see Fig.

1 for a graphical representation). The most obvious physical realizations of this impurity

problem are quantum dots containing a single spin-degenerate level. The first such real-

izations were based on quantum-confinements in patterned semiconductor heterostructures

[53, 54]. Single-molecule junctions often exhibit similar behavior [55–58], but in a setting

where experimental techniques give less control over the parameters of the junction. Addi-

tionally, other effects, e.g. due to vibrational degrees of freedom, are important [59–69]. In

these systems, transport is induced by shifting the electrochemical potentials in the leads

with respect to each other such that electrons tunnel through the impurity in order to move

from the lead with higher chemical potential to that with lower chemical potential. In semi-
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conductor heterostructures this shift is achieved by charging or discharging the leads (i.e.

by filling or emptying electronic levels; cf. Fig. 1b). In single-molecule junctions, the leads

are less likely to be charged, and the shift of the electrochemical potentials is accompanied

by a shift of the respective conduction bands (cf. Fig. 1c). We will show that these different

ways of inducing transport strongly affect the initial dynamics of the impurity.

We also present exact results for the complex magnetization dynamics of an Anderson

impurity in various nonequilibrium situations. Typically, this quantity exhibits the slowest

relaxation behavior [43] and, as we will see, exhibits a non-linear behavior on all times

scales, in particular when an asymmetric coupling to the electrodes is considered. To date,

this dynamics had only been accessible at great computational cost using state-to-the-art

CT-QMC methods combined with reduced dynamics [43]. The HQME method gives access

to exact results of this long-lived correlated dynamics and allows us to perfrom a scan over a

wide range of parameters. It can also be used to derive approximate results and, therefore, to

study the influence of higher order processes. We are, therefore, able to elucidate the origin of

the non-monotonic temperature dependence of the magnetization that was recently reported

in Ref. [43] to be the result of competing broadening effects. We also find a pronounced

non-linear behavior of the magnetization on intermediate (still rather long) time scales (cf.

e.g., Figs. 7 and 9). In passing we note that the nonequilibrium Anderson impurity model

and its generalizations are of great interest in the field of strongly correlated materials within

the dynamical mean field theory approximation [2, 4–6].

The outline of the article is as follows: In Sec. II, we present the theoretical methodology.

This includes a short description of the single-site Anderson impurity model (Sec. IIA),

the HQME method (Sec. II B) and the CT-QMC approach (Sec. IIC). A discussion of

practical aspects of the two methods is given in Sec. IID. Numerical results on the time-

dependent transport properties of an Anderson impurity are presented in Sec. III. A direct

comparison of results that are obtained by the HQME method and the CT-QMC approach

is presented in Sec. III B, where we follow the time evolution of the electrical current that

is flowing through the impurity, starting from a product initial state where the impurity

is not populated by electrons. These results represent the first explicit validation that the

HQME approach gives numerically exact results. We also explore how the choice of whether

or not to shift the conduction band with the applied bias voltage affects the results. We

then discuss the magnetization dynamics of the impurity in the presence of an external
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FIG. 1. Panel (a): Graphical representation of an Anderson impurity, which is realized by a

quantum dot (QD). The dot is coupled to a left (L) and a right electrode (R). Panel (b): Single-

particle levels of the quantum dot junction depicted in Panel (a). The shaded areas depict the

occupied states in the electrodes, which, for simplicity, are assumed to provide Lorentzian-shaped

conduction bands. Applying a bias voltage to such a system means that the corresponding chemical

potentials µL/R are shifted and the electrodes become charged. Panel (c): Single-particle levels of a

molecular junction. In contrast to the quantum dot realization (Panels (a) and (b)), the conduction

bands are shifted in the same way as the chemical potentials. Thus, applying a bias voltage, the

electrodes do not become charged.

magnetic field, considering both a symmetric and an asymmetric coupling to the electrodes

(Sec. IIIC).

II. THEORY

A. Model Hamiltonian

We study the transport properties of an Anderson impurity that is coupled to a left (L)

and a right (R) electrode or lead. The Hamiltonian of this well established system,

H = Himp +HL +HR +Htun, (1)

can be decomposed into the impurity Hamiltonian, Himp; the left and the right lead Hamil-

tonians, HL and HR; and a coupling operator Htun. The impurity Hamiltonian

Himp =
∑

σ∈{↑,↓}

ǫσd
†
σdσ + Ud†↑d↑d

†
↓d↓. (2)
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represents an electronic level that is addressed by creation and annihilation operators d†σ

and dσ. It can hold a single spin-up (↑) or spin-down (↓) electron at energies ǫ↑ and ǫ↓,

respectively, where ǫ↑ = ǫ↓ without the influence of an external magnetic field. It can also

hold a spin-up and a spin-down electron simultaneously. Such double occupation costs an

additional charging energy U > 0, representing repulsive Coulomb interactions.

Each lead is described by a continuum of non-interacting electronic levels

HL/R =
∑

k∈L/R,σ

ǫσkc
†
σkcσk (3)

with energies ǫσk. These levels are addressed by annihilation and creation operators cσk

and c†σk. The coupling between the impurity and the electrodes can be characterized by

tunneling matrix elements Vσk, and the corresponding coupling operator is written as

Htun =
∑

k∈{L+R};σ

(Vσkc
†
σkdσ + h.c.). (4)

The resulting tunneling efficiencies, or level-width functions,

ΓK,σ(ǫ) = 2π
∑

k∈K

|Vσk|
2δ(ǫ− ǫσk), (5)

depend on the energy of the tunneling electrons (K ∈ {L,R}). Throughout this work, we

assume that the left and the right electrode have the same properties, in particular that

they have the same temperature T . The only difference between the electrodes occurs in

the presence of a bias voltage Φ = µL − µR 6= 0. The position of the chemical potentials

of the left and the right lead, µL and µR, are shifted in different directions. We assume a

symmetric voltage drop such that µL = Φ/2 and µR = −Φ/2. The latter is an assumption

that, however, is not crucial for our discussion.

B. Hierarchical master equation approach

We use two different methods to obtain the transport properties of an Anderson impurity.

The first of these methods is the HQME approach [19, 20, 50–52]. The second one is the

CT-QMC method [37, 39, 43, 44, 48, 49]. For completeness and to establish the notation, we

outline the basics of the HQME method in this section. The CT-QMC technique is detailed

in the following section, Sec. IIC.
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The central quantity of the HQME technique is the density matrix of the impurity

ρ =
∑

l,l′

ρl,l′ |ψimp,l〉〈ψimp,l′| (6)

where the ψimp,l represent the corresponding Hilbert space. It is obtained by solving the

hierarchy of equations of motion

∂tρ
(κ)
j1..jκ

(t) = −i
[

Himp, ρ
(κ)
j1..jκ

(t)
]

−
∑

λ∈{1..κ}

ωsλ
Kλ,pλ

ρ
(κ)
j1..jκ

(t) (7)

+
∑

λ∈{1..κ}

(−1)κ−ληsλKλ,σλ,pλ
dsλmλ

ρ
(κ−1)
j1..jκ/jλ

(t) +
∑

λ∈{1..κ}

(−1)ληsλ,∗Kλ,σλ,pλ
ρ
(κ−1)
j1..jκ/jλ

(t)dsλmλ

−
∑

jκ+1,σκ+1

(

dsκ+1

σκ+1
ρ
(κ+1)
j1..jκjκ+1

(t)− (−1)κρ
(κ+1)
j1..jκjκ+1

(t)dsκ+1

σκ+1

)

.

A detailed derivation of these equations can be found in Refs. [19, 52]. The density matrix of

the impurity enters at the 0th tier as ρ(0)(t) = ρ(t). The auxiliary operators ρ
(κ)
j1..jκ

(t) encode

the dynamics of the impurity that originates from the coupling to the electrodes, starting

from a product initial state or, equivalently, ρ
(κ)
j1..jκ

(0) = 0 (κ > 1). They are distinguished

by superindices jλ = (K, σ, s, p), which involve a lead index K, a spin index σ and an index

that corresponds to the creation and annihilation of electrons s ∈ {+,−}. The index p is

related to a decomposition of the lead correlation functions

Cs
K,σ(t) =

∫ ∞

−∞

dω

2π
esiωtΓK,σ(ω)f

s
K(ω) (8)

=
∑

p

ηsK,σ,pe
−ωs

K,p
t (9)

by a set of exponential functions, e−ωs
K,pt, where we use the short-hand notations f+

K(ω) =

fK(ω) and f
−
K(ω) = 1−fK(ω) with fK(ω) representing the Fermi distribution function of lead

K. The use of exponential functions facilitates a systematic closure of the hierarchy (7) [19,

52]. We obtain the frequencies ωs
K,p and the amplitudes ηsK,σ,p, using a Pade decomposition

scheme [70, 71]. Explicit expressions can be found in Refs. 19 and 20.

In principle, the solution of the full hierarchy (7) is exact. In practical calculations,

however, the number of Pade poles that can be included is limited. For the present studies,

we obtained converged results using 100 Pade poles. In addition, the hierarchy of equations

of motion (7) needs to be truncated. To this end, we estimate the importance of the operators

ρ
(κ)
j1..jκ

(t) by assigning them the following importance value: [19]
∣

∣

∣

∣

∣

(

∏

λ=1..κ

1
∑

λ′=1..λRe[ω
sλ′
Kλ′ ,pλ′

]

)

·

(

∏

λ=1..κ

ηsλKλ,σλ,pλ

Re[ωsλ
Kλ,pλ

]

)
∣

∣

∣

∣

∣

. (10)
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We include only those operators in our calculations which have a value larger than a certain

threshold value Ath. In addition, all operators of the zeroth and first tier are taken into

account regardless of their assigned importance value. The truncation allows us to reduce

the numerical effort to a practical level. While this procedure represents an approximation,

exact results can be obtained by systematically reducing the threshold value Ath until the

results converge to within the desired precision. As the importance criterion (10) involves

the ratio between the amplitudes ηsK,σ,p and the frequencies ωs
K,p, that is, effectively the

ratio ΓK,σ/T , convergence can be achieved more easily at higher temperatures, and the

numerical effort increases substantially at lower temperatures. We will elaborate on this

statement in Sec. III B, where we show that “large enough” means in the present context

that the temperature should be above the Kondo temperature. An example of a convergence

analysis is given in the appendix.

A central characteristic of the technique is that the equations of motion (7) are local in

time. Thus, the numerical effort of computing the time-dependent operators ρ
(κ)
j1..jκ

(t) scales

linearly with the simulation time t. All of our numerical evidence (cf., e.g., the appendix)

shows that the quality of the associated effective expansion of the time evolution operator

is independent of the simulation time t. We can therefore conclude that the numerical

effort of the HQME scheme scales linearly with the simulation time. This allows us to

access the nonequilibrium dynamics of an interacting impurity system on extremely long

time scales (see, e.g., Ref. [20], where we simulated the dynamics of an interacting quantum

dot system up to t ∼ 104/Γ). The price of this is a large number of unknown auxiliary

operators ρ
(κ)
j1..jκ

(t) that need to be determined. At a given time t, they encode the history

of the interplay between the impurity and the electrode at earlier times, and contain all the

information necessary to continue propagating the density matrix to the next time step.

In addition to the importance criterion (10), the hierarchy can be truncated at a specific

tier κ̃. This corresponds effectively to a hybridization expansion of the time evolution

operator of the density matrix ρ(t) that is valid up to O(Γκ̃K,σ/min(D, kBT )
κ̃) [19]. Such

a truncation is not exact but facilitates a perturbative analysis, which, in principle, can

be driven to arbitrary order. We can therefore assess the importance of each tier/order by

comparison to the exact converged results (see Sec. IIIC). In this context, it should be

noted that the hierarchy (7) terminates automatically at the second tier for U → 0 [52, 72].

In the appendix, we demonstrate the convergence of our approach to the exact U = 0 result.

8



C. Continuous-time quantum Monte Carlo approach

In order to establish the numerical exactness of the HQME approach, it is useful to

compare it to another numerically exact approach based on entirely different principles.

As noted in the introduction, a wide variety of numerically exact methods with various

advantages and limitations has been applied to nonequilibrium impurity models [15, 18, 24,

27, 32, 33, 41, 73–79]. We have chosen to compare our results with those of a continuous-

time quantum Monte Carlo method [75, 80]. CT-QMC algorithms are capable of solving a

variety of impurity models by stochastically summing all terms in an exact diagrammatic

expansion around some analytically solvable limit.

Dynamics and nonequilibrium require a real time (rather than an equilibrium imaginary

time) formulation of the method to conserve numerical exactness. The first real-time imple-

mentations addressed vibrations in junctions using hybridization expansions [47, 49], with

subsequent work treating the Anderson impurity model [39] and developing expansion in

the interaction [16]. This first generation of methods was mostly suitable for accessing very

short times or weakly interacting systems. A much wider range of parameters and timescales

is accessible to bold-line algorithms [75, 81], which begin from a diagrammatic approxima-

tion containing an infinite subset of diagrams corresponding to a low-order self energy, and

sum all corrections to it in terms of renormalized skeleton diagrams. These methods can

be further augmented by reduced dynamics techniques, which give access to essentially any

timescale in cases where the system exhibits a short memory timescale [43, 44, 82]. More

recently, these techniques were extended from single-time properties to correlation functions

in equilibrium [80] and nonequilibrium [83].

In this work, we compare our HQME results to bold-line CT-QMC formulated around

the one-crossing approximation (OCA) [84, 85]. OCA is a strong-coupling approximation.

It represents an extension of the non-crossing approximation and generally performs well

near half-filling and outside the Kondo regime. Convergence becomes easier when the OCA

is more accurate, but all the CT-QMC data presented here has been converged up to times

t = 2/Γ, and can therefore be assumed to be numerically exact, independently of the OCA.

A detailed technical discussion of the method can be found in Ref. 80.

While no significant problems occur up to t = 2/Γ, we note that in general it can be

difficult to obtain converged CT-QMC data at long times (and in the absence of a short
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memory), since the sign-problem results in an exponential growth of the statistical error

with time. Bold-line algorithms significantly improve the performance of these algorithms,

but do not eliminate this problem. “Boldification” additionally depends on one’s ability to

solve the underlying self-consistent diagrammatic approximation (OCA in this case). This

generally implies an initial step with its own computational and memory demands, both of

which increase polynomially with the simulated time. Higher-order self-energies reduce the

sign-problem in the CT-QMC step, but the cost of the diagrammatic approximation often

becomes prohibitive [84].

A particularly simple example, which illustrates how this polynomial scaling can become

a bottleneck, is when several energy scales which are orders of magnitude apart are present

in the problem. Unless an efficient multi-scale representation of the data is possible, the

diagrammatic procedure – which is implemented on a discrete lattice – suffers from the need

to use very small time steps in the discretization. The effort involved in solving the self-

consistent equations is then polynomial in the number of time steps, and therefore grows very

rapidly with simulation time. Importantly, this never occurs with the time-local HQME,

where the computational effort is inherently linear in time.

D. Advantages and Drawbacks: When to use which method

The HQME and CT-QMC schemes are similar in the sense that they are both based

on a hybridization expansion. The methods differ in the way the expansion is carried out.

For the HQME approach, we expand the time evolution operator of the reduced density

matrix. If the expansion converges, one obtains exact results. If not, one obtains only

approximate results, even at short simulation times. In contrast, the CT-QMC approach

represents a stochastic sum over all possible trajectories that the system may follow during

the simulation time. The statistical error or, equivalently, the numerical effort increases in

the same way as the number of relevant trajectories increases with the simulation time [41].

The number of relevant trajectories grows exponentially with the simulation time, so QMC

methods work well for short times, but long-lived correlated dynamics is often out of the

method’s reach [43]. HQME, in contrast, gives access to long-lived dynamics, because the

associated numerical effort scales linearly with the simulation time and because all of our

numerical evidence points out that the quality of the associated expansion is independent of
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the simulation time t. This is, on one hand, evident from Eqs. (7) and, on the other hand,

explicitly demonstrated in Sec. III B, the appendix or, for example, in Ref. 20. We also note

in passing that because both HQME and CT-QMC are formulated in continous time, they

are free from discretization (non-zero time step) errors, so that very short times may easily

be studied.

We further discuss the numerical effort of the HQME method. Apart from the linear scal-

ing with the simulation time, it depends on the specific problem, in particular the number N

of distinct superindices jλ. The latter is given by the complexity of the correlation functions

(8). The number of auxiliary operators scales as N κ̃/κ̃!, assuming that the hierarchy (7)

is truncated at the κ̃th tier. The importance criterion (10) further reduces the numerical

effort to N κ̃−1/κ̃!, cutting out a hypersurface of the total index space [20]. The criterion also

demonstrates that fewer terms are needed at higher temperatures (cf. the discussion follow-

ing Eq. 10 in Sec. II B or Ref. 19). In addition, each auxiliary operator involves a number of

coefficients that is given by the dimension of the Hilbert space of the impurity. In general,

the size of this space results in an exponential scaling of the numerical effort with the spin

or orbital degrees of freedom of the impurity. In many cases, however, one is interested in

single-particle quantities or one can restrict the attention to an active space of considerably

reduced dimension, possibly enabling a power-law scaling. An explicit demonstration of this

conjecture will be subject of future research.

We summarize our discussion regarding the validity and usefulness of the methods in

Fig. 2. HQME and CT-QMC have common regimes where they give the same result (high

temperature, short times). This will be demonstrated in Sec. III B explicitly. There are

also regimes where only one of the methods can be used in practice. Low temperature

systems requiring long simulation times cannot be probed by either of the methods, unless

they also exhibit a short memory timescale, in which case reduced dynamics techniques may

be applicable. This means that slow dynamics deep in the Kondo regime remain largely

inaccessible for both methods. The dashed lines in Fig. 2 represent the exponential wall

that is hit in CT-QMC with an increasing simulation time and in HQME with the number

of operators that needs to be taken into account at decreasing temperatures. These walls

are “soft” in the sense that these boundaries can be pushed by more efficient codes and

procedures, more powerful computer architectures and merely a larger investment of CPU

time. They also depend to a large extent on the specific problem. Therefore, we refrain from
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FIG. 2. (Color online) Sketch of the areas in simulation time and temperature where HQME and

CT-QMC are useful. The dashed lines represent the exponential growth of the numerical effort with

the simulation time in CT-QMC (gray line) and with the number of coefficients in HQME (black

line) that increases (at worst exponentially) with the inverse temperature. High temperatures and

short simulation times are accessible by both methods (white area). Very long simulation times

are accessible only by HQME (yellow area). The low temperature regime is reserved for CT-QMC

(blue area). At low temperatures and if long simulation times are required, both CT-QMC and

HQME cannot be used. For the given problem, the exponential walls are located around the Kondo

temperature for HQME and time scales ∼ 10/Γ for CT-QMC (cf. Sec. IIIB and Refs. 43, 44, and

80).

putting specific numbers at this point, but will elaborate on the boundaries specific for the

Anderson impurity model in the strong coupling regime (U/(πΓ) > 1) below.

E. Observables of interest

We characterize the nonequilibrium transport properties of an Anderson impurity by its

magnetization m and the electrical current I that is flowing through the impurity in the

presence of a bias voltage. The magnetization is given by the diagonal elements of the

impurity density matrix

m(t) = ρ↓,↓(t)− ρ↑,↑(t), (11)
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where we use the basis {|00〉, | ↑〉, | ↓〉, | ↑↓〉}. This basis includes the states of the impurity

with no electron, |00〉; a single spin-up electron, | ↑〉; a single spin-down electron, | ↓〉; and

two electrons, | ↑↓〉.

The electrical current flowing through the impurity is related to the charge flow in and

out of each lead K:

IK = −e
d

dt

∑

k∈K

〈c†kck〉, (12)

where −e denotes the charge of an electron. Using the auxiliary operators ρ
(1)
j (t), it can be

written as [19, 52]

IK(t) = e
∑

K,σ,p

(

Trimp

[

ρ
(1)
K,σ,+,p(t)dσ

]

− Trimp

[

d†σρ
(1)
K,σ,−,p(t)

])

. (13)

III. RESULTS

A. Formulation of the transport problem

In the following, we investigate transport and relaxation phenomena of a charge-

symmetric Anderson impurity where ǫ↑ + ǫ↓ = −U (see Figs. 1b and 1c). We follow

the time evolution from a product initial state where the impurity is not correlated with

the electrodes and carries no electron (i.e. ρ00,00(t = 0) = 1 while all other elements of the

reduced density matrix are zero). We focus on the intermediate to strong coupling regime,

choosing U = 8Γ (or, equivalently, U
πΓ

≈ 2.5), where Γ denotes the hybridization strength

between the impurity and the electrodes at the Fermi level. We have chosen this regime

because it represents the most challenging regime for the HQME framework and indeed for

most theoretical treatments (since simple approximations generally work for either U
Γ
→ 0 or

U
Γ
→ ∞), while also exhibiting a rich and interesting variety of nonequilibrium phenomena.

We take the tunneling efficiencies (Eq. (5)) to be

ΓL/R,σ(ǫ) = ΓαL/R
D2

(ǫ− SµL/R)2 +D2
, (14)

where we assume Lorentzian-shaped conduction bands in the electrodes with D = 10Γ.

Note that the shape of the conduction bands is not crucial for our discussion but beneficial

for the numerical evaluation of the HQME. The parameters αL/R are either αL = 1 = αR

corresponding to a symmetric coupling of the impurity to the electrodes or αL = 1 = 4αR
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to simulate an asymmetric impurity-electrode coupling. The parameter S is used to control

whether the conduction bands are shifted with the applied bias voltage (S = 1; cf. Fig.

1c) or not (S = 0; cf. Fig. 1b). While the former situation corresponds to a scenario

that is typically found, for example, in transport through a single-molecule junction, the

latter is often used to describe transport through quantum dot structures that are based on

semiconductor heterostructures.

Our analysis includes two parts. In the first part, Sec. III B, we present results for the

electrical current that is flowing through the impurity in the presence of a bias voltage.

Thereby, we give a detailed comparison of HQME and CT-QMC results, which, on one

hand, validates the HQME framework that we introduced in Ref. [19] (and outlined in

Sec. II B) and, on the other hand, allows us to explore the different initial dynamics of the

electrical current with respect to the two values of the shift parameter S. Second, in Sec.

IIIC, we focus on the dynamics of the dot observable that takes longest to approach its

steady state value: the magnetization m. We simulate the effect of a magnetic field by

shifting the spin-up and the spin-down level of the impurity with the field strength h,

ǫ↑ = −
U

2
+ h, (15)

ǫ↓ = −
U

2
− h, (16)

and study the evolution of m to its field-dependent steady state values. This allows us

to demonstrate that HQME gives access to long-lived correlated dynamics that, to date,

had only been accessible at great computational cost using state-to-the-art CT-QMC meth-

ods combined with reduced dynamics [43]. Moreover, we elucidate the origin of the non-

monotonic temperature dependence of the magnetization that was recently reported in Ref.

[43]. All model parameters are listed in Tab. I, where the different parameter sets are labeled

by the figure depicting the corresponding results.

B. Time-dependent electrical current: Comparison of HQME and CT-QMC

The primary goal of this section is to provide the first direct comparison of results that

have been obtained by the HQME and CT-QMC approach. We thus validate the HQME

scheme with respect to an established method and, at the same time, demonstrate explicitly

that our truncation scheme is consistent and gives numerically exact results once convergence
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Fig. ǫ↑ ǫ↓ U αL αR S h kBT D

3 -4 -4 8 1 1 0 0 5 10

4 -4 -4 8 1 1 0 0 1 10

5 -4 -4 8 1 1 0 0 1
5 10

6 -4 -4 8 1 1 1 0 1 10

7 -4 -4 8 1 1 0 2 1
2 – 10 10

8 -4 -4 8 1 1 0 2 1
2 – 10 10

9 -4 -4 8 1 1
4 0 2 1

2 – 10 10

10a -4 -4 8 1 1 0 0 1 10

10b -4 -4 0 1 1 0 0 1 10

TABLE I. Parameters for the quantum dot devices that are investigated in this article. All energy

values are given in units of the hybridization strength Γ.

is achieved. As the importance criterion (10) suggests, the HQME expansion works best for

high temperatures. Accordingly, we start our comparison at a relatively high temperature

in the electrodes, β = (kBT )
−1 = 0.2/Γ, and continue with an intermediate, β = 1/Γ, and

a low temperature, β = 5/Γ. The latter is close to the Kondo temperature of our setup,

βKondo ≈ 15/Γ [86].

We begin with the case S = 0, corresponding to fixed bands in the electrodes. Fig.

3 represents the symmetrized current I = (IL − IR)/2 flowing through the impurity as a

function of time at β = 0.2/Γ. The different lines correspond to bias voltages eΦ = Γ, 3Γ,

... 19Γ. The thick blue and thin orange lines depict results that have been obtained using

the HQME and CT-QMC scheme, respectively. The overlap between matching pairs of lines

demonstrates the agreement between HQME and CT-QMC in this range of temperatures.

The dynamics seen in Fig. 3 can be described and understood as follows. Initially, for

t . 0.2/Γ, the current increases almost linearly in time with a slope that is increasing linearly

with the applied bias voltage. After this initial increase, the current level saturates rapidly

to a stationary state. The short-time behavior can be understood quantitatively from the

relation

d

dt
IK(0) = 2e

∑

σ

(

C+
K,σ(0)〈dσd

†
σ〉 − C−

K,σ(0)〈d
†
σdσ〉

)

, (17)
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FIG. 3. (Color online) Symmetrized current I = (IL − IR)/2 flowing through the impurity at

kBT = 5Γ as a function of time t for a sequence of equally spaced bias voltages Φ = Γ, 3Γ, .., 19Γ

where the conduction bands are not shifted with the bias voltage (S = 0). The model parameters

used to obtain this data are summarized in Tab. I. After a linear increase, the current saturates

to a stationary value on a voltage-independent time scale 0.2/Γ. The HQME (blue lines) and

CT-QMC methods (orange lines) give identical results to within the numerical resolution of the

data.

which follows directly from the operator equations of motion and the choice of a product

initial state. CK,σ is defined in Eq. (8). For an initially unoccupied impurity, the slope of

the symmetrized current is therefore given by

d

dt
I(t) = 2e

∑

σ

∫ ∞

−∞

dω

2π
(fL(ω)ΓL,σ(ω)− fR(ω)ΓR,σ(ω)) . (18)

For large band width D, the energy dependence of the hybridization strengths ΓR,σ(ω) can

be neglected. The slope of the current is then solely determined by the difference between

the Fermi functions. The latter is proportional to the applied bias voltage Φ. Note that the

initial dynamics cannot be linked to a single time scale here but is influenced by the position

of the energy levels, the band-width D and the temperature T .

At lower temperatures, both schemes require a larger computational effort in order to

reach the same level of precision as compared to higher temperatures. This is demonstated

in Figs. 4 and 5, which show the time-dependent current of our setup at lower temperatures
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β = 1/Γ and β = 5/Γ, respectively. The data has been obtained with a similar numerical

effort as that shown in Fig. 3. One observes that both schemes agree very well, but small

deviations, which are consistent with the applied accuracy, begin to occur.

As the temperature T decreases, coherent processes become more important and give

rise to oscillations of the current level (see Figs. 4 and 5). The period of these oscillations

is given by the dynamical phases of the system, in particular the difference between the

energy levels of the impurity and the chemical potentials in the electrodes. Accordingly, the

dynamical oscillations of the current level show a bias dependence, which is clearly visible

in our data. This behavior is known as current ringing and has been outlined before in

a slightly different context, namely as a response to bias voltage pulses and/or quenches

[87, 88].

Another bias dependence appears in the stationary values of the current level. For high

temperatures, thermal broadening leads to an almost linear increase of the stationary cur-

rent, at least in the range of bias voltages considered here. This is evident from the almost

equidistant values in Fig. 3. The stationary values seen in Figs. 4 and 5 are clearly non-

equidistant. This indicates a strong non-Ohmic saturation of the current level with increasing

bias voltage, which originates from the restricted number of conductance channels through

the impurity.

We conclude at this point that the agreement between HQME and CT-QMC results is

very good in the parameter ranges we have studied. We corroborated this statement for a

number of other setups, where we changed the position of the energy levels, ǫ↑/↓ 6= −U/2,

introduced a level splitting / magnetic field, ǫ↑ − ǫ↓ 6= 0, a different shift of the conduction

bands, S = 1 (see below), and different band widths (data not shown). Changing the

electron-electron interaction strength, we also observed that the results converge faster for

lower values of U (which is consistent with the fact that, for U = 0, the hierarchy (7)

terminates at the second tier [52, 72]). At lower temperatures, β & βKondo ≈ 15/Γ, we were

not able to converge the HQME expansion to a satisfactory level.

Next, we consider electrodes in which the conduction bands are shifted with the applied

bias voltage (S = 1). The time-dependent current of such a system is shown in Fig. 6.

It should be compared and contrasted with the data shown in Fig. 4. Two qualitative

differences are apparent: the first is that the slope of the current vanishes at t = 0. This can

be easily understood from Eq. (18), as the integral on the right-hand side vanishes for shifted
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FIG. 4. (Color online) Symmetrized current I = (IL − IR)/2 flowing through the impurity at

kBT = Γ as a function of time t for a sequence of equally spaced bias voltages Φ = Γ, 3Γ, .., 19Γ

where the conduction bands are not shifted with the bias voltage (S = 0). The model parameters

used to obtain this data are summarized in Tab. I. After a linear increase, the current level slightly

oscillates before it reaches its stationary value. The corresponding time scales are given by the

dynamical phases of the problem and the inverse temperature 1/(kBT ) = 1/Γ, respectively.

conduction bands. The latter is no longer true for times t > 0, where, initially, an increase

of the current ∼ t3 is inherited from a change of the populations ∼ t2 [20, 89, 90]. After

this initial phase, the behavior of the unshifted bands is recovered. The other difference

is the reduced current level for eΦ = 19Γ, which falls below the line for eΦ = 11Γ at

times t > 0.8/Γ. This negative differential resistance originates from both the shift of the

conduction bands and their finite band width D. This behavior is also well known, for

example, from transport through resonant tunneling diodes [91, 92].

C. Evolution of the magnetization for a symmetric and an asymmetric coupling

to the electrodes

The HQME method is particularly promising because it allows us to calculate the exact

time evolution of a correlated many-body system with a numerical effort that scales linearly

with the simulation time. In order to demonstrate this, we discuss the magnetization, as
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FIG. 5. (Color online) Symmetrized current I = (IL − IR)/2 flowing through the impurity at

kBT = Γ/5 as a function of time t for a sequence of equally spaced bias voltages Φ = Γ, 3Γ, .., 19Γ

where the conduction bands are not shifted with the bias voltage (S = 0). The model parameters

used to obtain this data are summarized in Tab. I. The oscillations of the current level that appear

right after the initial linear increase become more pronounced at lower temperatures. The corre-

sponding time scales are given by the dynamical phases of the problem and the inverse temperature

1/(kBT ) = Γ/5, respectively. Deviations between the HQME (blue lines) and CT-QMC results

(orange lines) are consistent.

introduced in Eqs. (15). Other observables, like populations or the current, approach their

steady state values much faster and are, therefore, less suitable for the present purpose.

In addition, we consider an asymmetric coupling to the electrodes. As we will see, the

corresponding dynamics shows a richer set of behaviors than in the symmetrically coupled

case, and occurs on significantly longer time scales.

We start our analysis with a symmetrically coupled impurity in a strong magnetic field

h = 2Γ (the behavior at other field strengths is similar - data not shown). The corresponding

magnetization of the impurity is depicted in Fig. 7 as a function of both bias voltage Φ and

inverse temperature in the electrodes β. We show a 3 × 3 array of plots, where the top

row represents the magnetization at short time scales, t = 0.5/Γ, and the middle row at

intermediate time scales, t = 5/Γ. The bottom row depicts the steady state values. In

the latter, we also give the time t0.999 at which the impurity reached 99.9% of its final
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FIG. 6. (Color online) Symmetrized current I = (IL − IR)/2 flowing through the impurity at

kBT = Γ as a function of time t for a sequence of equally spaced bias voltages Φ = Γ, 3Γ, .., 11Γ

and Φ = 19Γ where the conduction bands are shifted with the bias voltage (S = 1). The model

parameters used to obtain this data are summarized in Tab. I. In contrast to Figs. 3 – 5, the

current level is initially not linearly increasing with the time t when the conduction bands are

shifted with the applied bias voltage (S = 1).

magnetization (note that this time scale is longest for low temperatures and bias voltages).

The different columns are obtained using different levels of approximation. The left column

is computed using the full HQME approach. The second and third column are obtained

by truncating the hierarchy (7) at the second and the first tier. This corresponds to a

hybridization expansion to O((Γ/(kBT ))
2) and O(Γ/(kBT )), respectively (see Sec. II B).

The different levels of approximation facilitate a discussion of the relevant processes and

mechanisms, for example, where and when processes of higher order are important (see

below).

The data of Fig. 7 can be understood as follows. As we start from a state with zero

magnetization, the magnetization at short time scales is almost an order of magnitude

smaller than the final steady state values. The maximum magnetization is obtained at small

bias voltages and temperatures. At higher temperatures and voltages, where the impurity

exchanges particles with the electrodes at a wider range of energies, the magnetization

becomes quenched. We would like to emphasize that the system reaches its steady state not
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FIG. 7. (Color online) Magnetization of an Anderson impurity that is symmetrically coupled to

the electrodes as a function of temperature and bias voltage (S = 0), and for three different times

(top row: t = 0.5/Γ; middle row: t = 5/Γ; bottom row: steady state). The left column depicts the

full HQME result. The middle and the right column has been obtained by truncating the hierarchy

(7) at the second and the first tier, respectively. The magnetization along the red dashed line in

the lower left plot is also depicted in Fig. 8.

before times t & 15/Γ.

The exact result is very similar to the one that is obtained with a second order truncation

of the hierarchy (7). A tendency towards a higher magnetization is visible if the number

of exchange processes that is taken into account in our calculations is reduced. Truncation

at the first tier enhances the effect, but also results in a qualitatively different structure

of the magnetization at intermediate time scales (right plot of the middle row). Here, the
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FIG. 8. (Color online) Magnetization of an Anderson impurity that is symmetrically coupled to

the electrodes as a function of temperature in the steady state and applied bias voltages Φ = ±13Γ,

±15Γ and ±17Γ (S = 0).

magnetization shows a peak at positive and negative voltages, while the exact and second

order result exhibit only a single peak that is centered around zero bias.

The splitting of the peak magnetization can be understood with the bias dependence

of resonant exchange processes with the electrodes. At zero bias, the difference between

the chemical potentials in the electrodes and the single-particle levels of the impurity (see

Fig. 1b) is largest and resonant processes are strongly suppressed. This suppression is less

pronounced at non-zero voltages such that the steady state magnetization can develop on

shorter time scales. Accordingly, this behavior shows only a weak temperature dependence,

resulting in an almost horizontal splitting of the peak that is seen in Fig. 7. This splitting

is not seen at short times scales (right plot of the top row), because the initial state is not

decaying exponentially at short times. It rather shows a power-law decay, ∼ t2, which is

well known from an analysis of similar systems in terms of Born-Markov theory [20, 89, 90].

Another intriguing effect occurs at higher bias voltages (|eΦ| > 10Γ). Here, the magneti-

zation shows a non-monotonic behavior with respect to temperature: it becomes stabilized

by increasing temperature before decreasing again at temperatures β . 0.2/Γ (follow, e.g.,

the red dashed line in Fig. 7 from β = 1/Γ to β = 0.1/Γ). This non-monotonic behavior is

explicitly depicted in Fig. 8, where the magnetization m is shown, for example, as a function
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FIG. 9. (Color online) Magnetization of an Anderson impurity asymmetrically coupled to the

electrodes as a function temperature and bias voltage (S = 0) and for three different times (top

row: t = 0.5/Γ; middle row: t = 5/Γ; bottom row: steady state). The left column depicts the full

HQME result. The middle and the right column has been obtained by truncating the hierarchy

(7) at the second and the first tier, respectively.

of the inverse temperature β and fixed bias voltages Φ = ±13Γ, ±15Γ and ±17Γ. This non-

linear dependence of the magnetization on temperature was discovered only recently (see

Ref. [43]). It is most pronounced in the steady state and for a truncation of the hierarchy

(7) at a lower tier. The latter points towards a physical interpretation of the effect, suggest-

ing that it originates from the broadening of the peak magnetization around zero bias with

increasing temperature and the quenching of the magnetization at very high temperatures.

The last scenario we discuss is an asymmetric coupling of the impurity to the electrodes.
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The corresponding magnetization is shown in Fig. 9. It can be directly compared to the

magnetization of the symmetrically coupled impurity that is depicted in Fig. 7. It can be seen

that, on short time scales (top row), the initial peak of the magnetization is shifted towards

negative voltages. This is because the coupling to the right electrode is weaker and we start

with an initially unoccupied system. The initial population of the impurity is therefore

dominated by exchange processes with respect to the left electrode. The corresponding

dynamics occurs on shorter time scales for negative voltages, because the chemical potential

of the left electrode µL is then closer to the single-particle levels ǫ↑/↓.

Another qualitative difference with respect to the symmetric case occurs on intermediate

time scales. Here, the magnetization is peaked at non-zero values of the bias voltage Φ

even when higher-order processes are taken into account. This behavior was also seen

in the symmetric case but only if the hierarchy (7) is truncated at the first tier, that is

by disregarding higher-order processes. These processes become quenched by the weaker

coupling to the right electrode, while resonant processes with respect to the left electrode

are not. The situation is therefore similar to the symmetrically coupled case without higher-

order processes. The magnetization of the impurity evolves to very similar steady state

values, but on even longer times scales (t & 30/Γ). Minor differences occur due to the

weaker hybridization with the right electrode (i.e. a less pronounced broadening of the

energy levels).

We close this section by a discussion on the generality of our findings. We observed,

for example, a very similar behavior of the magnetization dynamics for different choices of

the voltage division factor (µL 6= −µR for Φ 6= 0, data not shown). We also calculated

the magnetization dynamics starting from different initial states. If, for example, the ini-

tial magnetization points in the direction of the magnetic field, the impurity magnetization

shows a very similar behavior as compared to the one we discussed for a symmetric cou-

pling to the electrodes. Similar structures as for an asymmetric coupling to the electrodes

appear, if the initial magnetization points opposite to the applied magnetic field. These

signatures, however, decay on much shorter time scales due to the stronger coupling to the

right electrode.
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IV. CONCLUSION

In this work, we give the first direct comparison of the hierarchical quantum master

equation method [19, 20, 50–52] and the diagrammatic, continuous-time quantum Monte

Carlo approach [37, 39, 43, 44, 48, 49]. To this end, we have studied the nonequilibrium

transport properties of an Anderson impurity that is coupled to two electrodes with different

chemical potentials. This transport problem represents a well established and fairly well

understood test case. We discussed the main characteristics of the two numerically exact

methods (cf. Sec. IID). They are distinguished by the range of parameters where exact

results can be obtained in practical calculations. CT-QMC gives access to the short- and

intermediate-time dynamics (. 10 units of the inverse hybridization strength) but in general

fails to describe long-time dynamics, for example in the presence of Kondo correlations,

because the numerical effort scales exponentially with the simulation time [43]. In contrast,

the hierarchical master equation method scales linearly with the simulation time and is,

therefore, not limited in terms of the accessible time scale. It represents a hybridization

expansion, which can be carried out to sufficiently high order if the temperature in the

electrodes is not too low. For the present problem, we were able to obtain converged results

only for temperatures above the Kondo temperature. Our findings provide a wealth of

numerically exact benchmark data certain to be useful to future method developers.

We have also elucidated interesting physical phenomena for the range of parameters,

where numerically exact results have been accessible with a reasonable numerical effort.

We investigated the short-time dynamics of the (symmetrized) current flowing through the

impurity in the presence of a bias voltage, starting from a product initial state where the

impurity is not populated by electrons. While a linear increase of the current level is found

for situations where the conduction bands are not shifted with the applied bias voltage

(corresponding to realizations of quantum dots with semiconductor heterostructures), a

qualitatively different behavior emerges when the electrodes are not charged when applying

a bias voltage. At low temperatures, oscillations of the current level, current ringing [87], due

to dynamical phases appear. In addition to the current, we also studied the magnetization

dynamics in the presence of a magnetic field. We confirmed the recently reported non-

monotonic temperature dependence of the steady state magnetization [43] and traced it

back to competing broadening effects of the impurity levels. In addition, we found complex
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structures on intermediate yet long time scales (i.e., in the cases studied, about 10 units

of the inverse hybridization strength) in the presence of an asymmetric coupling to the

electrodes (cf. Fig. 9).

Our comparative study is a first step towards practical guidelines in choosing the right

solver for a given impurity problem. Since the presented methods cannot cover the full

spectrum of problems, it would be interesting to compare them to other exact schemes,

including, for example, numerical renormalization group, density matrix renormalization

group, multi-layer multi-configurational time-dependent Hartree, or other quantum Monte

Carlo schemes. A primary goal is to identify regions of parameter space where methods

overlap and, of course, regions which cannot be covered satisfactorily by any of the available

methods. Further activities in this direction are planned, and we would like to encourage

other researchers to participate in these efforts.
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Appendix A: Convergence properties of HQME

The convergence properties of the HQME approach strongly depend on the importance

criterion that is used to truncate the hierarchy of equations of motion (7). In this appendix,

we demonstrate the convergence behavior of our HQME scheme explicitly. To this end, we

reconsider the time-dependent (converged) current shown in Fig. 4. We replot the result for

Φ = 5Γ in Fig. 10a. It corresponds to the graph with the threshold value Ath = 10−6. In

addition, we plot results that were obtained for higher threshold values Ath. In Tab. II, we

list the number of auxiliary operators (AO) that were taken into account and the maximum
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threshold value 10−1 10−2 10−3 10−4 10−5 10−6

# of AOs 269 447 1158 3009 8317 20912

max. tier level 2 3 3 4 5 5

TABLE II. Number of auxiliary operators for different threshold values of the importance criterion

(10).

tier level. The results are considered to be converged once the threshold value is below 10−5.

The corresponding number of AOs is ∼ 104. The respective maximum tier level is 5.

In Sec. III B, we have shown that our (converged) results coincide with the ones obtained

from CT-QMC. This demonstrates the validity and usefulness of our truncation scheme.

At this point, we would like to give an additional proof of this statement by showing the

convergence of our scheme towards the solution of an analytically solvable case. Fig. 10b has

been obtained with the same parameters as Fig. 10b, except that we ’turned off’ electron-

electron interactions, i.e. we used U = 0. In this limit, the exact result is known and can be

obtained, for example, by truncating the hierarchy (7) at the second tier (without applying

the importance criterion (10)) [52, 72]. It can be seen that our results converge to the exact

result and that convergence is faster than in the interacting case.
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FIG. 10. (Color online) Convergence analysis of the symmetrized current I = (IL − IR)/2 that is

flowing through the impurity at kBT = Γ and Φ = 5Γ (S = 0) as a function of time t. Panel (a)

shows the convergence behavior for U = 8Γ. The behavior for U = 0 is shown in Panel (b). The

model parameters used to obtain this data are summarized in Tab. I.
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[85] A. Rüegg, E. Gull, D. R. Reichman, and A. J. Millis, arXiv:1212.2694 (2012).

[86] A. M. Tsvelick and P. B. Wiegmann, Physics Letters 89A, 157 (1982).

[87] N. S. Wingreen, A. P. Jauho, and Y. Meir, Phys. Rev. B 48, 8487 (1993).

[88] E. Taranko, M. Wiertel, and R. Taranko, J. Appl. Phys. 111, 023711 (2012).

[89] M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991 (2001).

[90] D. Egorova, M. Thoss, W. Domcke, and H. Wang, J. Chem. Phys. 119, 2761 (2003).

[91] J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins, Phys. Rev. B 47, 4603 (1993).

[92] J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins, Ann. Phys. (NY) 236, 1 (1994).

32


