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Using Wannier function-based interpolation techniques, we present compelling numerical evidence
for the presence of a saddle-point van Hove singularity at the Γ point near the phosphorene Fermi
energy. We show that in proximity of the van Hove singularity the spin susceptibility presents the
logarithmic temperature dependence typical of Liftshitz phase transitions. Furthermore, we demon-
strate that the critical temperature for the ferromagnetic transition can be greatly increased (up to
0.05 K) if strain along the zigzag ridges is applied. Although the ferromagnetic state would be very
difficult to experimentally reach, the logarithmic temperature behaviour of the spin susceptibility
due to the van Hove singularity is found to persist at much higher temperatures (up to ∼97 K).
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I. INTRODUCTION

Saddle-point van Hove singularities1 (VHSs) originate
from saddle points in the band structure, around which
the band curvature has opposite signs along two orthog-
onal directions. In two dimensions, the density of states
(DOS) diverges at the VHS, and therefore arbitrary weak
interactions can produce large effects in the electronic be-
haviour, giving rise to instabilities in many aspects such
as charge, spin, and/or pairing susceptibilities. Once
the Fermi energy approaches a VHS, ferromagnetism,2,3

antiferromagnetism,4 and/or superconductivity5–7 can
be substantially enhanced.

The VHS is a topological critical point of the Fermi
surface, across which the quantum Lifshitz phase tran-
sition takes place.8–11 The Lifshitz transition for non-
interacting systems is continuous and does not break
symmetry. For interacting systems, however, the Lif-
shitz transition may become discontinuous and accom-
pany symmetry breaking.9,12 In cuprates, Hall coeffi-
cient measurements provide evidence for the Fermi sur-
face topology change.13,14 The Lifshitz transition is also
proposed to change the Fermi liquid into the marginal
Fermi liquid,15 and the VHS is thus argued to be respon-
sible for the linear temperature (T ) dependence of resis-
tivity and the T -independent thermopower16 observed in
this regime.17–19 Moreover, in the so-called “van Hove
scenario”, the presence of a VHS near the Fermi energy
is argued to play a major role in the high-Tc supercon-
ductivity of cuprates.20,21 Given the strong influence of
VHSs on the properties of materials, it is important to
identify the presence and understand the role of these
singularities, especially for technologically promising low-
dimensional materials like phosphorene.

Phosphorene,22,23 a single layer of black phosphorus,
is the most recent addition to the growing family of two
dimensional (2D) materials. It is a semiconductor with
high potential for applications in electronic and optoelec-
tronic devices.24 Despite the relative infancy of the field,
few-layer phosphorene field effect transistors exhibit very

high on-off current ratios25,26 (exceeding 105) and am-
bipolar behaviour,27 together with the highest hole mo-
bility ever (4000 cm2/Vs) for a 2D material apart from
graphene.28 Phosphorene’s pliable waved structure also
allows for strain engineering of both effective masses and
bandgaps.29 Strain can even induce a semiconductor to
metal transition.23

In this article, we show that a VHS is present at the
phosphorene Fermi energy, and we investigate the con-
sequent ferromagnetic instability in both the unstrained
and strained cases.

The article is organized as follows: after introducing
the computational methodology, in Sec. III A we present
the electronic structure of phosphorene near the VHS, in
Sec. III B we study the ferromagnetic instability (with-
out strain), and finally in Sec. III C we investigate the
effect of strain on the critical temperature Tc of the fer-
romagnetic transition.

II. COMPUTATIONAL DETAILS

The calculations involve the following three steps.
(i) A density functional theory (DFT) calculation is per-
formed with a plane wave basis set, as implemented in the
Quantum ESPRESSO package.30 We use the PBEsol
functional31 for the exchange and correlation energy. A
plane wave basis set with a kinetic energy cutoff of 70 Ry
(280 Ry) is used to represent the electronic wave func-
tion (charge density). The core electrons are described
via the projected-augmented wave (PAW)32 method; 12.9
Å of vacuum are added in the direction normal to the
monolayer to avoid spurious interactions between peri-
odic replicas. Both lattice parameters and atomic posi-
tions are relaxed until the forces on each atom are less
than 10−3 eV/Å and the pressure is less than 1 kbar.
After lattice relaxation, the phosphorene crystal param-
eters are ax=3.28 Å and ay=4.44 Å, in agreement with
a previous study.23 The optimized configuration of the
phosphorene monolayer is presented in Fig. 1(a). In this
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DFT calculation, the Brillouin Zone (BZ) is sampled us-
ing a Γ-centered 60×48×1 Monkhorst-Pack (MP) grid.33

This calculation will serve as a benchmark for the Wan-
nier interpolation of the band structure [Fig. 1(b) and
Fig. 1(c)].

(ii) Using the self-consistent charge density obtained
from step (i), we evaluate the required input quantities
for the Wannier calculation (energy eigenvalues, over-
lap matrices and projections34) on a relatively coarse
10×8×1 mesh for the unstrained case (Secs. III A and
III B), and a 30×8×1 mesh for the strained case (Sec.
III C). These k-point meshes are fine enough to pro-
vide converged Wannier functions. The calculations are
performed with Quantum ESPRESSO and its post-
processing subroutine pw2wannier90.

The aim of the two previous steps is to obtain the
maximally localized Wannier functions34,35 (MLWFs) to
be later used for the very dense k-point sampling around
the VHS.

(iii) With the energy eigenvalues, overlap matrices and
projections obtained from step (ii), we construct the ML-
WFs according to the procedure presented in Ref. 34 and
Ref. 36. The resulting Wannier functions consist of three
p-orbitals centered on each P atom, leading to the wan-
nierization of 6 valence and 6 conduction bands (there
are four P atoms in the phosphorene unit cell).

One of the main advantages of the maximally localized
Wannier representation of the DFT orbitals is that quan-
tities calculated on a coarse reciprocal-space grid can be
used to interpolate on a much finer grid with low compu-
tational cost. The Wannier interpolation is particularly
useful when a fine BZ sampling is required to converge
the quantity of interest. In this work, such quantities are
the DOS and the valence band in a small region around
the VHS. For the DOS calculation, an extremely dense
Wannier interpolated mesh of 4·104×3.2·104×1 - corre-
sponding to ∼1.3 billion k-points in the BZ - is used to
capture the sharp peak in the DOS due to the VHS.
We use a smearing of 7×10−4 eV. Similarly, a Wan-
nier interpolation with a reciprocal lattice spacing of
∆kx,y=2·10−3 × 2π/ax,y corresponding to a 500×500×1
MP grid is employed for the contour plot of the valence
band around the VHS. All MLWF calculations are per-
formed with the Wannier90 package.37

To further validate the PBEsol results, we have
performed additional calculations with the local LDA
functional,38 the semilocal PBE functional39, the
screened-hybrid HSE06 functional,40 and the GW
method41,42 in order to elucidate the position of the va-
lence band maximum. In particular, the HSE06 func-
tional and the GW method are known to provide a more
accurate description of the electronic properties of semi-
conductors and insulators than local or semilocal density
functionals.43,44

In LDA and PBE calculations, atomic positions and
lattice parameters are relaxed till the forces are less than
10−3 eV/Å and the pressure less than 1 kbar. The BZ is
sampled with a Γ-centered 60×48×1 MP grid as in the

case of PBEsol calculations. The HSE06 corrections are
instead calculated self-consistently using the PBE relaxed
lattice parameters and atomic positions, together with a
12×12×1 MP grid. The band structure is then obtained
using the derived Wannier functions in a similar fashion
to the PBEsol calculations outlined above.

The GW calculations are performed in two steps.
First, atomic positions and relaxed lattice geometries are
calculated with the PBE functional and norm-conserving
Troullier-Martins pseudopotentials.45 Then the GW cor-
rections are computed following the method proposed by
Hybertsen and Louie.41 We include 138 bands in the eval-
uation of the dielectric matrix and the self-energy, with a
cutoff of 4 Ry for the dielectric matrix; convergence was
checked including up to 384 bands. A supercell of 20 Å in
the direction perpendicular to the monolayer and a slab-
truncation potential46 are used in these GW calculations
to avoid spurious interactions with periodic replicas of
the system. A fine MP grid is employed in the direction
of the VHS (100×8×1) to distinguish the top of the va-
lence band from the Γ point, thus providing evidence for
the presence of the VHS. All GW calculations are per-
formed with the plane-wave based ABINIT package.47

III. RESULTS AND DISCUSSION

A. Electronic band structure and van Hove
singularity

Phosphorene is a semiconductor with a relatively large
bandgap that is underestimated (0.72 eV) at the PBEsol
level (a well-known deficiency of local and semilocal DFT
functionals48), and enlarged at 1.6 − 2.0 eV when GW
corrections41,42 are included.49–51 The electronic band
structure of phosphorene, calculated with the PBEsol
functional, is shown in Fig. 1(b). The black solid line
represents a standard plane wave DFT calculation, while
the red dotted line is the band structure obtained through
a Wannier interpolation. Our Wannier interpolation is
very accurate, over a broad range of energies. In particu-
lar, at Γ point, the DFT band structure and the Wannier
interpolation differ by less than 10−5 eV.

In agreement with recent studies,23,51,52 we find that
the top of the valence band is slightly away from the Γ
point for the LDA, PBE and PBEsol functionals. Using
these three DFT functionals, we consistently find that the
top of the valence band is displaced from Γ along the Γ-X
direction, which is the direction along the phosphorene
zigzag ridges [see Fig. 1(a)]. The detailed symmetry
analysis presented in Ref. 52 attributes the absence of
direct bandgap to the counteracting effects (in the k · p̂
approximation53) of states of different symmetries on the
valence band around the zone center.

To further validate these results, we have carried out
calculations using the screened hybrid HSE06 functional
and the GW approximation, which are known to improve
the description provided by local or semilocal DFT func-
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Figure 1: (Color online) (a) Crystal structure of
phosphorene and its projections on the y-z, x-y and x-z
planes (b) DFT-PBEsol electronic band structure (solid

black line) and its Wannier interpolation (dashed red line).
The Brillouin zone is also shown (c) Detail of the electronic
band structure and (d) DOS in a small region near the VHS.

The energy at the VHS is set to zero.

tionals (such as LDA, PBE and PBEsol), not only regard-
ing bandgaps, but also concerning the band dispersion in
semiconductors and insulators.43,44,54–58

To quantitatively characterize the valence band maxi-
mum, we define kmax≡(kmax, 0) as the wavector at which
the valence band has a maximum, and Emax as the differ-
ence in energy between the valence band maximum and
the value of the valence band at the Γ point. The re-
sults obtained with various computational methods and
different strains are reported in Table I. As mentioned
before, in absence of strain, LDA, PBE and PBEsol gives
a valence band top slightly away from the Γ point, with
Emax ranging approximately from 1 to 12 meV. With
the HSE06 functional, the valence band top is slightly
displaced from Γ; however, the calculated value of Emax

is so small (0.05 meV) that it can be considered zero.
Also the GW method - in the absence of strain - predict
phosphorene to be a direct bandgap semiconductor.

We then apply strain along the x-direction, changing
the lattice parameter ax to be ax(1 + xstr), where a pos-
itive (negative) value of xstr indicates tensile (compres-
sive) strain. The results are shown in Table I. Appli-
cation of compressive strain moves the valence band top
away from the Γ point in all computational methods.
In particular, with the HSE06 functional and the GW
method, the top of the valence band is displaced from
the Γ point with a 2% strain; larger strains monotoni-
cally increase both kmax and Emax with Emax∼ 54 meV
for a strain of 8% according to the GW method. In con-
trast, tensile strain moves the top of the valence band
towards the Γ point, and eventually removes the VHS
singularity.

Having established that a VHS near the phosphorene
Fermi energy is either present or can be strain-induced
using a wide range of electronic structure descriptions,
hereafter we consider as an explanatory example the case
of the PBEsol functional. Other functionals and the GW
method are expected to yield similar general results.

A magnification of the valence band maximum is
shown in Fig. 1(c). From Fig. 1(c), we notice that the
valence band has a saddle point at Γ. In the reciprocal
space neighbourhood of this point, the principal curva-
ture is electron-like along the Γ-X path [from the left in
Fig. 1(c)], while it is hole-like in the Γ-Y path [from
the right in Fig. 1(c)]. Thus, at the Γ point there is a
crossover from electron-like to hole-like conduction that
originates at the VHS. The DOS, calculated on an ultra-
fine grid of ∼1.3 billion k-points, is shown in Fig. 1(d). It
exhibits a divergent behaviour at the energy position of
the VHS, as expected for a 2D lattice. In contrast to the
saddle point behaviour at Γ, the valence band has a max-
imum at kmax and therefore the DOS shows a step-like
drop to zero at this point.59

Figure 2: (Color online) (a) 3D plot of the phosphorene
valence band around the VHS (Γ point) (PBEsol

functional). Cut-x(y) indicates the Γ-X(Y) path used in the
band structure calculation. (b) 2D contour plot of the

valence band in a larger region around Γ. The contour lines
are drawn at 2 meV intervals. The energy at the VHS is set

to zero in both plots.

Three dimensional (3D) and 2D plots of the phospho-
rene valence band in the neighbourhood of the VHS (Γ
point) are depicted in Fig. 2(a) and 2(b), respectively.
The electron-like dispersion along the Γ-X path [Cut-x
in Fig. 2(a)] and the hole-like dispersion in the Γ-Y path
[Cut-y in Fig. 2(a)] are evident. The VHS has indeed
the topology of a 3D-saddle point. Moreover, the valence
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LDA PBE PBEsol HSE06 GW

kmax Emax kmax Emax kmax Emax kmax Emax kmax Emax

(A−1) (meV) (A−1) (meV) (A−1) (meV) (A−1) (meV) (A−1) (meV)

xstr = −8% 0.256 79.4 0.275 62.3 0.260 73.3 0.271 54.4 0.269 53.8

xstr = −6% 0.212 51.9 0.213 32.9 0.211 44.9 0.168 28.9 0.206 25.5

xstr = −4% 0.175 33.1 0.161 15.1 0.175 27.8 0.129 13.0 0.147 8.9

xstr = −2% 0.145 20.2 0.113 5.1 0.136 14.0 0.092 3.6 0.083 1.1

xstr = 0% 0.119 11.6 0.063 0.7 0.105 6.6 0.029 0.05 0.000 0.0

xstr = +4% 0.067 1.9 0.000 0.0 0.033 0.1 0.000 0.0 0.000 0.0

Table I: Position of the valence band maximum, kmax, and its energy, Emax, relative to the Γ point [see Fig.1(c)]
calculated with different computational methods and various strains, xstr, along the x-direction of the phosphorene
lattice. When kmax=0 (and thus Emax=0) the top of the valence band coincides with the Γ point, and therefore the

VHS is not present.

band is anisotropic at the Γ point, with strong disper-
sion along Γ-Y [armchair direction, see Fig. 1(a)], while
it is nearly flat on Γ-X [zigzag direction, see Fig. 1(a)].
The large difference in magnitude of the effective masses
along the two directions gives to the VHS an extended
structure, as shown in Fig. 2(b). From a fitting of the lo-
cal curvature of the valence band around the Γ point, we
obtain mx/my∼27, where mx and my are the effective
masses on the Γ-X and Γ-Y path, respectively.

In the limit of infinite mass in one direction (i.e. flat
band in one direction, vanishing curvature) the sad-
dle point becomes extended, giving rise to a so-called
extended VHS (EVHS). EVHSs have been experimen-
tally observed in doped graphene60 and in some layered
cuprate superconductors.61–63 In 2D materials, the DOS
is known to diverge logarithmically at the VHS, while
in an EVHS the energy dispersion is quasi-one dimen-
sional, and the DOS has a much stronger square-root
divergence.59 Therefore, due to the anisotropy of the
phosphorene band structure, the VHS has an extended
character that might amplify its effects on the material
properties.

B. Ferromagnetic instability

As mentioned in the introduction, the presence of a
VHS at the Fermi energy can create ferromagnetic, anti-
ferromagnetic or superconducting instabilities. In con-
trast to cuprates where the VHS points are at (π, 0)
and (0, π), in phosphorene the VHS point is at Γ and
therefore we can exclude antiferromagnetism since no
inter-VHS scattering can induce this instability. Fur-
thermore, for highly anisotropic masses (see Sec. III A),
mx/my � 1, similar to the t − t′ Hubbard model with
large t′/t (> 0.276), the ferromagnetic instability will win
over other instabilities.4,7,64 As a result, we can omit also
superconductivity and consider only ferromagnetism.

The extremely fine structure of the VHS in phospho-
rene requires a very high resolution calculation of the

band structure. To make the calculation accessible, in-
stead of using the band structure from the Wannier in-
terpolation, we approximate it here by an analytic single-
band model. Consistent with Fig. 1(c) and Fig. 2, the
low-energy physics in the neighbourhood of the VHS can
be described by

E (kx, ky) =
1

2
αk2

x −
1

4
βk4

x −
1

2
α′k2

y, (1)

which characterizes the saddle point at Γ (opposite signed
band masses along kx and ky) and band inflection along
kx. As in the previous section, the VHS energy at Γ,
EVHS, is set to zero while the band maximum at kmax is
Emax. To fit the DFT-PBEsol calculations, the band
parameters follow the relations: α′/α=mx/my=27.02,√
α/β=|kmax|=0.104 Å−1 and α2/4β=Emax=6.6 meV.

This simple model captures the energy dispersion be-
haviour near the VHS and, since the parameters of the
model are determined directly from the DFT calculation,
it allows us to investigate the magnetic instability quan-
titatively.

Obviously, a ferromagnetic instability can take place
only in metallic or semimetallic systems, and therefore
some amount of doping is required for phosphorene to
exhibit metallic behaviour. To study the effects arising
from the presence of the VHS, hereafter we thus assume
the Fermi energy to be exactly at the VHS, EVHS = 0,
unless otherwise stated. In the case of the PBEsol func-
tional, the amount of (hole) doping necessary to reach
the VHS (from the top of the valence band Emax) is
found to be approximately 4.2×10−3 electrons per unit
cell, corresponding to a surface doping concentration of
1.4×1012 cm−2 for each spin.

Given the energy dispersion in Eq. (1), it is possible to
derive an exact analytical expression for the DOS, N(E)
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(see Appendix A for a complete derivation):

N(E) =

−
√

2
βα′

axay
π2k+

K
(√

1− p−2
)

if E ≥ 0

−
√

2
βα′

axay
π2|k−|

1√
|p|2+1

K
(√

1
1+|p|−2

)
if E < 0

(2)

where we have defined

k± = kmax

√
1±

√
1− E/Emax p2 =

k2
+

k2
−

(3)

and K(k) is the complete elliptic integral of the first kind.
The quantities ax and ay are the phosphorene lattice pa-
rameters, as defined in Sec. II.

Since we are mainly interested in the behaviour of the
DOS at the VHS, we take the limit E→0 in Eq. (2) to
obtain (see Appendix A)

N(E → 0±) =
axay

2π2
√
αα′

[ln (Emax/E) +O(1)] (4)

The model of Eq. (1) therefore exhibits a logarithmi-
cally divergent DOS and it is proportional to the geo-
metric mean mass,

√
mxmy ∝ 1/

√
αα′, so in the limit of

small energies we can approximate the DOS as

N(E) ≈ N0 ln (Λ/E) (5)

where N0=
axay

2π2
√
αα′

=0.0588 eV−1, and Λ is an energy

cutoff of the order of Emax. In this approximation, the
DOS only includes contributions from states around Γ.
This is fully justified since the behaviour of the DOS
near the VHS is obviously governed by its divergence
at E=0 (Γ point), and therefore finite (not diverging)
contributions from other regions in the Brillouin zone
can be neglected.

With the logarithmic DOS one can derive (see Ap-
pendix B) an expression for the bare spin susceptibility
that shows a dependence on the logarithm of the inverse
temperature,

χ(T ) =−
∫

BZ

d2k

(2π)
2

∂nF (Ek)

∂Ek
(6)

≈N0 ln(ωD/T ) (7)

where nF is the Fermi distribution, Ek are the energy
(Kohn-Sham) eigenvalues, and ωD is a fitting constant of
the order of Emax. We also set the Boltzmann constant
kB to unity. The logarithmic divergence at low tempera-
tures [Eq. (7)] is confirmed by explicit calculation of the
spin susceptibility using Eq. (6), as shown in Fig. 3(a).

Notably, the logarithmic behavior is present only when
the temperature is lower than T ∗, which is defined as the
temperature above which the spin susceptibility starts
deviating from the logarithmic behaviour. Thus, above
T ∗ ∼17 K (corresponding to an energy scale of 1.5 meV),
we observe deviation of the susceptibility from the log-
arithmic law as seen in the insert of Fig. 3(a). This
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Figure 3: (Color online) (a) Temperature dependence of the

bare spin susceptibility χ calculated directly from Eq. (6)

(blue dots) or approximated with the logarithmic divergence

in Eq. (7) (dashed red line). The low-temperature behaviour

for T<T ∗∼1.5 meV is seen in the inset to follow the

logarithmic law. The dashed red line is fitted to Eq. (7)

with ωD =0.5004 eV. The Fermi level is set to EVHS=0. (b)

Spin susceptibilities χ at different Fermi energies µ. Away

from the VHS, the low-temperature logarithmic behaviour

stops at T ≈ µ and turns into Pauli susceptibility.

temperature T ∗ is related to the energy scale Emax. We
have checked this apparent relationship between T ∗ and
Emax by comparing susceptibilities for different band pa-
rameters β (and thus Emax) in Eq. (1), and we indeed
see proportionality between T ∗ and Emax (not shown). It
is also found that the susceptibility increases with Emax

as expected from the energy cutoff and fitting constant
dependence in Eqs.(5) and (7) respectively.

Next, we examine the effect of doping on the ferromag-
netic instability, considering various chemical potential
shifts µ. The susceptibility was calculated numerically
and the results are presented in Fig. 3(b), in which the
Fermi energy is shifted to µ above EVHS (the energy of
the VHS, or Γ). Fig. 3(b) shows that even away from
the VHS point, the logarithmic-T behaviour of the sus-
ceptibility is still preserved for T<T ∗. However, for each
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value of µ, we see that the logarithmic increase of χ with
decreasing T stops at µ, below which the susceptibility
become constant suggesting a transition to Pauli param-
agnetism at low temperatures. This different behaviour
for large and small T (with respect to µ) can thus be
understood directly from the expression of the bare spin
susceptibility as outlined in Appendix B.

It is in fact possible to obtain analytical estimates for
χ in both regimes (please refer to Appendix B for a com-
plete derivation). For T�µ, the susceptibility has the
form

χ (T � µ) ≈ N0 ln (ωD/T ) cosh−2 (µ/2T ) . (8)

We observe the logarithmic-T behaviour, typical of
Liftshitz phase transitions. Moreover, for µ/T→0,
cosh−2(µ/2T )→1 and therefore, in this limit, χ for the
doped system has precisely the same behaviour as in the
undoped case, as confirmed by the numerical results pre-
sented in Fig. 3(b). In contrast, for T�µ the suscepti-
bility is found to be independent of T :

χ (T � µ) ≈ N0 ln(Λ̄/µ) (9)

where Λ̄ is an energy cutoff Λ̄<Emax. This saturation
of χ agrees well with the numerical results presented in
Fig. 3(b), and it originates from the infrared cutoff of
the excitations due to the shifted thermal distribution
(see Appendix B).

Now we estimate the ferromagnetic transition tem-
perature. Let us assume a Hubbard interaction of
strength U between intra-orbital spins. According to the
Stoner criterion,65 the magnetic transition occurs when
Uνχ(T )=1. Here Uν , which is defined by U times the
average weight Wν at the Fermi energy for a particular
orbital ν, is regarded as the effective interaction of orbital
ν.

According to the BCS theory,66 for a metal, the su-
perconductivity arises as a result of introducing an in-
finitesimal (attractive) interaction between the electrons
at zero temperature. Analogously, in our system, as the
density of states diverges, we expect that infinitesimal in-
teractions can drive the ferromagnetic transition at zero
temperature. From the Stoner criterion, the critical tem-
perature thus follows the BCS form,

Tc = ωD exp(−1/N0Uν) (10)

where the geometric mean mass, appearing in N0 [as
indicated below Eq. (5)], determines the DOS at the
Fermi energy. Equation (10) is also consistent with
the renormalization group result for the spin suscepti-
bility, which exhibits the same logarithmic temperature
behaviour.64,67 Here, the quantity ωD is a suitable energy
bound for the model. In general, it could be for example
the interaction strength or the bandwidth (the scale of
the VHS logarithmic tail). In our case, since the VHS is
close to the valence band maximum, Emax (above which
a large gap from the conduction band is present) the VHS

logarithmic tail ends at Emax, and therefore ωD ≈ Emax.
Using the BCS formula in Eq.(10), one can obtain the
magnetization directly.

The effective interaction Veff can be evaluated using
the Kohn-Sham orbitals from the DFT calculation. Let
us define orbital operators ψm and band operators φν .
The relation between them is a unitary transformation
ψm(k)=

∑
ν Am,ν(k)φν(k) where A(k) is the unitary ma-

trix that diagonalizes the Bloch Hamiltonian. The Hub-
bard onsite (intra-orbital) interaction is

HU = U
∑
R,m

ψ†m↑(R)ψm↑(R)ψ†m↓(R)ψm↓(R), (11)

where R is the real space lattice vector and ψm↑,↓ are the
Kohn-Sham spin-orbitals.

Since only the valence band (VB) is included in our
low-energy model [Eq. (1)], we include only the intra-
band scattering terms from the Hubbard model. More-
over, at T=0, only states from the Fermi surface con-
tribute to the susceptibility. After these considerations,
the effective interaction Veff for ν=VB is

Veff ≈ Uν
∑

k1,k2,k3

φ†ν↑(k1)φν↑(k2)φ†ν↓(k3)φν↓(k1 + k3 − k2),

(12)

where the momenta k1, k2 and k3 are in the neighbour-
hood of the Fermi surface and the interaction strength

Uν = UWν = U

〈∑
m

|Am,ν(k)|4
〉

FS

(13)

is averaged on the Fermi surface in the sense that the
momentum dependence can be neglected since the Fermi
surface around the VHS is small.

From the DFT results, we obtain an average weight,
Wν , for the contributing orbitals of about 0.2. This or-
bital weight significantly reduces the critical tempera-
ture. For example, using the criterion Uνχ(Tc)=0.8 and
at U=4 eV, the critical temperature Tc for ferromag-
netism is only about 4 µK.

Doping can destroy ferromagnetism even at zero
temperature when N0Uν ln(ωD/µ)<1. Although inter-
orbital interactions might slightly enhance Tc, the Stoner
criterion applied to the bare susceptibility typically over-
estimates the critical temperature since particle-particle
correlations would give large corrections to the self-
energy.67–69 As a result, this ferromagnetic state would
be difficult to reach.

C. Effect of strain on the van Hove singularity and
on the critical temperature

Strain can have a large effect on phosphorene’s pliable
waved structure, and therefore it represents a natural
way to tune the band parameters of the VHS, in order to
increase Tc. In particular, from Eq. (10) we notice that,
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for a fixed effective interaction, the critical temperature
can be varied in two ways. One way is to increase ωD
(or equivalently Emax, see Sec. III B), which will cause
a linear increase in Tc. The second and more prominent
way is to increase N0, which will result in an exponential
increase in Tc. This can be accomplished, for instance, by
reducing the dispersion in both x and y directions near
the Γ point [see Eqs. (1) and (5)].

We find that strain along the armchair direction [y-
axis in Fig. 1(a)] does not alter significantly the critical
temperature, with a modest ninefold increase in Tc (∼36
µK) for a tensile strain of 3%.

The situation, however, is significantly different for
strain along the zigzag ridge direction [x-axis in Fig.
1(a)]. The most relevant quantities for representative
x-strain values are listed on Table II.

Table II: Parameters related to the VHS for different
strains on the zigzag direction [x-axis in Fig.1(a)]. For

T<T ∗, the susceptibility follows the logarithmic
temperature dependence of Eq. (7). The PBEsol

functional is used.

xstr = −4% xstr = 0% xstr = +4%

kmax (1/Å) (0.175,0) (0.105,0) (0.033,0)
Emax (meV) 27.8 6.6 0.1
N0 (eV−1) 0.0374 0.0588 0.1909
T ∗ (K) 97 17 0.23
Tc (K) 5×10−7 4×10−6 5×10−2

(a) (b)

x-strain (%)

T 
(K

)
c

0 +1 +2 +3 +4

10
-5

10
-3

10
-1

(c)

T 
(K

)
c

N  (eV)0
-1

5 10 15

10
-5

10
-3

10
-1

T (eV)
10-7 10-5 10-3 10-1

χ
(e

V
-1

)

0

1

2
0%
+4%
- 4%

Figure 4: (Color online) Effect of zigzag ridge [x-axis in
Fig.1(a)] strain on the VHS (a) Temperature dependence of

the bare spin susceptibility χ for different strains. The
arrows indicate the temperature T ∗ at which the

susceptibility starts to deviate from the logarithmic
behaviour. (b) Critical temperature Tc as a function of

strain. (c) Tc versus N−1
0 . The behaviour of Tc still follows

the exponential law of Eq. (10) even if strain is applied.

Compressive x-strain of 4% slightly reduces N0 (see
Table II), and leads to a decrease in Tc to only 0.5 µK.
In contrast to this N0, we see from Table II that Emax

increases with this compressive x-strain. Due to the pro-
portionality between Emax and T ∗, the spin susceptibility
starts to follow the logarithmic-T behaviour - the signa-
ture of the VHS - at higher temperatures than the un-
strained case. For example, we see that a compressive
x-strain of 4% leads to T ∗ of about 97 K (8.4 meV) [see
Fig. 4(a), yellow squares]. Due to the relatively high
temperatures involved, the logarithmic-T behaviour in
the spin susceptibility could in principle be observable
experimentally, thus providing compelling evidence for
the presence of the VHS.

In contrast, tensile x-strain has the opposite effect
on the band parameters: while Emax diminishes, N0 is
greatly enhanced. Notably, the critical temperature ex-
hibits an exponential dependence on tensile strain, as
depicted in Fig. 4(b). For a 4% strain, the critical
temperature is about 0.05 K. Even though this corre-
sponds to a 104-fold increase in Tc with respect to the
unstrained case, this magnetic state will hardly be seen
experimentally due to the very low temperatures re-
quired. We also observe that the logarithmic divergence
becomes the dominant contribution at around T ∗∼0.23 K
(0.002 meV) [Fig. 4(a), orange crosses], a much lower
value compared to the unstained case resulting from the
flattening of the valence band (and consequently dimin-
ished Emax), caused by the applied stress.

The physics behind the strain-dependence of the VHS
is simple. The act of stretching will decrease the hoppings
between phosphorus atomic orbitals, thus reducing the
bandwidth. As the dispersion decreases, we expect that
α and α′ in Eq. (1) become smaller and hence the density
of states N0 increases. The act of compressing will show
the opposite trend. Because the band inflection is along
kx, x-strain have a larger effect on α compared to y-
strain, explaining our findings.

Finally, we observe that the critical temperature still
follows the exponential law of Eq. (10), even when strain
is applied, as shown in Fig. 4(c). For higher stress,
Tc could deviate from Eq. (10), since Emax diminishes
(∼10−4 eV for a 4 % tensile strain) and therefore narrows
the VHS divergence, limiting the increase of the critical
temperature.

IV. CONCLUSIONS

We have used Wannier function-based interpolation
techniques to investigate the VHS at the Γ point near
the phosphorene Fermi energy with more than a billion
k-points. Thanks to this extreme resolution, we are able
to present compelling numerical evidence for the presence
of a VHS near the phosphorene Fermi energy. As a result
of its close proximity to the valence band maximum, the
VHS can be reached with a hole doping concentration
on the order of 1012 cm−2, easily achievable by chemical
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doping or ionic-liquid gating.70

Furthermore, we have calculated an exact expression
for the DOS near the VHS, and we have demonstrated
that the spin susceptibility presents a logarithmic-T be-
haviour, signature of the VHS, and consequent Liftshitz
phase transition.

We have also shown that the critical temperature can
be increased up to 0.05 K by applying a modest strain to
the phosphorene pliable waved structure. Although this
ferromagnetic state would be very difficult to reach ex-
perimentally, the logarithmic temperature behaviour of
the spin susceptibility due to the presence of the VHS
could be observed because it persists at higher temper-
atures (T ∗∼17 K for the unstrained case, and T ∗∼97 K
for a 4% tensile strain along the zigzag ridges).

There are numerous experimental techniques able to
detect the presence of VHSs. For example, the scan-
ning tunnelling microscope (STM) measures the tun-
neling differential conductance, which is proportional to
the local DOS,71 and therefore represents an ideal tool
to detect VHSs. This technique has been used to ob-
serve VHSs in other 2D materials like twisted multilayer
graphene,72 or the cuprate superconductor Bi-2201.63

Furthermore, angle-resolved photoemission spectroscopy
(ARPES) can detect saddle points in the single-particle
energy dispersion, as employed for numerous cuprate
compounds61,62,73,74 and doped graphene.60 Finally, the
Knight shift75 in nuclear magnetic resonance experiments
could provide evidence for the change in spin susceptibil-
ity in proximity of the VHS.
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Appendix A: Exact derivation of the density of
states

In this section, we present an analytical derivation of
the DOS for phosphorene around the VHS. According
to Eq. (1), the dispersion relation of the valence band
around the Γ point has the form

Ek =
1

2
αk2

x −
1

4
βk4

x −
1

2
α′k2

y (A1)

with α, β, α′ > 0. The valence band has its energy ex-
treme at Emax = α2/4β when (kx,ky)= (kmax, 0) and

kmax =
√
α/β. Moreover, there is a VHS at energy

EVHS = 0 originating from states near kx = 0.

By definition, the DOS per spin per unit area is

N(E) =

∫
dkxdky
(2π)2

δ(E − Ek) (A2)

=
2

(2π)2

∫
dkx

∫
ky≥0

dky
1∣∣∂kyEk∣∣δ(ky − kEy )

=
1√

2α′π2

∫
kx≥0

dkx
1√

α
2 k

2
x −

β
4 k

4
x − E

.

where kEy satisfies E = 1
2αk

2
x − 1

4βk
4
x − 1

2α
′ (kEy )2.

The integration range is limited by the fact that the
square root term has to be real. After some algebra, one
can show that the integral range is k ∈ [max(0, k−), k+]
with

k± =

√√√√α

β
±

√(
α

β

)2

− 4E

β
= kmax

√
1±

√
1− E/Emax.

(A3)

Thus, if E < 0, k− is not purely real, and the lower
bound is zero. Therefore, we have∫ k+

0

dkx
1√

α
2 k

2
x −

β
4 k

4
x − E

(A4)

=

∫ k+

0

dkx
1√(

−β4
)

(k2
x − k2

+)(k2
x − k2

−)

=
−2i√
βk−

∫ 1

0

dx
1√

(1− x2)(1− p2x2)

=
−2i√
βk−

F
(π

2
, p
)

=
−2i√
βk−

K(p).

where we have defined

p2 ≡
k2

+

k2
−

=
Emax

E

(
1 +

√
1− E

Emax

)2

(A5)

and introduced F (φ, k) the incomplete elliptic integral of
the first kind and K(k) the complete elliptic integral of
the first kind. They are related here by F (π2 , k) = K(k).

On the other hand, if E > 0 (k− > 0), the lower bound
is k− and we will deal with∫ k+

k−

dkx
1√

α
2 k

2
x −

β
4 k

4
x − E

(A6)

=

∫ k+

k−

dkx
1√(

−β4
)

(k2
x − k2

+)(k2
x − k2

−)

=
−2i√
βk−

∫ 1

p−1

dx
1√

(1− x2)(1− p2x2)

=
−2i√
βk−

(
−i
p

)
F
(π

2
,
√

1− p−2
)

=
−2√
βk+

K(
√

1− p−2).
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In Eqs. (A4) and (A6), we have used the integral formu- lae:

∫ u

0

dx
1√

(1− x2)(1− p2x2)
=

1

2

∫ u2

0

dz
1√

z(1− z)(1− p2z)
= F (arcsin(u), p) (A7)

∫ 1

u

dx
1√

(1− x2)(1− p2x2)
=

1

2

∫ 1

u2

dz
1

ip
√
z(1− z)(z − p−2)

=
−i
p
F

(
arcsin

(√
1− u2

1− p−2

)
,
√

1− p−2

)
. (A8)

For negative energies, E < 0,

k− = i

√√
1 + |E| /Emax − 1 = i |k−| (A9)

p = i

√
Emax

|E|

1 +

√
1 +

|E|
Emax

 = i |p| (A10)

and therefore we will use the relation

K(ik) =
1√

k2 + 1
K

(√
k2

k2 + 1

)
(A11)

in Eq. (A4).
In conclusion, the density of states for E < 0 and E >

0 are, respectively,

N(E < 0) =
1√

2α′π2

∫ k+

0

dkx
1√

α
2 k

2
x −

β
4 k

4
x − E

(A12)

=− i
√

2

βα′
1

π2i |k−|
K (i |p|)

=−
√

2

βα′
1

π2 |k−|
1√
|p|2 + 1

K

(√
1

1 + |p|−2

)

and

N(E > 0) =
1√

2α′π2

∫ k+

k−

dkx
1√

α
2 k

2
x −

β
4 k

4
x − E

(A13)

=−
√

2

βα′
1

π2k+
K
(√

1− p−2
)

The final step is to analyze the asymptotic behaviour
of the DOS. Since K will show a logarithmical divergence
when

K(k = 1− η)
η→0−→ 1

2
ln |η|+O(1), (A14)

for E → 0, both the quantities
√

1
1+|p|−2 and

√
1− p−2

approach one. By using k± →
√

2kmax, |k−| →
kmax

√
|E|

2Emax
, |p| → 2

√
Emax

|E| , and 1√
|p|2+1

→ 1
2

√
|E|
Emax

,

we obtain the DOS at the VHS as:

N(E → 0−) =
1

2π2

√
1

αα′

[
ln

(
Emax

|E|

)
+O(1)

]
(A15)

and similarly,

N(E → 0+) =
1

2π2

√
1

αα′

[
ln

(
Emax

E

)
+O(1)

]
(A16)

After multiplication by the unit cell area ax×ay, we ob-
tain the result reported in Eq. (4).

Appendix B: Bare spin susceptibility at the VHS
and the effect of doping

Firstly, we derive the bare susceptibility when the
Fermi energy is at EVHS=0 (µ=0). The spin suscepti-
bility is given by

χ(T ) =
axay
(2π)2

∫
d2k

1

4T
cosh−2

(
Ek
2T

)
=

1

4T

∫ Emax

−∞
dEN(E) cosh−2

(
E

2T

)
≈ 1

4T

∫ Λ

−Λ

dEN0 ln

(
Λ̄

|E|

)
cosh−2

(
E

2T

)
=

1

2
N0

∫ Λ/2T

−Λ/2T

dx ln

(
Λ̄/2T

|x|

)
cosh−2 x

=−N0

∫ Λ/2T

0

dx
lnx

cosh2 x
+

+N0 ln

(
Λ̄

2T

)∫ Λ/2T

0

dx cosh−2 x

where we have considered only the contribution from the
VHS and the logarithmic behaviour applies when |E| < Λ
and Λ̄ is another energy cutoff Λ̄<Emax.

If we then consider the limit Λ � T and use the fol-
lowing formulae:∫ ∞

0

dx
lnx

cosh2 x
= log

π

4
− γe ≡ −C = −0.8188 (B1)
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(γe is the Euler-Mascheroni constant)

∫ Λ/2T

0

dx cosh−2 x = tanh
Λ

2T
≈ 1 (B2)

we obtain the following expression for the bare suscepti-
bility

χ(T ) ≈N0C +N0 ln(
Λ̄

2T
) ≡ N0 ln(ωD/T ) (B3)

which is Eq. (7) in the main text.
Then, we discuss the effect of doping on the suscepti-

bility. When we shift the Fermi energy from zero (EVHS)
to µ, the VHS will change to −µ, and therefore we can
replace the DOS by N(E) ≈ N0 ln Λ

|E+µ| for |E+µ| < Λ.

The susceptibility thus becomes

χ(T ) ≈ 1

4T
N0

∫ Λ−µ

−Λ−µ
dE ln

(
Λ̄

|E + µ|

)
cosh−2

(
E

2T

)
(B4)

=
1

4T
N0

∫ Λ

−Λ

dE ln
Λ̄

|E|
cosh−2

(
E − µ

2T

)
.

We will now consider two regimes: T � µ and T � µ.
Let us start with the case T�µ. By using the expan-

sion

cosh

(
E − µ

2T

)
= cosh

(
E

2T

)
cosh

( µ

2T

)
+

− sinh

(
E

2T

)
sinh

( µ

2T

)
,

(B5)

and the approximation

cosh−2

(
E − µ

2T

)
≈ cosh−2

(
E

2T

)
cosh−2

( µ

2T

)
, (B6)

the susceptibility can be written as

χ(T � µ) ≈ 1

4T
N0

∫ Λ

−Λ

dE ln
Λ̄

|E|
cosh−2

(
E

2T

)
(B7)

× cosh−2
( µ

2T

)
= N0 ln (ωD/T ) cosh−2

( µ

2T

)
≈ N0 ln (ωD/T ) (B8)

and therefore, in this regime, the susceptibility is the
same as the undoped case [compare to Eq. (B3)].

On the other hand, when T�µ, the function
cosh−2(E−µ2T ) decreases proportionally to exp(µ−ET ) for
|E − µ| � T . Therefore it is a good approximation to

replace ln Λ̄
|E| cosh−2(E−µ2T ) by ln Λ̄

|µ| cosh−2(E−µ2T ) in the

integrand in Eq. (B4). As a result,

χ(T � µ) ≈ 1

4T
N0

∫ Λ

−Λ

dE ln
Λ̄

|E|
cosh−2

(
E − µ

2T

)
=

1

4T
N0

∫ Λ

0

dE ln
Λ̄

|E|

[
cosh−2

(
E − µ

2T

)
+

+ cosh−2

(
E + µ

2T

)]
≈ 1

4T
N0

∫ Λ

0

dE ln
Λ̄

µ

[
cosh−2

(
E − µ

2T

)
+

+ cosh−2

(
E + µ

2T

)]
(B9)

Then, using∫ Λ

0

dE cosh−2

(
E ± µ

2T

)
= 2T

[
tanh

(
Λ∓ µ

2T

)
±

± tanh
( µ

2T

)]
(B10)

we obtain

χ(T � µ) =
1

2
N0 ln

Λ̄

µ

[
tanh

(
Λ + µ

2T

)
+ tanh

(
Λ− µ

2T

)]
=

1

2
N0 ln

Λ̄

µ

sinh Λ
T

cosh Λ+µ
2T cosh Λ−µ

2T

≈N0 ln
Λ̄

µ
tanh

Λ

T
≈ N0 ln

Λ̄

µ
(B11)

The final result of Eq. (B11) indicates that, in this
regime, the bare spin susceptibility is independent of tem-
perature, as seen in Fig. 3(b). This behaviour originates
from the infrared cutoff of the excitations due to the ther-
mal distribution. Let us in fact consider the integrand in
Eq. (B9):

ln
Λ̄

|E|

[
cosh−2

(
E − µ

2T

)
+ cosh−2

(
E + µ

2T

)]
' ln

Λ̄

|E|
cosh−2

(
E − µ

2T

) (B12)

Due to the chemical potential shift µ, the thermal dis-

tribution function, cosh−2(E−µ2T )∼exp
[
− 1√

2
(E−µ2T )2

]
, is

now centered at E=µ and not at E=0 like in the undoped
case. Therefore, the integration around E=0, where the
logarithmic function diverges, now makes essentially no
contribution to the total integral, giving raise to the flat-
tening of the susceptibility observed for T�µ.
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