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We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer
transition metal dichalcogenides. Our microscopic formalism combines a fully k-dependent few-orbital band
structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a model
dielectric function. We show analytically and numerically that the single-particle, valley-dependent selection
rules are preserved in the presence of excitonic effects. Furthermore, we definitively demonstrate that the bright
(one-photon allowed) excitons have s-type azimuthal symmetry and that dark p-type excitons can be probed via
two-photon spectroscopy. The screened Coulomb interaction in these materials substantially deviates from the
1/ε0r form; this breaks the “accidental” angular momentum degeneracy in the exciton spectrum, such that the
2p exciton has a lower energy than the 2s exciton by at least 50 meV. We compare our calculated two-photon
absorption spectra to recent experimental measurements.

I. INTRODUCTION

The transition metal dichalcogenides (TMDCs) are a fam-
ily of layered semiconducting crystals that includes MoS2,
MoSe2, WS2, and WSe2. Isolated monolayers of TMDCs
have been recently investigated for two major reasons. First,
the emergent direct band-gap occurs at the corners of the
hexagonal Brillouin zone (so-called ‘valleys’)1,2 and the
nearby band structure topology leads to valley-dependent op-
tical selection rules.3–5 Second, the carrier confinement and
reduced dielectric screening leads to large many-body ef-
fects, such as the formation of strongly bound excitons,6–10

trions,6,11–13 and biexcitons14 with very large binding ener-
gies. A unified understanding of the optical properties must
treat both of these aspects on equal footing, and significant
effort is now being focused on investigating the detailed spec-
troscopy of excitons in monolayer TMDCs.

In the ongoing effort to understand excitons in these ma-
terials, multiple spectroscopic techniques have been em-
ployed, including reflectance,9,10,15 photoluminescence exci-
tation spectroscopy16 scanning tunneling spectroscopy,17,18

and two-photon luminescence.9,19,20 A rigorous knowledge of
the spectroscopic selection rules for excitons in monolayer
TMDCs is crucial for the proper interpretation of these and
future experiments. In this paper, we develop a model-based
framework which is sufficiently detailed to provide quantita-
tive results, but also sufficiently simple to allow precise state-
ments about symmetry-determined selection rules. We de-
scribe the connection to our previous work based on an ef-
fective mass theory of excitons,6 and identify the key micro-
scopic physical factors that determine the properties of exci-
tons and their interaction with photons. We also provide the
first theoretical treatment of two-photon absorption in mono-
layer TMDCs.

The outline of the paper is as follows. In Sec. II we will
discuss simple microscopic models of the single-particle band
structure in monolayer TMDCs, and in particular we will an-
alyze the transition matrix elements which completely deter-
mine the independent-electron absorption and partially deter-

mine the excitonic absorption. We will then in Sec. III ana-
lyze the linear optical properties and present selection rules,
both in the absence and presence of exciton effects, defini-
tively finding that s-type excitons are optically bright. Lastly,
in Sec. IV we will calculate the two-photon absorption sig-
nal which will be shown to probe p-type excitons and we will
discuss some of the implications for recent experiments. We
conclude in Sec. V, and make connection to other recent theo-
retical works. We note that a preliminary version of this work
appeared in Ref. 21.

II. SINGLE-PARTICLE BAND STRUCTURE

We will consider two models for the single-particle band
structure. First, we will consider a widely used long-
wavelength, two-band model.3 In particular, this minimal
model allows for a largely analytical treatment, which ex-
poses many of the subtleties of the theory, including selection
rules and exciton effects. Second, we will use a recently pre-
sented nonlinear three-band model,22 which requires a numer-
ical treatment but captures higher-order effects. This also en-
sures that our conclusions are generally valid and not specifi-
cally dependent on the simplified two-band picture. For sim-
plicity we will henceforth neglect spin-orbit coupling, though
it can be straightforwardly included in the single-particle de-
scription.3,22,23 Specifically, in all models of the band struc-
ture, the spin projection sz is still a good quantum number in
the presence of spin-orbit coupling. In this sense, the follow-
ing discussion applies to the A-exciton (and not the B-exciton)
and conventional factors of two for spin will not appear. At
this level of theory, the formalism for the B-exciton is identi-
cal, and its contribution is simply shifted to higher energies.
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A. Two-band model

The first model considered has the form of a conventional
two-band, massive Dirac Hamiltonian,

Hτ(k) =
(

Eg/2 at(τqx − iqy)
at(τqx + iqy) −Eg/2

)

. (1)

The variable τ = ±1 indexes the two “valleys,” known as the K

and K′ (or K and −K) points, which occur at alternating cor-
ners of the hexagonal first Brillouin zone. The Hamiltonian
has been linearized in the wavevector difference with respect
to the nearest K point, i.e. q = k−K . This is a gapped version
of the conventional graphene Hamiltonian.24 In graphene, the
spinor basis corresponds to carbon pz orbitals on the two dis-
tinct sublattices; in the TMDCs, the basis corresponds to the
transition metal |dz2〉 ≡ |φc〉 orbital and the metal symmetry-
adapted |dx2−y2〉 + iτ|dxy〉 ≡ |φτv〉 orbital. The above Hamil-
tonian was first used for TMDCs by Xiao et al.3 who pre-
dicted optical selection rules leading to spin-valley coupling.
Such spin-valley coupling was quickly confirmed experimen-
tally, by monitoring the circular polarization of photolumines-
cence.4,5

The eigenvalues of the two-band Hamiltonian are

Ec/v(k) = ±1
2

√

E2
g + 4(atq)2 ≡ ±ε(k) (2)

and the eigenvectors are

|ψτc,k〉 =
1
√

2

[ √
α+(k)|φc〉 +

√
α−(k)eiτφk |φτv〉

]

(3a)

|ψτ
v,k
〉 = 1
√

2

[

−
√
α−(k)|φc〉 +

√
α+(k)eiτφk |φτv〉

]

. (3b)

where α±(k) = 1 ± Eg/[2ε(k)] and tan φk = qy/qx. The rel-

ative phase appearing within each eigenvector is associated
with an electronic “chirality” (related to Berry’s phase), which
is well-known in graphene.24–26 Note that the overall phase of
each eigenvector is arbitrary, and the phase convention chosen
here is such that the first element of each eigenvector is purely
real.

B. Three-band model

A more detailed Hamiltonian – using three bands derived
from the transition metal |dz2〉, |dxy〉, and |dx2−y2〉 atomic or-
bitals – was given recently by Liu et al.22 The form of the ma-
trix elements and material-specific parameters can be found
in Ref. 22. We note than in addition to using three bands in-
stead of two, this Hamiltonian has not been linearized with
respect to wavevector near the K and K′ points, which gives
a more accurate description throughout the entire Brillouin
zone. While it cannot be so easily diagonalized analytically,
the Hamiltonian can be straightforwardly diagonalized nu-
merically. For phase consistency in later calculations, we en-
force the same phase convention as for the two-band eigen-
vectors, i.e. that the first element of each eigenvector is purely
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FIG. 1. Single-particle band structure of MoS2 predicted by a lin-
earized two-band model (blue solid) and a non-linear three-band
model (red dashed) compared to first-principles density functional
theory with the local density approximation (DFT, solid black).

real, which is sufficient to ensure continuity in k-space. In
Fig. 1, the band structure predicted by these two models is
compared to the band structure calculated by density func-
tional theory with the local density approximation.

C. Transition matrix elements

An analysis of optical selection rules requires the momen-
tum matrix elements between single-particle states. In the
present model Hamiltonians, the momentum matrix elements
normal to the layer are zero by symmetry. Here we focus on
the momentum in the plane. By using the commutation rela-
tion p = (−im/~)[r,H], we can write these momentum matrix
elements as

P vc(k) =
−im

~
〈ψv,k| [r,H] |ψc,k〉

=
m

~

(

Ec,k − Ev,k

)

〈ψv,k|∇k|ψc,k〉
(4)

where we have used the k-space representation of the position
operator, r = i∇k. We can now use a generalized Feynman-
Hellman theorem to write this as

P vc(k) =
m

~
〈ψv,k |∇kH(k)|ψc,k〉 (5)

(note that this expression neglects the on-site, intra-atomic
contribution,27 however this vanishes here for d − d transi-
tions). For the simple two-band Hamiltonian, this gives

∇kH(k) =
(

0 at(τx̂ − iŷ)
at(τx̂ + iŷ) 0

)

. (6)

The appropriate matrix element can then be taken between the
conduction and valence band eigenstates of the Hamiltonian,
yielding a transition dipole vector P vc(k) with linear x- and
y-polarization components

Pvc
x (k) = τ

mat

2~

[

α+(k)e−iτφk − α−(k)eiτφk
]

, (7)

Pvc
y (k) = i

mat

2~

[

α+(k)e−iτφk + α−(k)eiτφk
]

. (8)
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FIG. 2. Valence to lowest conduction band momentum matrix elements for a linearized two-band model (top) and a non-linear three-band
model (bottom). Blue is positive, red is negative, and white is zero. The results are qualitatively very similar in the immediate vicinity of the
K and K′ points, but differ elsewhere in the Brillouin zone.

The same procedure can be done for the three-band Hamilto-
nian, by taking the gradient and calculating (numerically) the
appropriate matrix element between conduction and valence
bands. A comparison of the real and imaginary parts of the
x- and y-components of the two different models of the band
structure is shown in Fig. 2 throughout the entire first Brillouin
zone.

Valley-dependent selection rules have been shown to arise
specifically for the case of circularly polarized light.3 For cir-
cular polarizations, the above expressions can be combined to
give, in the two-band case,

Pvc
± (k) =

1
√

2

[

Pvc
x (k) ± iPvc

y (k)
]

= ∓
mat
√

2~

(

1 ∓ τ
Eg

2ε(k)

)

e±iφk ,

(9)

leading to the valley-dependent intensities,

∣

∣

∣Pvc
± (k)

∣

∣

∣

2
=

m2a2t2

2~2

(

1 ∓ τ
Eg

2ε(k)

)2

. (10)

Near the K and K′ points, 2ε(k) → Eg, such that Pvc
± (k) ∝

(1 ∓ τ)e±iφk and
∣

∣

∣Pvc
± (k)

∣

∣

∣

2 ∝ (1 ∓ τ)2, i.e. circular polarization
can selectively excite electrons at the K or K′ point. For ex-
ample, right-handed circular polarization, Pvc

− (k), selectively
excites at the K (τ = +1) point. Again, this analysis can be
carried out numerically for the three-band model. A compari-
son of the the selection rules,

∣

∣

∣Pvc
± (k)

∣

∣

∣

2
, for the two models is

shown in Fig. 3. Note that while the matrix elements them-
selves have an ambiguity in the phase (i.e. they are not ob-
servable), the squared matrix elements are completely inde-
pendent of the phase convention. In Sec. III B, we will show
how the nodal structure (p-type symmetry) of the momentum
matrix elements is canceled, leading to bright s-type excitons
which still respect the valley selectivity.

III. LINEAR OPTICAL PROPERTIES AND SELECTION

RULES

In general, the transition probability per unit time is given
by

W(ω) =
2π
~

∑

F

|VIF |2 δ(EF − EI − ~ω) (11)

where VIF is the matrix element which couples the initial and
final states with energies EI and EF . For the linear (one-
photon) absorption, we have V = (eA/mc)λ · p̂, where A is the
vector potential and λ is the polarization. Within the presently
considered model Hamiltonians, symmetry excludes coupling
to photons with electric vector polarized perpendicular to the
plane of the monolayer. Here we explicitly consider the case
with electric vector polarized in the plane. We will evalu-
ate this expression first in the independent particle picture and
then in the presence of excitonic effects.
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FIG. 3. Valence to lowest conduction band momentum matrix el-
ements squared, for circular polarization, for a linearized two-band
model (top) and a non-linear three-band model (bottom). Black is
positive and white is zero. The results are qualitatively very similar
in the immediate vicinity of the K and K′ points, but differ elsewhere
in the Brillouin zone.

A. Independent particle absorption

For an uncorrelated initial ground state |0〉 and an uncorre-
lated final excited state c

†
c,k

cv,k|0〉, it is simple to show

VIF =
eA

mc
〈0|λ · p̂c

†
c,k

cv,k|0〉 =
eA

mc
λ · P cv(k), (12)

EF − EI = Ec(k) − Ev(k), (13)

and therefore

W(ω) =
2π
~

(

eA

mc

)2 ∑

cv,k

|λ · P cv(k)|2

× δ(Ec(k) − Ev(k) − ~ω).

(14)

The imaginary part of the dielectric function follows as28

ε2(ω) =
4π2e2

m2ω2

∑

cv

∫

BZ

d2k

(2π)2
|λ · P vc(k)|2

× δ(Ec(k) − Ev(k) − ~ω),

(15)

where we have taken the infinite-system limit. Let us specif-
ically consider the linearized two-band model with right-
handed circular polarization, λ · P vc(k) = Pvc

− (k), for which
we can carry out the integration in Eq. (15) semi-analytically.
Considering only one valley (say τ = +1), we can change to
polar coordinates about the K point,

εK
2 (ω) =

4πe2

m2ω2

∫ ∞

0
k|Pvc
− (k)|2δ(2ε(k) − ~ω)dk. (16)

Note that by integrating out to infinity, we are incurring an
error at large wavevectors (energies). Since the dispersion re-
lation is monotonic, we can change variables, kdk = εdε/a2t2,
and use the squared matrix element from above to find

εK
2 (ω) =

2πe2

~2ω2

∫ ∞

0
dεθ(2ε − Eg)ε

(

1 +
Eg

2ε

)2

δ(2ε − ~ω)

=
πe2

2~ω
θ(~ω − Eg)

(

1 +
Eg

~ω

)2

.

(17)

Accounting for the other valley, ε2(ω) = εK
2 (ω) + εK′

2 (ω),
yields

ε2(ω) =
πe2

2~ω
θ(~ω − Eg)















(

1 +
Eg

~ω

)2

+

(

1 −
Eg

~ω

)2












=
πe2

~ω
θ(~ω − Eg)















1 +
E2

g

(~ω)2















.

(18)

At energies just above the gap, the dielectric function is like
that of a conventional 2D semiconductor, i.e. ω2ε2(ω) = cst.,
but at higher energies it behaves like graphene (due to the lin-
ear dispersion), i.e. ωε2(ω) = cst. However, the linear disper-
sion is unrealistic for TMDCs, as can be seen in the full band
structure (Fig. 1).

B. Exciton absorption and the Bethe-Salpeter equation

We now consider the spin-singlet optical properties includ-
ing the excitonic effects arising from the strong electron-hole
interaction. The correlated excited states within the single-
excitation approximation can be written as

|X〉 =
BZ
∑

k

∑

vc

AX
vc(k) c

†
c,k

cv,k|0〉, (19)

where |0〉 is again an uncorrelated (determinental) ground
state. This form for the excited state wavefunction underlies
the time-dependent Hartree-Fock and Bethe-Salpeter equation
(BSE) formalisms; here we will pursue the latter, which is a
many-body perturbative theory in the screened two-particle
interaction. For a periodic crystal exciton wavefunction,
Eq. (19), the BSE is an eigenvalue problem29 for the exciton
energy EX ,
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EX AX
vc(k) =

(

Ec,k − Ev,k

)

AX
vc(k) +

1
A

BZ
∑

k′

∑

v′ ,c′

〈ψv,kψc,k|Keh|ψv′,k′ψc′,k′〉AX
v′c′ (k

′). (20)

The electron-hole interaction kernel Keh is the sum of a frequency-dependent screened Coulomb interaction and an unscreened
exchange interaction,29

〈ψv,kψc,k|Keh,d|ψv′ ,k′ψc′ ,k′〉 = −
∫

ddr

∫

ddr′ψ∗c,k(r)ψc′,k′ (r)W(r, r′, ω)ψv,k(r′)ψ∗v′,k′ (r
′) (21a)

〈ψv,kψc,k|Keh,x|ψv′ ,k′ψc′ ,k′〉 =
∫

ddr

∫

ddr′ψ∗c,k(r)ψv,k(r)|r − r′|−1ψc′ ,k′ (r′)ψ∗v′,k′ (r
′). (21b)

If we (i) neglect the exchange interaction, (ii) neglect the frequency-dependence and local-field effects of the screened direct
interaction, i.e. W(r, r′, ω) ≈ W(r−r′, ω = 0), and (iii) make a ‘zero differential overlap’ approximation for the atomic orbitals,
we find

〈ψv,kψc,k|Keh|ψv′,k′ψc′ ,k′〉 ≈ −〈ψc,k|ψc′,k′〉〈ψv′ ,k′ |ψv,k〉W(k − k′). (22)

In the above, we have neglected the possible orbital structure to the screened interaction Wi j(r − r′).

At this point, we wish to emphasize that the orbital overlap
prefactor in the screened interaction is crucially important. As
an explicit example, in the two-band picture, we have

〈ψτc,k|ψ
τ
c,k′〉 =

1
2

[ √

α+(k)α+(k′)

+

√

α−(k)α−(k′)e−iτ(φk−φk′ )
]

,

(23a)

〈ψτ
v,k′ |ψ

τ
v,k
〉 = 1

2

[ √

α−(k′)α−(k)

+

√

α+(k′)α+(k)eiτ(φk−φk′ )
]

.

(23b)

As before, near the K and K′ points, 2ε(k) → Eg, [i.e.
α+(k) ≈ 1 and α−(k) ≈ 0], and in this limit,

〈ψτc,k |ψ
τ
c,k′〉 ≈ 1 (24a)

〈ψτv,k′ |ψ
τ
v,k〉 ≈ eiτ(φk−φk′ ). (24b)

The BSE, Eq. (20), then yields a Wannier-like, two-band pic-
ture with an unusual phase factor in the screened interaction,

EX AX
vc(k) =

(

Ec,k − Ev,k

)

AX
vc(k)

− 1
A

BZ
∑

k′

W(k − k′)eiτ(φk−φk′ )AX
vc(k′).

(25)

Multiplying through by e−iτφk gives a conventional Wannier
equation for the pseudo-wavefunction ÃX

vc(k) = e−iτφkAX
vc(k).

If the bands can be approximated as parabolic, this means that
the energy spectrum of the BSE is identical to that of a corre-
sponding real-space Wannier equation with a screened inter-
action W(r), as we have employed in previous work,6,10

[

− 1
2µ
∇2
r
−W(r)

]

ÃX
vc(r) =

[

EX − Eg

]

ÃX
vc(r). (26)

However, as explained in a recent work by Srivastava
and Imamoglu,30 systematically continuing the expansion of
Eqs. (24) for small k − k′ leads to additional terms in the

Coulomb interaction that weakly break certain degeneracies
(see below). In this case, the spectrum of Eqs. (25) and (26) is
no longer identical to that of the BSE with the screened inter-
action given in Eq. (22).

It remains to be shown whether the exciton wavefunctions
of the original problem, as described by the BSE (25), have
the same selection rules or the same spatial symmetries as the
wavefunction of the real-space Wannier equation (26). To an-
alyze the spatial symmetries, we can calculate the real-space
wavefunction corresponding to the solution of the BSE, with
the hole position fixed at the origin. We find

ΨX(re, rh = 0) ≡
∑

k

AX
vc(k)ψc,k(re)ψ∗v,k(0)

≈
∑

k

AX
vc(k)e−iτφkeik·re = ÃX

vc(re),
(27)

demonstrating that the wavefunction which solves the real-
space Eq. (26) is indeed (approximately) the same as the real-
space BSE wavefunction. At a less approximate level, the
spatial symmetries (s, p, d, etc.) will be identical. This is one
of the main conclusions of this work.

To determine the selection rules, we now consider the op-
tical absorption in the presence of correlated excitonic ef-
fects. Assuming as before an uncorrelated initial (ground)
state |I〉 = |0〉, but now using a Wannier-like final exciton state
|X〉 as in Eq. (19) gives

〈I|λ · p̂|X〉 =
∑

k

AX
vc(k)λ · P vc(k), (28)

which leads to the dielectric function

ε2(ω) =
4π2e2

m2ω2

∑

X

∣

∣

∣

∣

∣

∣

∣

∑

k

AX
vc(k)λ · P vc(k)

∣

∣

∣

∣

∣

∣

∣

2

δ(~ω − EX). (29)

Recall that for right-handed circular polarization, the momen-
tum matrix element near the K′ (τ = −1) point is nearly zero
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FIG. 4. Imaginary part of the dielectric function for MoS2 calculated
in the presence of excitonic effects. The band gap has been rigidly
increased to 2.41 eV such that the 1s exciton peak occurs near 2.0
eV (spin-orbit splitting into A and B peaks is neglected, as described
in the text). A Gaussian broadening of 50 meV (FWHM) has been
applied to all peaks.

and near the K (τ = 1) point it is given by

λ · P vc(k) = Pvc
− (k) ≈

√
2mat

~
e−iφk ≡ P0e−iφk . (30)

Therefore we can restrict our attention to k near K, which
gives

〈I|λ · p̂|X〉 = P0

∑

k∼K

AX
vc(k)e−iφk = P0ÃX

vc(r = 0) (31)

and therefore

ε2(ω) =
4π2e2P2

0

m2ω2

∑

X

∣

∣

∣Ãvc(r = 0)
∣

∣

∣

2
δ(~ω − EX), (32)

which is just the usual Elliott formula for the excitonic ab-
sorption.31 In particular, the selection rules are conventional
in that they are determined by the behavior of the wavefunc-
tion at the origin in real-space, leading to bright states with
s-type azimuthal symmetry. We emphasize that the phase fac-
tor appearing in the momentum matrix element is essentially
cancelled by the conjugate phase factor in the exciton enve-
lope wavefunction, which itself originates from the change of
basis in the screened interaction, Eq. (22). Therefore, not only
can the excitons be labeled in analogy with the hydrogen se-
ries in terms of their spatial symmetries but, to lowest order,
they also obey identical selection rules. This is the second
main conclusion of this work.

As usual, the same analysis cannot be done analytically
on the three-band model, but it can be straightforwardly car-
ried out numerically. The dielectric function calculated via
Eq. (29) for the two considered band structure models of
MoS2 is plotted in Fig. 4; in particular, the orbital overlaps
in Eq. (22) are calculated numerically, without the approxi-
mation given in Eqs. (24). As described in Refs. 6 and 10, the
screened interaction used in the calculations is given by

W(k) =
2πe2

k(1 + 2πχ2Dk)
(33)

with χ2D = 6.6 Å for intrinsic MoS2. Results are presented
for a 120×120 sampling of the Brillouin zone, which we have
found necessary to converge the binding energy to roughly 0.1
eV accuracy, in agreement with the fully ab initio BSE study
presented in Ref. 7. Specifically, for MoS2 this sampling gives
a 1s exciton binding energy of 0.41 eV, however an extrapo-
lation to the infinite sampling limit gives approximately 0.52
eV, in good agreement with our prior result obtained in Ref. 6
(0.54 eV). In Fig. 4, the conduction bands have been rigidly
shifted to increase the band gap to 2.41 eV, such that the 1s

exciton peak occurs near its experimentally observed value of
2.0 eV (due to the spin-orbit interaction, this peak is actually
split into the so-called A and B peaks at about 1.9 and 2.0
eV respectively2). An important conclusion to be drawn from
Fig. 4 is that the more realistic band structure generates only
minor quantitative differences in ε2(ω), compared to that gen-
erated by the two band model.

The labeling of states in Fig. 4 is done via inspection
of the wavefunction, in either reciprocal or real-space. For
example, in Fig. 5 we show the selection-rule-determining
product AX

vc(k)Pvc(k) [which is closely related to the pseudo-
wavefunction ÃX

vc(k)] for right-handed polarization. The sym-
metries of the exciton wavefunctions are apparent, and the val-
ley selectivity is also recovered in the presence of excitonic
effects.

Focusing on the features in the ε2(ω) spectrum that derive
from the s-type exciton states, the Rydberg series is nonhydro-
genic, as discussed in detail in Refs. 10 and 16. This follows
from the unusual form of the screened Coulomb interaction
for these monolayer thick materials. In particular, it deviates
substantially from the 1/ε0r form that dominates in conven-
tional semiconductors. The Hamiltonian with this latter inter-
action has additional symmetry which leads to the “acciden-
tal” angular momentum degeneracy in the hydrogen spectrum.
Here that symmetry is broken: we find that for a given prin-
cipal quantum number, the larger angular momentum states
are more strongly bound, i.e. E1s < E2p < E2s < E3d and
so on. The same behavior has been recently observed in a
fully ab initio BSE calculation,19 and the present work pro-
vides a simple physical explanation for this behavior in terms
of the effective screened interaction (see also Refs. 32 and 33
for similar findings). To verify this unconventional disposition
of dark exciton states requires a nonlinear spectroscopic mea-
surement, which we discuss in the next section. Furthermore,
we also note a small splitting of the 2p, 3d, and 3p dark exci-
ton states. In particular, the 20 meV splitting of the 2p states
is in good agreement with recent results.30,32 As mentioned
before, Srivastava and Imamoglu have traced this degeneracy
breaking to the orbital overlaps in Eq. (22) and explained the
effect in terms of Berry curvature in the single-particle band
structure.30

IV. TWO-PHOTON ABSORPTION

Our theoretical framework for the two-photon absorption
essentially follows the early work of Mahan34 for 3D semi-
conductors and Shimizu35 for 2D quantum wells including
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FIG. 5. Reciprocal space plots of the selection-rule-determining
product AX

vc(k)Pvc(k). In the presence of right-handed circular po-
larization, it is seen that excitons are only created at the K point, and
not at the K′ point, as was found in Ref. 3 and in Sec. II C in the
absence of exciton effects.

explicit consideration of excitons. For a two-photon process,
the transition rate is again given by Eq. (11), except we now
have two perturbing fields, Hi = Aiλi · p̂ (i = 1, 2), where Ai

is the vector potential, λi is the polarization, and ~ωi is the
photon energy. The matrix element of the perturbation can be
evaluated by a sum over intermediate states |M〉,

VIF =

(

e

mc

)2
A1A2

∑

M

[

〈I|λ2 · p̂|M〉〈M|λ1 · p̂|F〉
EM − EI − ~ω1

+
〈I|λ1 · p̂|M〉〈M|λ2 · p|F〉

EM − EI − ~ω2

]

.

(34)

The two-photon spectroscopy of single-particle states is triv-
ial, and so we restrict our analysis to the excitonic case. As in
the one-photon exciton absorption, Eq. (31) holds for the ma-
trix element connecting the ground and intermediate exciton
states. In contrast, the matrix element between two exciton
states (intermediate and final) is

〈M|λ1 · p̂|F〉 = ~
∑

k

AM∗
vc (k)λ1 · kAF

vc(k)

= ~

∑

k

ÃM∗
vc (k)e−iτφkλ1 · kÃF

vc(k)eiτφk

= −i~

∫

d2rÃM∗
vc (r)λ1 · ∇r ÃF

vc(r).

(35)

In the above, we have restricted the analysis to two bands (c, v)
and used the facts that the expectation value of p̂ is zero in a

Slater determinant and that p̂ is diagonal in reciprocal space.
To have a nonzero Eq. (35) requires that the real-space exci-
ton wavefunctions AF and AM have orbital angular momenta
which differ by ±1; this is the same two-photon selection rule
as found in conventional semiconductors including consider-
ation of exciton effects. Combined with the result of the pre-
vious section – that one-photon absorption produces s-type
excitons – we conclude that two-photon absorption produces
only p-type excitons. With these results, the two-photon ab-
sorption essentially follows the early work of Mahan34 for 3D
semiconductors or Shimizu35 for 2D quantum wells.

The primary complication in the evaluation of two-photon
absorption is the evaluation of the internal sum over interme-
diate states in Eq. (34). We follow the approximation intro-
duced by Mahan34 and used by Shimizu35 that allows the sum
to be eliminated with a completeness relation. Explicitly in-
corporating the above results, the first term in Eq. (34) can be
written as (the second term is analogous)

−i~P0

∫

d2r
∑

M

ÃM
vc(r = 0)ÃM∗

vc (r)
EM − EI − ~ω1

λ1 · ∇r ÃF
vc(r)

≈ −i~P0

Eg − 〈Eb〉 − ~ω1

[

λ1 · ∇r ÃF
vc(r)

]

r=0

(36)

where 〈Eb〉 is an average intermediate (s-type) exciton energy
introduced to facilitate the (complete) sum over intermediate
states; for simplicity we will henceforth set 〈Eb〉 to zero as its
primary influence is to simply alter the prefactor. In contrast
to the hydrogenic exciton case, where further results can be
obtained analytically, the matrix elements here must be eval-
uated numerically.

The two-photon transition rate is thus given by

W(Ω) = 2π~
(

e

mc

)4
(A1A2)2 (~P0)2

×
∑

F

∣

∣

∣

∣

∣

∣

∣

∣

[

λ1 · ∇r ÃF
vc(r)

]

r=0

Eg − ~ω1
+ {1↔ 2}

∣

∣

∣

∣

∣

∣

∣

∣

2

δ(~Ω − EF )

(37)

where ~Ω = ~ω1+~ω2. The simplest case to consider is when
λ1 = λ2 and ~ω1 = ~ω2 ≈ Eg/2, which gives

W(Ω) = W0

∑

F

∣

∣

∣λ · ∇r ÃF
vc(r)

∣

∣

∣

2

r=0
δ(~Ω − EF ) (38)

where

W0 =
32π~3e4A2

1A2
2P2

0

m4c4E2
g

. (39)

If both photons have the same circular polarization, then this
experiment probes valley-selective p-type excitons, which are
dark in the linear measurement. Using photons with opposite
polarizations would create p-type excitons in both valleys.

Motivated by recent nonlinear spectroscopic measurements
on WSe2 (Ref. 9) and WS2 (Ref. 19), in Fig. 6 we show the
results of a numerical evaluation of Eq. (38) for these two ma-
terials; the exciton wavefunctions and their derivatives have
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been obtained from the real-space effective mass treatment
of the two-band model (i.e. the small splitting of the p ex-
citons is neglected). The agreement with experiment, for both
the linear and nonlinear response, is seen to be quite good.
In the calculations, we have used the same screening length,
χ2D = 7.0 Å for both materials, which yields an exciton bind-
ing energy of 0.48 eV (in accord with our previous results6).
We note that this exciton binding energy is slightly larger than
that determined in Refs. 9 and 10 (0.37 and 0.32 eV for WSe2

and WS2 respectively).
In the narrow linewidth limit, the two-photon absorption

identifies the p-type excitons with energies slightly below that
of the corresponding s-type exciton. For a larger linewidth,
the 2p transition is still resolved and responsible for the
main peak seen in experiment, while the remaining transi-
tions merge to yield a weak feature before the continuum on-
set. Importantly, ratio between the 2p peak height and the
higher-energy signal (near the continuum onset) is determined
by the spectral linewidth. It is thus encouraging that our sim-
ulated spectrum simultaneously reproduces the 2p linewidth
and this intensity ratio; the required broadening suggests that
it should be difficult to observe the 3p transition at this resolu-
tion. This leaves open the origin of the small feature observed
near 2.5 eV in the experimental spectrum for WS2.

Finally, we point out that a recent study on WSe2 us-
ing one- and two-photon photoluminescence excitation spec-
troscopy,20 has identified the 2s and 2p transitions to have the
same energy to meV accuracy. This is in quite stark contrast
with the results of the present work, which suggest that the
2p exciton should be lower in energy by at least 50 meV. We
hope that future work, both experimental and theoretical, is
devoted to investigating this discrepancy.

V. CONCLUSIONS

In this work, we have expanded the effective mass theory
presented in Refs. 6 and 10 to include a fully k-dependent
model of the band structure, in harmony with other re-
cent works.8,32,36 This extension allows for deviations from
parabolicity, including trigonal warping behavior which has
been emphasized in other contexts.23,37 We find that two- and
three-band models of the single-particle band structure give
nearly identical results for the exciton properties within a sim-
plified BSE formalism, suggesting that trigonal warping is
a secondary effect. Furthermore, our numerical results are
nearly identical to those of the effective mass treatment from
our previous work,6,10 justifying its use in those contexts. We
have definitively proved that spin-singlet excitons with s-type
azimuthal symmetry, which have been the most studied,6,8,10

are indeed the optically bright excitons. As in our previous
work,10,16 we confirm that the disposition of bright exciton
states is distinctly non-hydrogenic.

The dark spin-singlet excitons have also been investigated
and found to exhibit another deviation from the hydrogen
model, in the form of a broken angular momentum degener-
acy. Using an approach similar to ours, the authors of Refs. 32
and 33 have identified the same qualitative behavior. This ob-
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FIG. 6. Two-photon absorption (TPA) intensity for monolayer
(a) WSe2 and (b) WS2 evaluated numerically with Eq. (38) (blue
lines). The spectra have been artificially broadened with a Gaussian
linewidth (FWHM) of 80 meV (thicker line) and 20 meV (thinner
line). The experimental two-photon photoluminescence excitation
(TPPLE) spectrum for WSe2 (Ref. 9) and WS2 (Ref. 19) is included
for comparison (blue circles). The theoretical linear absorption spec-
trum from the same model (FWHM of 50 meV) is overlaid for refer-
ence (grey lines) along with the experimental result (gray circles) for
WSe2 (Ref. 9) and WS2 (Ref. 15).

servation will be key in future analyses of two-photon spec-
troscopies on TMDCs. A recent manuscript contains results
from a fully ab initio BSE calculation on WS2 and also finds
this peculiar angular momentum behavior.19 It is clearly en-
couraging that our simple low-energy theory – featuring a
few-band representation of the single-particle states and an ap-
propriate treatment of screening with a model dielectric func-
tion – is able to correctly reproduce the optical selection rules,
the character of bright and dark exciton states, the broken an-
gular momentum degeneracy, the quantitatively large exciton
binding energies, and the spectral features of the nonlinear
two-photon absorption. In this regard, we believe the model
presented here represents perhaps the simplest predictive min-
imal model capable of unifying these wide-ranging features in
monolayer TMDCs.

Note added – As discussed in the main text, a recent
preprint analyzes the impact of the band overlap factors in
the effective Coulomb interaction, Eq. (22), and systemati-
cally develops the next order terms in k − k′, demonstrating
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signatures of the Berry curvature in the exciton spectra.30 Our
numerical results agree with their analysis and with their es-
timate for the splitting of the 2p exciton levels. Figure 4 was
updated to reflect these splittings.
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