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Over the past few years bulk pyrochlore iridates of the form A2Ir2O7 (where A is a rare earth
element, Ir is iridium, and O is oxygen) have been studied as model systems for investigating the
interplay of electronic correlations and strong spin-orbit coupling, particularly with the aim of finding
correlation-driven topological phases. In this work, we use cellular dynamical mean field theory
(CDMFT) to study effects of electronic correlations beyond Hartree-Fock theory in thin films of
pyrochlore irradiates grown along the [111] direction. We focus on the bilayer and trilayer systems,
and compute the phase diagrams of these systems as a function of electron-electron interaction
strength, which is modeled by an on-site Hubbard interaction. By evaluating the Z2 invariant
and Chern number using formulas based on the single-particle Green’s function and the quasi-
particle effective Hamiltonian, we show that on-site correlations can drive an interaction-induced
topological phase transition, turning a time-reversal invariant topological insulator and a nearly
flat band metal to a correlated Chern insulator (CI) in bilayer and trilayer systems, respectively.
By comparing with the Hartree-Fock results, the CDMFT results show that quantum fluctuations
enhance the robustness of the interaction-driven CI phase in the thin films. Furthermore, our
numerical analysis of the quasiparticle spectrum reveals that the topological phases we find in our
many-body calculations are adiabatically connected to those in the single-particle picture.

PACS numbers:

I. INTRODUCTION

Over the past decade, time-reversal invariant topo-
logical insulators (TI) in two and three dimensions
have received significant theoretical and experimental
attention.1–9 Recently, significant effort has been made
to investigate the role of electron-electron interactions in
topological states of of matter.10–17 Though it is gen-
erally understood that topological phases described by
electronic band structure are robust to weak electron-
electron interactions, the full many-body problem of a
strongly interacting system remains far from completely
understood.17,18 One possible effect of electronic interac-
tions is magnetic order that carries with it a topological
phase transition (either from a non-topological system
to a topological one, or from a TI to a non-topological
magnetically ordered state).19–23

Among the real-material proposals for systems ex-
pected to exhibit topological properties, transition metal
oxides (TMO) are a promising candidate for realizing
nontrivial interacting topological phases.24–36 Among the
bulk (as apposed to thin-film) TMO that have been theo-
retically studied in the context of topological phases, the
irradiates have been particularly singled out.17,24–35,37 In
these materials, the iridium 5d electrons typically domi-
nate the states near the Fermi energy. The d-orbitals are
usually correlated and the large atomic number of irid-
ium means that spin-orbit coupling can be significant as
well. Thus, the iridates are a natural platform for inves-
tigating the interplay of strong spin-orbit coupling and
correlation effects.17

In addition to the search for three-dimensional topo-
logical phases in bulk TMO oxides, thin films (as thin
as a bilayer) of TMO have also received significant at-
tention recently.38 A number of these studies have fo-

cused on the perovskite structure ABO3 (where A is
a rare earth element, B is a transition metal, and O
is oxygen) where thin films are grown along the [111]
direction.11,12,29,32,39–46 In this work, we are interested
in thin films of the pyrochlore irididate A2Ir2O7 (where
A is a rare earth element, Ir is iridium, and O is oxy-
gen) grown along the [111] direction.47–49 The thin film
geometry of A2Ir2O7 allows one to investigate the effects
of reduced dimensionality on the interplay of correlations
and strong spin-orbit coupling. Along the [111] direction
(or equivalent directions), Ir4+ ions form alternating lay-
ers of kagome and triangular lattices. See Fig.1 for a
visualization of the geometry of the Ir atoms in the bi-
layer and trilayer geometry.

Our main objective in this work is to go beyond the
Hartree-Fock (HF) approximation47,48 in the study of the
effects of reduced dimensionality on the interplay of cor-
relations and strong spin-orbit coupling in [111] grown
pyrochlore iridate thin films. The intrinsic spin-orbit cou-
pling of the Ir local moments generally breaks the spin-
rotational invariance25,30 and therefore opens the possi-
bility of long-range magnetic order at non-zero tempera-
tures. Therefore, we do not expect qualitative changes to
the magnetic order upon the inclusion of spatial fluctua-
tions on top of the magnetic order predicted in HF the-
ory. On the other hand, we wish to better understand
how the quantum fluctuations in time may impact the
HF predictions of interacting topological phases (namely
the Chern insulator) in these systems. In particular, we
would like to know whether the temporal fluctuations can
be so severe that interaction-generated topological phases
predicted by HF theory disappear. For Chern insulators
induced “purely” by electron-electron interactions (that
is, the underlying Hamiltonian has no intrinsic spin-orbit
coupling at the non-interacting level), it appears that
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temporal fluctuations can indeed destroy the topological
phase.50 In our model–that does include a finite spin-
orbit coupling at the non-interacting level–we reach the
opposite conclusion: Temporal fluctuations do not gen-
erally destroy an interaction-driven topological phase in
two-dimensions.
To investigate the physics of temporal fluctuations in

our thin-film systems, we employ cellular dynamic mean-
field theory (CDMFT).51,52 We focus on two thin film
systems of A2Ir2O7 grown along the [111] direction: a
bilayer consisting of a kagome and a triangular lattice
(KT), and a trilayer consisting of triangular-kagome-
triangular (TKT) lattices, as shown in Fig. 1(a) and (b).

FIG. 1: (Color online) The lattice structure of the (a) bilayer
(TK) and (b) trilayer (TKT) pyrochlore iridate thin films
grown along the [111] direction. Each lattice site denotes an
Ir4+ atom. The light green dots form a coplanar kagome lat-
tice, whereas the pink dots form a coplanar triangular lattice.
(c) shows the hexagonal Brillouin zone of the TK and TKT
systems.

Because our interest in this work is primarily the in-
vestigation of temporal fluctuations on interaction-driven
topological phases in two dimensional models (as opposed
to a first-principles prediction of interaction effects in
real material systems48), we will simplify the problem by
restricting the Hilbert space of our Hamiltonian to the
“Jeff = 1/2” model, appropriate for the limit of a large
spin-orbit coupling.17 While the large spin-orbit coupling
limit may not be reached in real materials,37,48 we expect
the central physical results of our study to be unchanged
upon the inclusion of the full t2g sub-space of the irid-
ium 5d orbitals. The reduced Hilbert space allows us to
carry out the CDMFT study; the inclusion of the full t2g
sub-space is beyond the numerical capabilities presently
available. Because the bandwidth of the states near the
Fermi energy is rather narrow, even a moderate interac-
tion can put the system in a strongly correlated regime.
Our CDMFT results show that the correlation effects

can drive a topological phase transition from a TI to
a magnetic Chern insulator (CI) with nontrivial Chern
number C = 1 in the bilayer (KT) system. In the tri-
layer (TKT), we find that many-body interaction effects
on the nearly flat band near the Fermi surface can in-
duce a topological phase transition from a nonmagnetic

conductor (C) to an interacting CI with Chern number
±1. Both thin film cases show that the ground state is a
trivial magnetic insulator in the strong interaction limit.
Compared to the previous HF results,47 our results sug-
gest that moderate quantum fluctuations (captured by
CDMFT) can stabilize the interaction-driven CI phases
in both bilayer and trilayer systems, effectively enlarging
the parameter space where they appear.
Our paper is organized as follows. In Sec.II, we first

introduce a simplified model Hamiltonian for the thin
films of pyrochlore iridates A2Ir2O7. In Sec.III we briefly
describe the CDMFT method, and explain how to eval-
uate the Chern number and the Z2 invariant. In Sec.
IV, we present our numerical results for the bilayer and
trilayer cases with the exhaustive phase diagrams and
corresponding magnetic configurations. Finally, we sum-
marize our work in Sec. V.

II. MODEL HAMILTONIAN

In the pyrochlore oxides A2B2O7, with A a rare earth
element such as Y or La, the A-site has a vanishing
magnetic moment and the physics is dominated by the
transition metal B ions. In this work, we apply the
model Hamiltonian proposed for the three-dimensional
materials25,30 to the quasi-two-dimensional thin film
systems.47 Effectively integrating out the oxygen orbitals
involved in indirect hopping processes between B-site
ions, one obtains a model that only involves the B-sites.
We will use such a model in this work. The 5d atomic
orbitals in Ir4+ are subject to a cubic crystal field, which
splits the 5d orbitals into eg and t2g manifolds. The eg
manifold typically lies 2-3 eV above the t2g manifold.53

Spin-orbit coupling (SOC) further splits the t2g manifold
into a Jeff = 1/2 doublet and a Jeff = 3/2 quadruplet.
At infinite SOC strength, the Jeff = 1/2 states form a
low energy manifold (the Jeff = 3/2 levels are inactive
since they are fully occupied below the Fermi level) for
the thin films.
In the pyrochlore iridates A2Ir2O7, four Ir

4+ ions form
a tetrahedron in the unit cell of a face-centered cubic Bra-
vais lattice and the Jeff = 1/2 manifold is half-filled.17 In
addition, we include an on-site Coulomb repulsion within
the Jeff = 1/2 pseudospin space to obtain the effective
Hamiltonian for our thin films:28,30

H =
∑

〈Ri,Rj〉,σσ′

([Toxy]
ij
σσ′ + [Tdir]

ij
σσ′)c

†
Riσ

cRjσ′ (1)

−µ
∑

Ri,σ

c†
Riσ

cRiσ + U
∑

Ri

nRi↑nRi↓

where cRiσ annihilates an electron with pseudospin σ at
the ith site of the Bravais lattice vector R. The site in-
dex i runs from 1 to 4 in the bilayer KT lattice [in Fig.
1(a)], while it runs from 1 to 5 in the trilayer TKT lat-
tice within a single unit cell [in Fig. 1(b)]. The hopping
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parameter Toxy arises from the oxygen-mediated hopping
between nearest neighbor (NN) Ir4+ atoms with ampli-
tude t ∝ V 2

pd/∆, where Vpd is the tunneling amplitude
between p-orbitals of the oxygen and d orbitals from Ir;
∆ is the energy difference between the two atomic orbital
levels. The hopping parameter Tdir is the direct NN Ir-Ir
hopping due to the direct overlap between the extended
5d orbitals, which depends on tσ and tπ from σ-π bond-
ing between the d-orbitals.30 The chemical potential µ is
adjusted so that at half filling, each site is has one parti-
cle on average in the Jeff = 1/2 bands. The values of the
tight binding parameters in the matrices [Toxy] and [Tdir]
have been explicitly expressed in Appendix A of Ref. [47].
For simplicity, we choose hopping between oxygen p or-
bitals and iridium d orbitals, tpd = 1, as the unit of
energy, and set tπ = −2tσ/3 for both bilayer and trilayer
system in order to compare with bulk systems28,30 and
thin film results.47

Following earlier work on pyrochlore iridiates,30,47 we
select different values of the tight-binding hopping pa-
rameter tσ to explore different regimes of the parameter
space potentially relevant to experimental systems. Be-
cause of the underlying triangular lattice in the (111)
planes, the Brillouin zones of both the KT and the TKT
systems are hexagonal–see Fig. 1(c).
For the bilayer system, we choose tσ = 2 and present

the noninteracting band structure and density of states
(DOS) in Fig. 2(a). The KT lattice breaks inversion sym-
metry and the noninteracting band structure has an en-
ergy gap around the Fermi level at half filling. A Kramers
degeneracy is found at time reversal invariant momenta
(TRIM), i.e., Γ and M in Fig. 1(c). By calculating the
Z2 invariant using the Fu-Kane formula4 or with Fukui’s
method,54 one finds the system is a topological band in-
sulator for U = 0.47 For this value of tσ, we can thus
calculate within the CDMFT formalism how interactions
drive the system away from a Z2 TI as the parameter U
is increased.
On the other hand, we choose tσ = −1 for the trilayer

case. In this parameter regime, the non-interacting band
structure, depicted in Fig. 2(b), shows nearly degenerate
flat bands close to the Fermi level, such that at half filling
it is metallic. As is revealed by previous HF results,47

however, a small but finite interaction U will open a gap,
and drive the system to a CI. We wish to study the fate
of this transition within the CDMFT formalism.

III. CDMFT FORMALISM AND EVALUATION

OF TOPOLOGICAL INVARIANTS

CDMFT is an extension of the single-site dynamical
mean-field theory method55 to include spatial correlation
effects within a super-lattice unit cell.51,52 As a result,
this method can capture the short-distance effect of quan-
tum fluctuations neglected in single-particle approxima-
tion and has already been successfully applied to study
other complex oxides32,56–58 and the three-dimensional

FIG. 2: (Color online) The noninteracting band structure
along high symmetry directions in the Brillouin zone and den-
sity of states (right side of each figure shown in red) for (a)
bilayer (KT) at tσ = 2; and (b) trilayer (TKT) at tσ = −1.
At half filling, (a) is insulating whereas (b) is metallic.

bulk (and slab) pyrochlore iridates.28 In general, the dy-
namical mean-field theory method reduces lattice prob-
lems with infinite degree of freedom to a type of An-
derson impurity problem, in which a cluster of Nc sites
hybridizes with electron bath sites (environment):

Himp =
∑

µνσ

Eσσ′

µν c
†
µσcνσ′ + U

∑

µ

nµ↑nµ↓

+
∑

µlσσ′

(V σσ′

µl a†lσ′cµσ + V σσ′∗
µl c†µσalσ′ )

+
∑

lσ

ǫlσa
†
lσalσ, (2)

where the greek symbols µ, ν = 1, Nc label cluster sites;
l = 1, . . . , Nb labels bath sites, and σ, σ′ are pseudo-spin
labels. The electron operators c†µσ (cµσ) apply to the

cluster sites, whereas a†lσ (alσ) to the bath sites. The hop-
ping integrals and chemical potential within the cluster
are incorporated by the matrix elements of E, which are
obtained from the tight-binding parameters [Toxy] and
[Tdir]. The V ’s and ǫ’s are bath parameters describing
hybridization between the clusters and bath sites, and
on-site energy levels, respectively. The values of the V ,
the ǫ and the lattice Green’s functions of Eq.(2) are nu-
merically determined via an exact diagonalization and
self-consistency procedure.
The self-consistency procedure is as follows: an initial

input of the bath parameters V and ǫ is given in Eq.(2) to
solve the impurity Hamiltonian. From the cluster impu-
rity Hamiltonian, we compute the cluster Green’s func-
tion Ĝ(iω) as a 2Nc × 2Nc (number of sites = Nc and
number of pseudospin degrees of freedom = 2) matrix, as
well as the cluster self-energy

Σ̂c(iω) = [Ĝ(iω)]−1 − [Ĝ(iω)]−1, (3)

where Ĝ is the non-interacting cluster Green’s function.
In CDMFT, it serves as the Weiss field describing the
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coupling of the cluster to the environment. Then the
lattice Green’s function is coarse-grained as

Ĝloc(iω) =
Nc

N

∑

k∈BZ

[

(iω + µ)1̂− t̂(k)− Σ̂c(iω)
]−1

, (4)

where k is the momentum in the Brillouin zone, and t̂(k)
is the Fourier transformed hopping integral. The self-
consistent loop is closed by calculating the new Weiss
function

[Ĝnew(iω)]
−1 = [Ĝloc(iω)]

−1 + Σ̂c(iω), (5)

and requiring [Ĝnew(iω)] ≃ [Ĝ(iω)] to within a prescribed
accuracy. In updating the V and the ǫ, we fit the new
Weiss function on the Matsubara axis with conjugate gra-
dient methods and chose an artificial low temperature
kBT = 0.01 (in units of t) to simulate the zero tem-
perature case. This value is much smaller than other
characteristic energy scales in the problem, including the
energy spacing due to the discretization of the momen-
tum space in the Brillouin zone, and thus approximates
the zero temperature limit well.
In our work, we chose a tetrahedron as a unit cell clus-

ter for the bilayer case, i.e. Nc = 4; while for the tri-
layer case, the unit cell cluster is chosen as a tetrahe-
dron with an external (pink) site linked to one of its 4
corners, i.e. Nc = 5 [cf. Fig. 1(a) and (b)]. In order
to solve Eq.(2), exact diagonalization with the Lanczos
algorithm55 is employed to get the ground state proper-
ties of the cluster, such as the magnetic order parameter
and single-particle Green’s function. In the bilayer case,
we compare Nb = 4 and Nb = 8 to determine how the
phase diagram depends on the finite bath sites59; In the
trilayer case, we choose Nb = 5.
Next, we briefly describe how we numerically calculate

topological invariants using the CDMFT method. In-
terested readers can see more details in Appendix A. In
a non-interacting topological band insulator, the Chern
number is equal to the TKNN number60

C =

∫

d2k

2π

∑

α=filled

fxy, (6)

where fij = ∂ai(k)/∂kj − ∂aj(k)/∂ki is the Berry cur-

vature, and ai(k) = −i〈uα(k)| ∂
∂ki

|uα(k)〉 is the Berry
connection. The summation is over filled band indicies.
Here, |uα(k)〉 denotes the α-th eigenstate of the nonin-
teracting Hamiltonian H(k). There is no inversion sym-
metry in the pyrochlore oxide [111] grown bilayer system.
To calculate the Z2 index, (−1)P2 , in a generic way, we
resort to the approach given by Fukui54 in the half-BZ,

P2 =

∫

BZ

d2kf12 −
∫

∂BZ

dk · a mod 2. (7)

Note that in the Z2 formalism, a time-reversal smooth
gauge has to be chosen as

|uα(−k)〉 = T |uα(k)〉, (8)

where T is the time-reversal operator.
For a general interacting system, one is no longer

able to use the non-interacting invariants given in Eq.(6)
and Eq.(7). Instead, one must express the invariant
in terms of the single-particle Green’s function at zero
frequency.61,62 With the CDMFT method, we can easily
obtain the zero-frequency Green’s function Ĝ(iω = 0,k)
at self-consistency. The zero-frequency Green’s func-
tion allows one to define a “topological Hamiltonian”61,62

from which one can compute the corresponding invariant,

Htop(k) = −Ĝ−1(0,k). (9)

One diagonalizes the “topological Hamiltonian” to obtain
the eigenvalues

Htop|α,k〉 = µα(k)|α,k〉, (10)

where α is a “band” index. Filled “bands” are selected as
eigenvalues with µα(k) < 0. Then the Berry connections
ai(k) are constructed by replacing the non-interacting
Hamiltonian eigenstates |uα(k)〉 with the topological
Hamiltonian eigenstates |α,k〉, and plugging the result
into Eq.(6) and Eq.(7) to evaluate the Chern number
and Z2 invariant, respectively.
For weak to moderate strength interactions, quasipar-

ticles exists with a finite lifetime. Because of the lifetime
broadening of the states, it can be difficult to determine if
a gap exists by directly evaluating the interacting quasi-
particle spectral function A(ω,k) = − 1

π
ImG(ω + iη,k):

The quasiparticle bands will have a finite width in en-
ergy and are sensitive to the value of η. In order to deal
with this numerical issue, we determine the “effective”
quasi-particle dispersion from the quasiparticle effective
Hamiltonian Eq.(B14) by expanding the local self-energy
up to first order in frequency. The details are explained
in Appendix B. We emphasize that this effective Hamil-
tonian mainly captures the quasi-particle features around
the Fermi energy (ω = 0).

IV. NUMERICAL RESULTS

In this section, we present our CDMFT results. In the
HF theory, the single-particle band structure is renor-
malized by the Hartree and Fock terms in the mean-field
Hamiltonian,47 and the self-energy of the single-particle
Green’s function depends only on the momentum k (be-
ing independent of the frequency ω). Therefore, we re-
examine the fate of topological phases and transitions
obtained by HF with CDMFT. In the latter approach,
quantum fluctuations and correlations are included non-
perturbatively in the self-energy within the cluster. How-
ever, in CDMFT calculations, one usually obtains a hys-
teresis behavior when the phase transition is of the first
order. Namely, the critical value of U (say Uc1) when the
system undergoes a transition from phase A to phase B
by increasing U does not coincide with the one (say Uc2)
when the system undergoes a transition from phase B
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FIG. 3: (Color online) Bilayer (KT) phase diagram for tσ = 2.
(a) Nb = 4 CDMFT results; (b) Nb = 8 CDMFT results; (c)
HF results. In (a), the net magnetic moment defined in the
unit cell m (black circles) and averaged magnetic moment per
site m̄ (blue triangles) are plotted as a function of U . TI: time-
reversal invariant topological insulator; MI: trivial magnetic
insulator; CI: topological Chern insulator.

to phase A by decreasing U . In order to determine the
complete phase diagram, we numerically calculated and
compared the free energy per site when both magnetic
and non-magnetic solutions coexist for a particular value
of U . The phase is assigned to the state with the lower
free energy.

A. Bilayer system

The Nb = 4 and Nb = 8 CDMFT phase diagram to-
gether with the magnetization in the unit cell are pre-
sented as a function of U in Fig. 3(a) and (b), respec-
tively. While our results are for the parameter tσ = 2, we
also confirmed that a similar phase diagram is obtained
with tσ = 1. For comparison, we also show the phase
diagram obtained by Hartree-Fock theory Fig. 3(c).
Both the CDMFT and HF approaches show that there

exist three different phases upon increasing U , and that
the phase boundaries are quantitatively similar, except
for the region of the Chern insulator (CI) which is much
larger when quantum fluctuations are included. There
exists a finite range of values, 0 ≤ U . 3.5 in Nb = 4 and
0 ≤ U . 3.0 in Nb = 8 (CDMFT), for which the system

FIG. 4: Spectral weights along high symmetry lines and local
density of states for the bilayer (KT) with tσ = 2, Nb = 8.
The broadening factor is η = 0.02. The yellow dots show
quasiparticle spectrum obtained from Eq.(B14). (a) TI: U =
2.0; (b) CI: U = 3.0; (c) MI: U = 6.0

remains in the time-reversal symmetric (TRS) TI phase.
The spectral functions and the quasiparticle band struc-
tures (see Appendix B) computed from Nb = 8 CDMFT
are plotted in Fig. 4(a), while Nb = 4 gives similar re-
sults. We can see from Fig. 4(a) that the Kramers de-
generacy for quasiparticle bands remains intact and the
finite band gap leaves the Z2 invariant ν = 1 unchanged.
In this case, there is no magnetization induced, and the
phase is adiabatically connected to the noninteracting TI
phase. Thus, the TI is stable against moderate electronic
correlation, as would be expected for a system with a gap
in the excitation spectrum about the Fermi energy.
For U & 3.0 (in CDMFT), TRS is broken and the

system becomes a magnetic insulator. At Uc ≈ 3.0,
a magnetization jump appears, which indicates a first-
order phase transition from a non-magnetic to a mag-
netic insulator. The net magnetic moment, in units of
gµB depicted by black circles in Fig. 3(a), is defined as

m = |
∑

i

Si|, (11)

where i runs over all sites within a unit cell. On the other
hand, in Fig. 3(a), the averaged magnetic moment per
site, defined as

m̄ =
1

Nc

∑

i

|Si|, (12)

shows a monotonicaly increasing magnetization upon in-
creasing U . A similar behavior is also captured using
the HF theory shown in Fig. 3(b). In this regime, the
ground state is a trivial magnetic insulator (MI) due to
the trivial Chern number C = 0.
Upon increasing U , a finite range that harbors the

interaction-induced CI phases is observed at U ∼ 3.8−4.8
for Nb = 4, U ∼ 3.8− 4.7 for Nb = 8 by CDMFT and at
U ∼ 3.63 − 3.65 by HF theory. In comparison between
Nb = 4 and Nb = 8, it is found that the magnetic phase
boundary is shifted by around 0.5 in U . We ascribe this



6

(a) (b)

(c)

FIG. 5: Magnetic configurations of the bilayer system within
a unit cell at tσ = 2 and at (a) U = 4.0 (CI) and (b) U = 5.0
(MI). Both magnetic configurations resemble the antiferro-
magnetic ordering discovered in Ref. [28,30]; where moment
1 (2) intersects with moment 4 (3), or moment 1 (2) inter-
sects with moment 3 (4). To compare with the bulk case,30

(c) takes tσ = −1, U = 4.0 and is a trivial MI. The configura-
tion (c) is close to the “All-in/All-out” (AIAO) order obtained
in the three-dimensional bulk,30 but with a non-vanishing net
moment pointing in the (111) direction. The AIAO order will
have zero m but nonzero m̄.

shift to the effect of finite bath sites. The spectral func-
tions and the quasiparticle dispersion for the CI from
Nb = 8 are plotted in Fig. 4(b). To avoid the broad-
ening of the spectral function by the imaginary part of
the self-energy, we identify the gap around Fermi level by
examining the band gaps from both topological Hamilto-
nian Eq.(9), and the quasiparticle effective Hamiltonian
Eq.(B14). In both themes, the band topologies are well-
defined and a nontrivial Chern number C = +1 is found
for half-filled bands. One can observe from Fig. 4 that
the quasi-particle dispersion matches well with the ridges
of spectral weights along high symmetry lines, according
to our definition of quasi-particle effective Hamiltonian
Eq.(B14). The Kramers degeneracy at the TRIM points
is lifted in the presence of finite magnetic moments. More
interestingly, the CI phase “survives” for wider range of
U values in the CDMFT phase diagram than in the HF
phase diagram. This observation suggests that quantum
fluctuations stabilize the interaction-induced CI phase.
The magnetic configurations for the CI and MI for

Nb = 8 are illustrated in Fig.5(a) and (b), respectively.
Similar configurations are also found for Nb = 4. For
the parameters we have studied, the magnetic config-
urations in the bilayer case are similar to that in the
bulk pyrochlore oxides,28,30 denoted as Γ5,

63 except for
the non-vanishing net magnetization in the tetrahedron
(m 6= 0) due to spatial anisotropy between the in-plane
and out-of-plane directions. This pattern is called the

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

M CI MI

(b)

U

m

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

(a)

U

m  C  CI  MI

FIG. 6: Trilayer (TKT) phase diagram for tσ = −1. (a)
CDMFT results; (b) HF results. In (a), the net magnetic
moment defined in the unit cell m (black circles) and averaged
magnetic moment m̄ (blue triangles) are plotted as a function
of U . C: trivial nonmagnetic conductor; M: trivial magnetic
conductor.

antiferromagnetic ordering in the previous studies of the
bulk system.28,30 In the CI phase of Fig. 3(b) (Nb = 8),
we found a discontinuity in the magnitude of net mag-
netization around U ∼ 4.0 due to a sudden drop of the
ratio between the magnitude of moment 3 and moment
1 in Fig. 5(a), while the orientation of the moments re-
mains almost the same. This phenomenon does not ap-
pear in Fig. 3(a) (Nb = 4). Due to the finite number of
bath sites used in ED solver, it is not clear whether there
is indeed a magnetic phase transition in CI phase. But
our results indicate that the CI phase is robust against a
small change in magnetic order.

It is interesting to compare the discrepancy between
the bilayer case and the three-dimensional bulk. To fur-
ther examine magnetic configurations between the bulk
and the bilayer system, we present the magnetic pat-
tern for tσ = −1 in Fig. 5(c). The magnetic moments
are aligned in close similarity to the AIAO configura-
tion, denoted as Γ3, found in the three-dimensional bulk
materials.63 The nonzero net moment in the tetrahedron
is pointing in the [111] direction due to the failure of can-
celation between moment 1 (in triangular layer) and sum
of moment 2, 3, and 4 (in the coplanar kagome layer).
Since the Chern number C = 0, it is still a MI.

B. Trilayer system

The tσ = −1 noninteracting band structure for the
TKT system is shown in Fig. 2(b). Unlike the bilayer
system, the TKT system has both inversion symmetry
and TRS. Thus, the noninteracting bands are doubly de-
generate and a metallic ground state is expected with a
half-filled nearly flat band lying at the Fermi energy. The
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FIG. 7: Spectral weights along high symmetry lines and local
density of states for trilayer (TKT) tσ = −1. The broad-
ening factor is η = 0.02. The black dots show quasiparticle
spectrum. (a) CI: U = 0.5; (b) MI: U = 1.0; (c) MI: U = 3.0.

ground state of the U = 0 system is a trivial conductor
(denoted “C”). The trilayer phase diagram as a function
of the interaction U is shown in Fig. 6.
When the Hubbard interaction reaches U ≈ 0.2 (in

CDMFT), the system breaks TRS and the doubly de-
generate flat bands split into two nearly-flat bands carry-
ing opposite Chern numbers. Therefore, half-filled bands
give a nontrivial Chern number C = ±1. Meanwhile,
as can be seen in the spectral weight along high symme-
try line and local density of states in Fig. 7(a), one can
identify a finite gap in this regime. Combining these ob-
servation, it is a nontrivial CI. This indicates the single-
particle nature of the interaction-induced CI appearing in
TKT. The corresponding magnetic order for TKT is still
non-colinear and close to the HF results in both bulk64

and trilayer47 systems, as shown in Fig. 8(a).
If the interaction strength is further increased to

U ≈ 0.8, a quadratic band touching appears around
the Γ point and the band topology becomes trivial [cf.
Fig. 7(b)]. Upon further increasing U , another topologi-
cal quantum phase transition occurs. We confirm this by
measuring the band gaps around the Fermi level using
both the topological Hamiltonian and the quasi-particle
Hamiltonian. By diagonalizing the quasi-particle effec-
tive Hamiltonian defined in Appendix B and calculating
the corresponding Chern number of the filled bands, one
finds the same change in the band topology found di-
rectly from the corresponding analysis on the topological
Hamiltonian determined from the single-particle Green’s
function.
For U > 0.8, the TKT system becomes a trivial MI,

and the magnetic configuration resembles (but is different
from) the AIAO pattern similar to what is found in the
bulk. However, for any value of U , the CDMFT results
do not indicate the presence of the magnetic conductor
phase [labeled “M” in Fig. 6 (b)], as predicted by the HF
theory. But similarly, the CI phase in the trilayer system
is more stable in the CDMFT phase diagram than in the
HF phase diagram, showing that moderate correlations
and quantum fluctuations tend to favor to the CI phase.

(a) (b)

FIG. 8: Magnetic configuration of TKT within a unit cell.
(a) tσ = −1, U = 0.5; (b) tσ = −1, U = 4.0; In (a) and (b),
the magnetic configuration resembles AIAO but with nonzero
net magnetization in a tetrahedron. The magnetic moment 1
and 5 are almost parallel, which enhances the ferromagnetism
within a unit cell and the net magnetic flux through the [111]
plane.

Finally, we note that while in the bilayer system, the
CI phase is “born” out of a parent TI state, the same
is not true of the CI in the trilayer: The CI in the TKT
system is an example of interactions driving a topological
state without a parent topological state. Combined, the
bilayer and trilayer CDMFT results show that the gen-
eral conclusion reached within the the HF theory–that
a CI can emerge from both gapped and gapless states
at the non-interacting level–is robust to the inclusion of
quantum fluctuations.

V. SUMMARY

In summary, we go beyond the single-electron approx-
imation to re-investigate the phase diagram of bilayer
(KT) and trilayer (TKT) thin film pyrochlore iridates
in an effective Jeff = 1/2 model with on-site Hubbard
interaction. By applying the cellular dynamical mean-
field theory (CDMFT) method with an exact diagonal-
ization cluster impurity solver, the correlation effects in
the model Hamiltonian we studied have been fully in-
corporated in the time domain, and partially in the spa-
tial degrees of freedom. Importantly, we show that lo-
cal quantum fluctuations will not destroy the magnetic
order and interaction-driven topological phases of these
quasi-two-dimensional systems. The effect from differ-
ent choice of bath levels is summarized in Fig.3 and a
comparison of the CDMFT and Hartree-Fock results are
shown in Fig.3 and Fig.6. An interesting result to emerge
from this comparison is that in both systems the quan-
tum fluctuations captured in CDMFT (but left out of
HF theory) tend to stabilize the Chern insulator phase
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by enlarging the region of Hubbard U values over which
it occupies the phase diagram. It is worth mentioning
that we also studied other values of tσ and in all cases
found a similar level of agreement between the CDMFT
and HF phase diagrams to the phase diagrams shown
in this manuscript. Thus, we conclude that the HF cal-
culations are reliable for predicting the qualitative fea-
tures of the phase diagrams of systems similar to those
we study here–namely that there is a non-vanishing spin-
orbit coupling at the non-interacting level of the Hamil-
tonian. In particular, one does not want to rely on a
purely interaction-driven spin-orbit coupling to generate
the Chern insulator phase.50

The magnetic order that appears above a critical value
of U is another important feature of our results. The con-
figurations of local moments under the CDMFT calcula-
tions are non-collinear in both bilayer and trilayer sys-
tems and they highly resemble their counterparts in the
bulk material with the same tight-binding parameters,
though they are different in detail because of the lowered
symmetry of the films. For example, the net magnetic
moment in the unit cell is non-vanishing due to the quasi-
two-dimensional nature of the system, which brings ad-
ditional anisotropy in the magnetization. Moreover, our
CDMFT study indicates that the TI phase exists with an
interaction strength sufficient to break the time-reversal
symmetry. This correlated topological phase is adiabat-

ically connected to the topological band insulator with
the band dispersion and topology given by the “quasi-
particle effective Hamiltonian” and “topological Hamil-
tonian”, as we define in the text. It is worth pointing out
that although our numerical results suggest positive out-
comes for topological phases to be hosted in many-body
interacting systems, the energy scales for these phases to
be detected in experiments are relatively small–being set
by the gap value of the quasi-particle bands. The extent
to which the observable topological transport properties
survive thermal fluctuations and disorder in interacting
phases is an important open question for future work.
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Appendix A: Calculation of Chern number and Z2

invariant

In Sec. III, we have briefly introduced the approach
to calculate the topological invariants using the single-
particle Green’s function. Here we provide more details.
In a noninteracting topological band insulator, the Chern
number and Z2 invariant are evaluated with the following
TKNN60 and the generic Z2 formula2

C =

∫

d2k

2π

∑

α=filled

fxy, (A1)

(−1)ν =

4
∏

i=1

√

Det[B(Λi)]

Pf[B(Λi)]
, (A2)

where fij = ∂ai(k)
∂kj

− ∂aj(k)
∂ki

and ai(k) =

−i〈uα(k)| ∂
∂ki

|uα(k)〉 are the Berry curvature and

Berry connection, respectively. Here |uα(k)〉
are the noninteracting Hamiltonian eigenstates,
i.e. H(k)|uα(k)〉 = Eα(k)|uα(k)〉. The summa-
tion is over filled band index for Eα(k) < EF .
Bmn(Λi) = 〈um(−k)|T |un(k)〉 is the sewing matrix
entry on the overlap between Bloch state um(−k) and
the Kramer partner of Bloch state un(k) at TRIM
points Λi. In the quasi-two-dimensional thin films, there
are four TRIM points: Γ and M1,2,3. An alternative
approach to calculate the Z2 index is to see it as an
obstruction to Stokes’ theorem in the half-BZ,

P2 =

∫

BZ

d2kf12 −
∫

∂BZ

dk · a mod 2, (A3)

where in the Berry connection for ai(k), a time reversal
smooth gauge is obtained by choosing the state and the
corresponding time-reversal partner

|un(−k)〉 = T |un(k)〉, (A4)

where T is the time-reversal operator. The topological
order parameters for interacting topological insulators

http://link.aps.org/doi/10.1103/PhysRevB.81.054513
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are derived from topological field theory as

C1 =
i

24π2

∫

d2kdωǫµντ

Tr
[

G
∂G−1

∂qµ
G
∂G−1

∂qν
G
∂G−1

∂qτ

]

, (A5)

P2 =
1

120
ǫµνρ

∫ 1

−1

du

∫ 1

−1

dv

∫

d3k

(2π)3

Tr
[

G
∂G−1

∂qµ
G
∂G−1

∂qν
G
∂G−1

∂qρ

G
∂G−1

∂u
G
∂G−1

∂v

]

mod n. (A6)

Note that in the above formulas, one integral is over
all frequency range. It is shown in Refs.[61,62] that
the finite-frequency Green’s function G(iω,k) is topolog-
ically equivalent to the zero-frequency Green’s function
G(iω = 0,k). As a consequence, the above formulas can
be simplified by using the zero-frequency Green’s func-
tion to reduce the integral by one dimension. Further-
more, one can define a “topological Hamiltonian”,66

Htop(k) = −Ĝ−1(0,k). (A7)

Since the zero-frequency Green’s function is Hermitian,
the eigenvalues for the “topological Hamiltonian” are real

Htop|α,k〉 = µα(k)|α,k〉, (A8)

where α is a “band” index. Filled “bands” have eigen-
values µα(k) < 0. We construct the Berry connection
and apply Eq.(A5) and Eq.(A3) with the noninteracting
Hamiltonian eigenstates |uα(k)〉 replaced by topological
Hamiltonian eigenstates |α,k〉 to evaluate both the first
Chern number and Z2 invariant in pyrochlore oxides thin
films, which do not have inversion symmetry in general.
The numerical evaluation of the integral over BZ is based
on lattice discretization of the gauge field ai(k).

54,67

We have numerically benchmarked Eq.(A5) in the
three-dimensional bulk pyrochlore iridates by evaluat-
ing the strong Z2 topological index at U = 0, 6, 6.11,28

which has eight time-reversal invariant momentum points
(TRIM). The reciprocal lattice vector is written as

K = n1b1 + n2b2 + n3b3, n1,2,3 ∈ Z (A9)

Where b1,b2,b3 are basis vectors correspond to real lat-
tice vectors a1, a2, a3. The strong topological index can
be obtained by P3 = (P2(ni = 0)+P2(ni = 1)) mod 2 for
i = 1, 2, 3, where P2 is evaluated from Eq.(A3). With the
results summarized in TableI, one can verify the strong
topological insulator index (1; 000) in the 3D bulk py-
rochlore iridates.

Appendix B: Quasiparticle Effective Hamiltonian

In this section, we derive the formalism for the quasi-
particle effective Hamiltonian. A generic Green’s func-

P2 mod 2 P3 mod 2

n1 = 0 1 1

n1 = 1 0

n2 = 0 1 1

n2 = 1 0

n3 = 0 1 1

n3 = 1 0

TABLE I: The Z2 index of the 3D bulk pyrochlore iridates at
U≤6.11.

tion can be written as

Gαβ(ω,k) =
(

[(ω+µ+iδ)·1−t(k)−Σ(ω,k)]−1
)

αβ (B1)

where α, β are some arbitrary quantum numbers (or-
bital, spin, or sites in a unit cell, etc), and t(k) is the
Fourier transformed hopping integral. The self-energy is
in general a complex matrix, but from the Lehman rep-
resentation, we have

G
†(0,k) = G(0,k), (B2)

and

Σ
†(0,k) = Σ(0,k). (B3)

At general complex frequency, we can separate the self-
energy into Hermitian part and anti-Hermitian part as

Σ
H(z,k) =

(

Σ(z,k) +Σ(z∗,k)†
)/

2 (B4)

Σ
A(z,k) =

(

Σ(z,k)−Σ(z∗,k)†
)/

2. (B5)

The quasiparticle band structure can be defined as68

Det
∣

∣

∣(ω + µ) · 1− t(k) −Σ
H(ω,k)

∣

∣

∣ ≡ 0. (B6)

To analytically solve Eq.(B6) around the Fermi level, we
expand the Hermitian part of the self-energy up to first
order in ω,

Σ
H(ω,k) = Σ

H(0,k) +
∂ΣH(ω,k)

∂ω

∣

∣

∣

∣

ω=0

ω + · · · (B7)

Plugging the above into Eq.(B6), now we have
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Det
∣

∣

∣ω ·
(

1− ∂ΣH(ω,k)

∂ω

∣

∣

∣

∣

ω=0

)

−
(

t(k) − µ · 1+Σ
H(ω,k)

)

∣

∣

∣ ≡ 0. (B8)

Eq.(B8) can be converted into an eigenvalue problem of
an artificial Hamiltonian. First we diagonalize the matrix
to the first order of ω in Eq.(B8) as

B(k) =







α1(k) 0 0

0 α2(k) 0

0 0
. . .






(B9)

= U(k)

(

1− ∂ΣH(ω,k)

∂ω

∣

∣

∣

∣

ω=0

)

U †(k).

For simplicity, we drop the momentum index k in B(k)
and U(k) [U †(k)], so that Eq.(B8) can be rewritten as

Det
∣

∣

∣
ω ·B − U

(

t(k) − µ · 1+Σ
H(0,k)

)

U †
∣

∣

∣
≡ 0.

Let us rewrite

W =











1√
α1(k)

0 0

0 1√
α2(k)

0

0 0
. . .











, (B10)

then Eq.(B8) becomes

Det
∣

∣

∣ω · 1−WU
(

ttt(k) − µ · 1+Σ
H(0,k)

)

U †W
∣

∣

∣ ≡ 0.

At this stage, we have defined the “quasiparticle disper-
sion” by solving the eigenvalue problem

Heff(k)ψ
α(k) = Eα(k)ψα(k), (B11)

for the effective quasiparticle Hamiltonian,

Heff(k) =WU
(

t(k)− µ · 1+Σ
H(0,k)

)

U †W. (B12)

In the CDMFT formalism, since self-energy has no de-
pendence on k,

Σ(0,k) ≈ Σ(0), (B13)

Eq.(B12) becomes

HCDMFT
eff (k) =WU

(

t(k) − µ · 1+Σ
H(0)

)

U †W.
(B14)

The quasiparticle weight matrix is calculated by applying
the Cauchy-Riemann equations

(

Z−1
)

αβ
(B15)

=

(

1− ∂ΣH(ω)

∂ω

∣

∣

∣

∣

ω=0

)

αβ

≈ δαβ −
Im

[

(

Σ
A (ω0)

)

αβ

]

ω0
+ i

Re
[

(

Σ
A (ω0)

)

αβ

]

ω0
,

where ω0 = π/β is the first positive Matsubara frequency.


