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The degeneracies in the spinor bandstructure of bcc Fe are studied from first principles. We
find numerous isolated band touchings carrying chiral charges of magnitude one (Weyl points) or
two (double-Weyl nodes), as well as nonchiral degeneracy loops (nodal rings). Some degeneracies
are located on symmetry lines or planes in the Brillouin zone and others at generic low-symmetry
points, realizing all possible scenarios consistent with the magnetic point group. We clarify the
general theory relating the chiral band touchings to the Chern numbers of the Fermi sheets enclosing
them, and use this approach to determine the Chern numbers on the Fermi surface of bcc Fe.
Although most Fermi sheets enclose Weyl nodes, in almost all cases the net enclosed charge vanishes
for symmetry reasons, resulting in a vanishing Chern number. The exceptions are two inversion-
symmetric electron pockets along the symmetry line ∆ parallel to the magnetization. Each of them
surrounds a single Weyl point, leading to Chern numbers of ±1. These small topological pockets
contribute a sizable amount to the nonquantized part of the intrinsic anomalous Hall conductivity,
proportional to their reciprocal-space separation. Variation of the Fermi level (or other system
parameters) may lead to a touching event between Fermi sheets, accompanied by a transfer of
Chern number between them.

PACS numbers: 75.47.-m,75.50.Bb,71.18.+y,73.43.-f

I. INTRODUCTION

The degeneracies in three-dimensional (3D) bandstruc-
tures that are not lifted by the spin-orbit interaction are
receiving increasing attention in connection with topo-
logical states of matter. Murakami1 showed that in
the absence of inversion symmetry (P ) a gapless crys-
talline phase can exist over a finite region of parame-
ter space between a topological insulator and a normal
insulator. This Weyl semimetal phase is characterized
by topologically-protected isolated touching points – the
Weyl points (WPs) – between valence and conduction
bands, and its low-energy excitations are described by a
generalized Weyl equation of the form H(k) = kiνijσj ,
where k is the wavevector relative to the touching point
and {σi} are the three Pauli matrices plus the 2×2 iden-
tity matrix. Similar phases were later devised where
time-reversal symmetry (T ) is broken instead of par-
ity P .2,3

Weyl semimetals are expected to have interesting
transport properties. In particular, the magnetic vari-
ety can have a nonzero intrinsic anomalous Hall conduc-
tivity (AHC) proportional to the separation in k space
between WPs of opposite chirality,4 where the chirality
of a WP is c = sgn(det ν) = ±1. Like other topolog-
ical phases, Weyl semimetals display a bulk-boundary
correspondence: pairs of WPs of opposite chirality at
the Fermi level EF lead to metallic “Fermi arc” surface
states connecting their projections onto the surface Bril-
louin zone (BZ).2,5,6

Real-world examples of Weyl semimetals have been
recently identified. Compounds in the TaAs family

were predicted to be P -breaking Weyl semimetals,7,8

and the observation of Fermi-arc surface states using
angle-resolved photoemission spectroscopy was reported
soon afterwards for both TaAs and NbAs.9–11 Another
promising candidate is BiTeI, which is known to undergo
a normal-to-topological transition under pressure, and
must have a Weyl phase for some interval of pressure12

even if it has not yet been observed. There has also been
recent progress in realizing a related phase that preserves
both P and T symmetries, the Dirac semimetal.13,14 Here
the bands are everywhere Kramers-degenerate, so that a
total of four bands meet at the Fermi point.

More generally, isolated band touchings can occur at
arbitrary energies in 3D bandstructures with broken PT
symmetry. Under those conditions accidental degenera-
cies that occur away from symmetry lines and planes
have codimension three, which implies that the parame-
ters (kx, ky, kz) provide just enough degrees of freedom to
bring a pair of bands together at generic isolated points in
the BZ.1 With some exceptions (see below), isolated de-
generacies in a 3D parameter space are robust topological
objects, acting as monopole sources and sinks of Berry
curvature.15 This accounts for their remarkable stability,
as well as for many of the interesting phenomena associ-
ated with them.

Weyl points, defined as linear crossings carrying a
topological (chiral) charge ±1, are not the only type of
isolated degeneracy in 3D bandstructures. Quadratic or
cubic crossings carrying a charge of ±2 or ±3 are also
possible along certain symmetry axes; they can be viewed
as several WPs of the same chirality brought together by
point group symmetry.16 We will use the term point node
(PN) to denote a generic isolated degeneracy, and reserve
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the terms Weyl point and double-Weyl node for the spe-
cific types that we will encounter in bcc Fe (triple-Weyl
nodes are disallowed in tetragonal ferromagnets, as they
can only occur along a six-fold axis).

In addition, it is possible to arrange, via external fine
tuning, for isolated band touchings of other types. This
can occur, for example, in the context of a normal-to-
topological transition in a P -broken, T -invariant system;
at the critical parameter values at which pairs of Weyl
nodes with opposite chiralities are first created or finally
annihilated, there is a quadratic band touching of zero
overall chiral charge.1,17 Since these are not generic, how-
ever, they will not play any further role in our consider-
ations.

In some cases symmetry can glue bands together at
a high-symmetry point or along a high-symmetry line.
For ferromagnetic crystals with the spin-orbit interac-
tion included in the Hamiltonian, a group-theoretical
analysis18–20 has shown that such degeneracies can be
present when the structure is hexagonal (e.g., hcp Co),
but not when it is tetragonal. Indeed we have not en-
countered this type of degeneracy in our present study of
the spinor bandstructure of bcc Fe.

Finally, the spinor energy bands of a ferromagnet can
also remain degenerate along entire loops lying on BZ
planes that are invariant under reflection (i.e., mirror
planes). We will refer to this type of degeneracy as a
line node or nodal ring.

In metals, chiral degeneracies in the bandstructure
may induce nonzero Chern numbers on the Fermi-surface
(FS) sheets. This possibility was first considered by
Haldane in connection with the FS formulation of the
intrinsic AHC.6,21 Topologically-nontrivial Fermi sheets
have also been discussed in the context of topological
superconductivity,22,23 and of the chiral magnetic effect
and related effects in Weyl semimetals.24 Metals with
topological Fermi sheets are sometimes called topologi-
cal metals,6,8 and the ideal Weyl semimetal corresponds
to the limiting case in which the topological pockets col-
lapse onto isolated Fermi points (and no additional Fermi
sheets are present).

In spite of all these formal developments, little is
known about the occurence of PNs, nodal rings, and es-
pecially topologically-nontrivial Fermi sheets in everyday
real materials. Are they extremely rare, or very com-
mon, in the electronic structure of typical T -broken crys-
tals such as ferromagnetic metals? How does their pres-
ence affect physical observables associated with the k-
space Berry curvature, notably the AHC? A few studies
of chiral degeneracies have been conducted recently on
model bandstructures of photonic25 and ferromagnetic26

crystals, and on ab intio bandstructures of P -broken
semiconductors and Weyl semimetals.7,8,27,28 Otherwise,
however, there has been remarkably little discussion in
the literature, and in particular, virtually no systematic
searches for topological Fermi sheets using first-principles
methods.

In this paper, we clarify the formal relations between

chiral PNs in the bandstructure of metals with broken
PT symmetry, and the Chern numbers of the individual
Fermi sheets. Furthermore, we examine in detail the role
of chiral PNs and topological Fermi sheets in the intrinsic
AHC of T -broken metals. To that effect, we decompose
the AHC band-by-band and in terms of Fermi sheets, and
show how the two decompositions are related by k-space
dipole moments of the occupied chiral PNs, which van-
ish upon summing over all bands. This analysis clarifies
further (see also Ref. 29) why the presence of chiral de-
generacies below EF is not an impediment to a purely FS
formulation of the nonquantized AHC, contrary to a re-
cent claim.26 We also elucidate the relation between two
alternative FS formulations of the AHC, one in terms of
Berry curvatures and Berry phases,21 the other in terms
of Berry phases only.30

In order to see how these ideas play out in real materi-
als, we decided to give a complete census of all the degen-
eracies and their topological charges, and then use that
information to determine the Fermi-sheet Chern num-
bers, in one or more simple ferromagnetic metals. Taking
bcc Fe as our first test case, we found to our surprise that
chiral PNs are astonishingly ubiquitous in the bandstruc-
ture. For example, we find 90 of them between bands six
and seven alone! In the present work we therefore chose
to concentrate entirely on bcc Fe as a paradigmatic sys-
tem to illustrate the concepts and search strategies. In-
terestingly, we find that bcc Fe is, at least within our
density-functional theory calculation using a generalized-
gradient approximation (see Sec. V), a T -broken topo-
logical metal in the sense of Haldane.6 That is, a pair
of Fermi pockets have equal and opposite nonzero Chern
numbers and contribute significantly to the AHC.

The complex bandstructure of bcc Fe proves to be
a flexible arena for exploring the physics of topological
metals beyond simple Weyl semimetals. For example,
we demonstrate that Chern numbers can be transferred
between Fermi sheets by varying the Fermi level or an
external parameter such as the magnetization direction.
Topological transitions of this kind have been discussed
previously in the literature for model Hamiltonians,31,32

but the detailed mechanisms have not been investigated
for real metals. Even though the touching events lead-
ing to the Chern-number exchange occur locally between
sheets on adjacent bands, in bcc Fe we find that these
events are often concerted, e.g., such that the Chern num-
ber gets transferred between two sheets on the same band
via an intermediary “passive” sheet in the band below.

We emphasize from the outset the crucial role played
by the spin-orbit interaction in the present study, where
the Bloch states are treated as spinors. Iron is a mostly
collinear ferromagnet with fairly weak spin-orbit coupling
(SOC), but for our purposes “weak SOC” is completely
different from “zero SOC,” as it changes qualitatively
the nodal structure of the bands and the connectivity of
the Fermi surface.33–35 Moreover, SOC induces a k-space
Berry curvature on the Bloch states by transmitting the
breaking of time-reversal from the spins to the orbital
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degrees of freedom. Without SOC, the up-spin (minor-
ity) and down-spin (majority) bands are decoupled, and
in each spin channel the spatial wavefunctions are T -
invariant (in addition to being P -invariant). Without
SOC, the Berry curvature vanishes identically in iron as
a result of this effective PT symmetry, and generic like-
spin degeneracies have codimension two, not three, i.e.,
they are line nodes instead of isolated point nodes. For
opposite-spin crossings one gets entire nodal surfaces on
which En↑(k) = Em↓(k). However, even a weak SOC
gaps these curves and surfaces almost everywhere, re-
ducing the locus of degeneracies to a collection of dis-
crete points (and occasionally, on mirror planes, a few
loops). The weakness of the spin-orbit interaction makes
for a challenging computational problem, since true band
crossings coexist with, and must be distinguished from,
minute spin-orbit-induced avoided crossings.

The paper is organized as follows. Some definitions,
notation, and basic relations are given in Sec. II. In
Sec. III we work out the relations that allow the deter-
mination of the Chern numbers of the Fermi sheets from
a knowledge of the population of chiral degeneracies in
the energy bands. In Sec. IV we consider the role played
by chiral PNs in the theory of the intrinsic AHC, partic-
ularly in relation to FS-based formulations. In Sec. V we
describe the electronic structure methods that were used
in our calculations on bcc Fe. The numerical results are
presented and discussed in Sec. VI, and we conclude in
Sec. VII with a summary.

II. DEFINITIONS AND BASIC RELATIONS

A. Berryology

The k-space Berry connection of band n

An(k) = i〈unk|∇kunk〉 (1)

is defined in terms of the cell-periodic Bloch states
|unk〉 = e−ik·r|ψnk〉. A geometric phase (Berry phase)
can be associated with a closed path C in k-space by tak-
ing the circuit integral of the connection,

ϕn(C) =

˛
C
dk ·An(k) . (2)

The Berry curvature is the curl of the connection,

Ωn(k) = ∇k ×An(k) , (3)

so that according to Stokes’ theorem n̂ · Ωn(k) has the
interpretation of a Berry phase per unit area, for a small
planar loop with unit surface-normal n̂. The Berry con-
nection is gauge-dependent, meaning that its value at k
can be changed continuously by modifying the phase
choice for the Bloch eigenstates around k. The Berry
phase is gauge-invariant apart from a 2π indeterminacy,
and the Berry curvature is fully gauge-invariant. Like

the energy bands En(k), the Berry curvature has the pe-
riodicity of the reciprocal lattice, Ωn(k + G) = Ωn(k).
Chern’s theorem. The Berry-curvature flux through a

closed oriented surface S in k-space is equal to 2πCn(S),
where Cn(S) is an integer known as the Chern number:

Cn(S) =
1

2π

˛
S
dS n̂ ·Ωn(k) . (4)

This statement is valid provided that band n remains
nondegenerate over the entire surface.

A two-dimensional BZ is effectively a closed surface
by virtue of the periodicity of k space, so that Chern’s
theorem applies, and the same is true for a 2D section
of a 3D BZ cut along reciprocal-lattice vectors. Consider
a cubic lattice (simple cubic, bcc, or fcc): the Chern
number of band n on a BZ slice taken at fixed kz is

Cn(kz) =
1

2π

ˆ
slice

d2kΩn,z(k) , (5)

where the integral is over a primitive cell on the (kx, ky)
plane at fixed kz. Viewed as a function of kz, the slice
Chern number Cn(kz) is a piecewise constant integer
function. It can only change at critical kz values where
band n comes in contact with a contiguous band n±1 at
isolated points; when that happens, Cn±1(kz) changes by
a compensating amount, and the process can be viewed
as an exchange of an integer amount of Chern number
between the two bands.36 The periodicity condition

Cn(kz + 2π/a) = Cn(kz) (6)

(a is the cubic lattice constant) implies that the smallest
nonzero number of integer steps over one period is two.

Another example of a closed surface is an isolated
Fermi sheet. Even though some Fermi sheets may look
open because of being cut at the BZ boundary, they are
in fact closed manifolds in the topological sense, when
equivalence under reciprocal-lattice translations is fac-
tored in (as for example for the well-known shape of the
Fermi surface in Cu). Thus Chern’s theorem applies and
isolated Fermi sheets always have a topological index.6,21

(The possibility that two sheets touch, either as a result
of fine tuning or because of symmetry, should be kept in
mind.)

One can also associate a Chern number with a compos-
ite group of bands over a closed surface. We will consider
the group formed by the n lowest bands, and define, for
a BZ slice,

C̃n(kz) =

n∑
l=1

Cl(kz) . (7)

The index C̃n(kz) inherits the properties already dis-
cussed for Cn(kz), but it only reacts to touching events
between the uppermost band n in the group and band
n + 1 above, and is instead oblivious to band crossings
within the group.
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A related quantity of interest is the Berry flux through
a bounded oriented surface S in the BZ,

φn(S) =

ˆ
S
dS n̂ ·Ωn(k) . (8)

For example, S could be a patch on a BZ slice, threaded
by a nonquantized flux φn, or an entire slice, now viewed
as an open rectangle rather than a closed 2-torus (quan-
tized flux φn = 2πCn). If a smooth gauge is chosen for
the Bloch states on the boundary C of S, then the Berry
phase computed on C is equal, modulo 2π, to the Berry
flux through S,37

ϕn(C) = φn(S) mod 2π . (9)

B. Isolated band touchings (point nodes)

We will denote by Wnα the αth PN between bands n
and n+ 1, located at (knα, Enα) and with integer chiral
charge χnα. It follows from Eq. (3) that ∇ · Ωn = 0
everywhere except at the PNs, which act as monopole
sources of Berry flux. Our sign convention for χ is that
the PN acts as a source of 2πχ Berry flux in the lower
band, and as a sink of 2πχ Berry flux in the upper band.
Thus,

∇ ·Ωn(k) = 2π
∑
α

χnαδ
3(k− knα)

− 2π
∑
α

χn−1,αδ
3(k− kn−1,α) . (10)

For any connected subvolume V of the BZ with bound-
ary S, the divergence theorem applied to band n gives

˛
S
dS n̂ ·Ωn =

ˆ
V
dV ∇ ·Ωn , (11)

where the unit normal n̂ points away from V. If we use
this unit normal to orient the surface S, then according
to Eq. (4) the left-hand side equals 2πCn(S), and using
Eq. (10) the right-hand side becomes the total Berry flux
pumped into band n from PNs connecting to band n+ 1
above, minus the total Berry flux sucked into band n− 1
from PNs connecting to band n− 1,

Cn(S) =
∑

Wnα∈V
χnα −

∑
Wn−1,α∈V

χn−1,α . (12)

In the context of Eq. (5) we can apply the divergence
theorem to the BZ subvolume between two parallel slices.
Because the fluxes through the side faces cancel out in
pairs, this gives the difference between the Chern num-
bers on the top and bottom slices as the sum of the chiral
charges in between. For slices separated by ∆kz = 2π/a
the periodicity condition (6) implies that∑

α

χnα −
∑
α

χn−1,α = 0 , (13)

where the sum is now over PNs in the full BZ. Repeating
the argument for Eq. (7) we obtain a stronger sum rule
for the net charge of all PNs connecting two adjacent
bands, ∑

α

χnα = 0 . (14)

Alternatively, Eq. (14) can be proved by induction start-
ing from Eq. (13), which for n = 1 gives

∑
α χ1α = 0.

A single PN with χ 6= 0 cannot be eliminated from the
bandstructure by varying a control parameter, as this
would violate the above “charge neutrality” condition.
A chiral node can only appear or disappear as part of
a concerted chirality-conserving event, as for example
when two WPs of opposite chirality merge and annihi-
late. Chiral degeneracies can be detected by measuring
the quantized Berry flux coming out of a small enclosing
box. If a box S encloses a single node of charge χnα then,
according to Eqs. (4) and (12),

χnα =
1

2π

˛
S
dS n̂ ·Ωn(k) . (15)

C. Lines of degeneracy (line nodes)

Line nodes can be thought of as “flux tubes” carrying
a quantized Berry flux of π. That is, the Berry phase of
Eq. (2) around any small loop C encircling the line node
is equal to π.38,39 Line nodes do not carry a net chi-
ral charge, and are therefore less robust than chiral PNs
against translationally-invariant perturbations. They are
often “protected” by crystal symmetries, and lowering
the symmetry can gap the line node almost everywhere
(possibily leaving behind a few PNs whose charges sum
up to zero).

III. FERMI-SURFACE CHERN NUMBERS

A. Definitions

We now turn our attention to the Chern numbers of
Fermi sheets and their relationship to the populations of
enclosed chiral PNs. We are considering a metal with a
spin-split Fermi surface as a result of broken inversion or
time reversal symmetry (or more precisely, broken PT
symmetry). In our nomenclature the “Fermi surface” Sn
of band n is the full set of points En(k) = EF , while
the “Fermi sheet” Sna is the a’th connected piece of the
Fermi surface. (Here “connectedness” is defined without
reference to the BZ boundaries, so that a Fermi pocket
centered at a zone corner is a single Fermi sheet). Note
that Sna separates a region of occupation f=n− 1 from
a region of occupation f =n. The Chern number of Sna
is, according to Eq. (4),

Cna =
1

2π

˛
Sna

dS v̂F ·Ωn(k) , (16)
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FIG. 1. Examples of Fermi sheet structures.

where we have chosen v̂F as the unit normal to Sna, i.e.,
parallel to the Fermi velocity and pointing toward the
higher-energy side, which is unoccupied in band n.

Throughout this section we will assume that all Fermi
sheets are isolated, as is required in principle in order to
define their Chern numbers from Eq. (16). While this is
the generic case for a ferromagnet in the absence of any
symmetry,6 bcc Fe magnetized along [001] has a mirror
plane at kz = 0, and as we shall see, some Fermi sheets
are glued together at isolated points on that plane. The
implications for the calculated Chern numbers will be
discussed in Sec.VI B 3.

In order to proceed we need notions of “interior” and
“exterior.” By definition, the exterior is the side pointed
to by v̂F (the unoccupied side), while the interior is the
occupied side. This can sometimes be counterintuitive,
as for a hole pocket, where the interior defined here is the
geometric exterior and vice versa. If Sna, when regarded
all by itself, divides the BZ into two distinct connected
regions, we define these regions to be the global interior
and exterior:

I∗na = global interior of Sna ,

E∗na = global exterior of Sna .

To illustrate this, consider Fig. 1(a), which shows a BZ
with three Fermi sheets separating band 1 from band 2;
these are labeled S21, S22, and S23. So, for example, I∗21

is the union of regions B, C and D, while E∗23 is the union
of A, B and C.

There may be some sheets, however, for which the con-
cepts of global interior and exterior are not applicable.
Consider, for example, either one of the sheets shown in
Fig. 1(b). Such Fermi sheets are of the special kind hav-
ing a “Luttinger anomaly” as discussed around Eq. (7)
in Ref. 6, and have the property that the integrated unit
normal

¸
v̂F dS is nonzero. These “directed sheets” need

special treatment. We take the approach here of pairing
them. That is, we take the two adjacent directed sheets
S21 and S22 in Fig. 1(b) and henceforth consider them
to comprise a single “Fermi sheet” whose global interior
is A and whose global exterior is B. Henceforth, the no-
tation Sna can refer either to a single non-directed sheet
or to a pair of oppositely directed sheets.

It is also useful to have a notion of immediate interior
and exterior:

Ina = immediate interior of Sna ,

Ena = immediate exterior of Sna .

To define the immediate interior, we decompose the sub-
space of the BZ in which band n is occupied into a set
of disjoint subvolumes, each of which is internally con-
nected; call these Vnj , where j runs over the number

of disjoint subvolumes. Similarly, let Ṽnj be the disjoint
subvolumes making up the unoccupied part of the BZ for

band n. Together, the Vnj and Ṽnj cover the BZ once and
only once. The immediate interior of Sna is then just the
subvolume Vnj that is immediately adjacent to Sna. More
precisely, it is the region Vnj for which Sna ∈ δVnj , where
δ means “the boundary of.” (In general δVnj may consist
of several Fermi sheets, one of which is Sna.) A similar
definition applies to the “immediate exterior,” which is

the subvolume Ṽnj adjacent to Sna. In Fig. 1(a), for
example, the immediate exterior E21 of sheet S21 is re-
gion A (it is geometrically on the inside because it is a
hole pocket). The immediate interior of S21 is region
B only! The immediate interior of S22 is also region B,
while its immediate exterior is only region C, and so on.

Before continuing, we briefly note that there are two
ways of thinking about the volumes Vnj . In one point
of view, the nominal boundaries of the BZ are ignored,
so that, for example, an electron pocket centered on a
zone corner point is regarded as a single volume, and all
boundaries of the Vnj are Fermi sheets. This is the view-
point adopted in the present section. Alternatively, one
can first establish a choice of parallelepiped or Wigner-
Seitz BZ, and decompose the interiors and exteriors into
subregions within this BZ, so that the δVnj generally also
include patches of the BZ boundary. We shall adopt the
latter viewpoint when discussing one of the FS formu-
lations of the anomalous Hall conductivity in Sec. IV B,
where application of the divergence theorem requires the
specification of definite BZ boundaries.

B. Divergence theorem using global regions

Because δI∗na has only one connected piece, namely
Sna, we can apply the divergence theorem to find [see
Eq. (12)]

Cna =
∑

Wnα∈I∗na

χnα −
∑

Wn−1,α∈I∗na

χn−1,α . (17)

A similar argument applied to the global exterior implies
that

Cna = −
∑

Wnα∈E∗na

χnα +
∑

Wn−1,α∈E∗na

χn−1,α . (18)
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The reversal of signs between these two equations is due
to the fact that for V = I∗na in Eq. (11) we have n̂ = v̂F on
the left-hand-side, while for V = I∗na we have n̂ = −v̂F .
In view of the sum rule of Eq. (14), Eqs. (17-18) are con-
sistent with each other; we can use either one to compute
the Chern number from the point nodes, depending on
which is easier.

C. Divergence theorem using immediate regions

We can apply the divergence theorem to an arbitrary

connected subvolume Vnj or Ṽnj , obtaining∑
Sna∈δVnj

Cna =
∑

Wnα∈Vnj

χnα −
∑

Wn−1,α∈Vnj

χn−1,α (19)

or ∑
Sna∈δṼnj

Cna = −
∑

Wnα∈Ṽnj

χna +
∑

Wn−1,α∈Ṽnj

χn−1,α .

(20)
Unfortunately these equations do not immediately deter-
mine the FS Chern numbers unless the boundary of the
region in question is composed of only a single sheet.

For example, applying Eq. (19) to subvolume B in
Fig. 1(a) leaves the sum of two Chern numbers (C21 +
C22) on the right-hand side, so neither can be determined
directly. However, in cases like this an iterative analysis
will typically work; for example, applying Eq. (20) to re-
gion A determines C21, and together with the previous
result, this also determines C22.

A similar problem arises in Fig. 1(b), but now it is more
serious. Recall that we agreed to pair directed sheets;
having done so, we can apply Eq. (19) and obtain the to-
tal Chern number summed over the two sub-sheets. But
now there is no way to disentangle the Chern numbers
on the individual directed sub-sheets without an addi-
tional calculation. This does not necessarily have to be
done on the actual sub-sheet; in Fig. 1(b), for example, a
calculation on one planar surface lying between the two
directed sheets would suffice.

D. Sum rules on Chern numbers

Summing Eq. (19) or (20) over all n and all subvol-
umes, we obtain the sum rule∑

na

Cna = 0 (21)

which, as Haldane points out, must be satisfied on gauge-
invariance grounds.6,21

When P symmetry is present (but T is broken) the
sum rule holds for each band separately,∑

a

Cna = 0 . (22)

This follows from combining Eqs. (A1) and (A3) with
either Eq. (19) or Eq. (20): for every PN at k, there
is a partner at −k with the same energy but opposite
charge. If, moreover, a Fermi sheet Sna encloses a parity-
invariant momentum k0 = G/2, then Cna = 0.

IV. ANOMALOUS HALL CONDUCTIVITY

The role played by degeneracies in the intrinsic AHC
has been recently debated26,29 in connection with Fermi-
surface formulations.21,30 This debate probably has its
roots in the simplifying assumption, made more or less
explicitly at certain points in Refs. 21 and 30, that the
band under consideration is everywhere nondegenerate.
Instances where this isolated-band assumption was made
in Ref. 21 include the sentence below Eq. (12), and also
Eq. (20); examples in Ref. 30 are the sentence below
Eq. (7) and most of Sec. II.B.

In this section we show that the Fermi-surface formu-
lations of Refs. 21 and 30 remain valid when the chiral
degeneracies that are generally present in the occupied
band manifold are carefully accounted for. To be pre-
cise, the nonquantized part of the intrinsic AHC is still
given by the same bulk Fermi-surface expressions derived
in those works. The presence of isolated PNs carrying
topological charges does not lead to additional nonquan-
tized, non-Fermi-surface contributions to the AHC, as
claimed in Ref. 26.

A. Fermi-sea formulation

The AHC of a 3D crystal is conveniently expressed as

σij = − e2

2πh

∑
l=x,y,z

εijlKl , (23)

where e2/h is the quantum of conductance and K is
a wavevector. When the Fermi level lies in an energy
gap, K becomes quantized to a reciprocal lattice vec-
tor G.21,36

Specializing to the intrisic (Karplus-Luttinger) contri-
bution we can work band by band and write

K =
∑
n

Kn . (24)

The contribution from band n is

Kn =
1

2π

ˆ
In

d3kΩn(k) , (25)

where the Berry curvature Ωn(k) is given by Eq. (3) and
In = ∪aIna is the BZ region where band n is occupied.
Equations (23)–(25) form the standard Fermi-sea expres-
sion for the intrinsic AHC.40,41

While it is natural to view Kn as “the intrinsic AHC
contributed by band n,” it should be kept in mind that
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each Kn by itself is not a physical observable; only the
total K is. For example, the individual Kn are not in-
variant under arbitrary band-mixing gauge transforma-
tions within the occupied band manifold. In the next
section we discuss an alternative decomposition due to
Haldane,21 Eq. (34) below, that is equally valid and in
some ways more informative than Eq. (24).

B. Haldane’s Fermi-surface formulation

1. Dipole of the chiral-charge distribution in k space

Let us rewrite Eq. (25) using an integration by parts
of the formˆ
V
dV (∇g) ·Ωn =

˛
δV
dS n̂ ·gΩn−

ˆ
V
dV g∇ ·Ωn , (26)

which follows from replacing Ωn(k) with g(k)Ωn(k) in
Eq. (11). Setting V = In, g = ki, and using Eq. (10) we
find

Kn = K(Ω)
n + K(χ)

n (27)

K(Ω)
n =

1

2π

˛
δIn

d2k k [n̂ ·Ωn(k)] (28)

K(χ)
n =

∑
Wn−1,α∈In

kn−1,αχn−1,α−
∑

Wnα∈In

knαχnα . (29)

These equations express Kn as the dipole moment of a

distribution of chiral charge inside the BZ.42 K
(χ)
n is the

contribution from the discrete charges associated with

the occupied PNs, and K
(Ω)
n is the contribution from a

continuous distribution of charge across the surface δIn
(with n̂ ·Ωn(k)/2π playing the role of an areal density of
“bound chiral charge”).

We now adopt the second point of view described at
the end of Sec. III A, in which the boundary δIn gener-
ally consists of FS sheets Sna together with the portions
of the BZ boundary (BZB) where band n is occupied;
this is demanded by the presence of the linear term k in
Eq. (28). We choose a parallelepiped BZ, as opposed to
a Wigner-Seitz one, to insure a simple relation between
opposing faces. Thus, the surface integral in Eq. (28)
runs over portions of the BZB, as well as over the Fermi
sheets per se. Explicitly,

K(Ω)
n =

∑
a

K(Ω)
na + K

(Ω)
n,BZB (30)

where

K(Ω)
na =

1

2π

˛
Sna

d2k k [v̂F ·Ωn(k)] (31)

is the contribution from the a’th Fermi sheet and

K
(Ω)
n,BZB =

1

2π

˛
BZBn

d2k k [n̂ ·Ωn(k)] (32)

is the contribution from the portions of the BZB where
band n is occupied, denoted by BZBn. In this last equa-
tion n̂ points to the outside of the BZ.

Equation (27) differs from Eq. (20) in Haldane’s Ref. 21

in that the latter does not include the term K
(χ)
n . This

extra term appears when the band has PN degeneracies,
and is needed to ensure that the cell dipole Kn remains
invariant when the origin in k space is shifted. Under a
shift of −δk Eq. (27) changes by

δKn = δk

∑
a

Cna +
∑

Wn−1,α∈In

χn−1,α −
∑

Wnα∈In

χnα

 ,

(33)
where Cna is the Fermi-sheet Chern number defined in

Eq. (16), and δK
(Ω)
n,BZB = 0 due to cancelling contribu-

tions from opposing BZ faces. The quantity in square
brackets vanishes by virtue of Eq. (19).

In some cases the volume and surface chiral-charge
distributions are separately neutral. This happens for
a completely filled band in a generic crystal [Eq. (13)],
and for any band in a centrosymmetric crystal [Eq. (22)].
Even then, the two separate terms in Eq. (27) are not
fully invariant under another type of transformation: a
rigid shift of the BZ cell. Consider what happens when
a PN with χnα = +1 leaves the BZ on one side and re-
enters on the opposite side, at a point separated by −G

from the exit point: K
(χ)
n given by Eq. (29) jumps by

G, and it will become clear in a moment that K
(Ω)
n,BZB

changes by −G.
To summarize, the situation is as follows:

• The AHC contribution from band n is most nat-
urally defined as the integral of the Berry curva-
ture over the occupied portion of the band, as in
Eq. (25).

• The contribution from band n can be expressed as

Kn = K
(Ω)
n +K

(χ)
n , where the inclusion of the K

(χ)
n

term is needed to preserve the invariance of Kn

under an origin shift, or under a shift of the BZ
cell.

• As we shall see shortly, K
(Ω)
n is quantized for any

fully occupied band. On the other hand, K
(χ)
n , and

hence Kn, has a nonquantized contribution even
for a completely filled band if the band in question
has chiral degeneracies with higher or lower bands.

• Nevertheless, the K
(χ)
n contributions from Eq. (29)

add up to zero when summing over all bands.43

Hence

K =
∑
n

K(Ω)
n (34)

correctly gives the total AHC, in a way that the
nonquantized part of K is now ascribed exclusively
to the partially filled bands.
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Let us reexamine the conclusions of Ref. 26 in the
light of the preceeding discussion. Essentially the claim,
stated in the abstract, is that when chiral denegenacies
are present in the Fermi sea, the nonquantized part of
the AHC is not entirely a (bulk) Fermi-surface property.
In the main text, the authors purport to show that the
additional nonquantized, non-FS contributions originate
in the chiral PNs of the completely filled bands.

If taken at face value, the above statements would seem
to imply that a purely FS formulation of the nonquan-
tized AHC is not possible. But this cannot be correct,
since the nonquantized part of K can be completely as-
cribed to the partially filled bands by means of Eq. (34),
even when chiral degeneracies are present. The nonquan-
tized part of K can moreover be expressed as a bulk
FS property, as shown below following Haldane’s origi-
nal argument.21 In their analysis, the authors of Ref. 26
appear to have overlooked the fact that the nonquantized

Fermi-sea contributions K
(χ)
n from the occupied PNs sum

up to zero over all bands.

2. Fermi-surface expression for K
(Ω)
n

In Ref. 21, Haldane further manipulated his Eq. (20)
[our Eq. (28)] to arrive at his Eq. (21), in which the
BZB term was written in a more explicit form. For com-
pleteness, we shall repeat this derivation here using our
notation.

We choose a parallelepiped BZ defined by a triplet of
primitive reciprocal lattice vectors bj , such that the re-
duced coordinate κj = (aj ·k)/2π goes from κj0 to κj0+1
inside the BZ, where κj0 fixes the corner of the BZ cell.
Recalling that the integration in Eq. (32) runs over the
portions of the six BZ faces where band n is occupied,
we can decompose the BZB term into contributions from
the three sets of opposing faces according to

K
(Ω)
n,BZB =

3∑
j=1

KBZB
nj bj , (35)

obtaining

KBZB
nj =

1

2π

˛
BZBn

d2k κj n̂ ·Ωn(k) . (36)

When computing KBZB
nj , the integrations on the four side

surfaces of the BZB cancel in pairs, while the contribu-
tions from the surfaces related by bj fail to cancel because
of the κj factor. The result is

KBZB
nj =

1

2π

ˆ
Bnj

d2k âj ·Ωn(k) , (37)

where Bnj is the portion of the BZB at κj = κj0 + 1 that
is occupied in band n, and âj is the outward unit normal.
In the notation of Eq. (8), KBZB

nj is 1/2π times the Berry

flux

φnj =

ˆ
Bnj

d2k âj ·Ωn(k) (38)

exiting the BZ cell through the occupied portions of the
BZ face pointed to by bj .

If band n is fully occupied, KBZB
nj is just the Chern

number obtained by integrating the Berry curvature over
the entire BZ face in direction j. If the band is also iso-
lated, the integers KBZB

nj are independent of the choice

of cell origin κ0, and K
(Ω)
n,BZB is a unique “Chern vector”∑

j KBZB
nj bj describing the topology of the filled band. If

it is fully occupied but not isolated, KBZB
nj is still quan-

tized to be a triplet of integers, but these may change dis-
continuously if κ0 is shifted in such a way that one of the
BZ boundaries passes over a chiral PN. If band n is only
partially occupied, then the integral in Eq. (37) is only
over the occupied portions of the BZ face at κj = κj0 +1,
and KBZB

nj need not be an integer.
To summarize so far, Eq. (34) has become

K =
∑
na

K(Ω)
na +

1

2π

∑
nj

bjφnj (39)

where K
(Ω)
na is the k-weighted integral of the surface-

normal Berry curvature on sheet Sna, Eq. (31), and φnj
is the Berry flux passing throught the occupied portion
Bnj of the BZ face, Eq. (38). After summing over all
bands there is no ambiguity modulo a quantum in either
of the contributions above, and Eq. (39) correctly gives
the total intrisic AHC modulo nothing. Equation (39) is
still not quite a Fermi-surface property, because the φnj
have to be obtained by integrating over portions of the
band lying at energies below EF on the BZB.

In order to arrive at Eq. (21) of Haldane’s Ref. 21, we
now abandon the goal of computing the AHC exactly,
and only ask for its nonquantized part. Two modifica-
tions can be made to Eq. (39) that only affect the re-
sult by quantized amounts, and lead to a FS expression
for the nonquantized part of K. First, the sums over n
can be restricted to partially occupied bands, recalling
that completely filled bands only contribute to the sec-
ond term, and by a quantized amount. The second is to
invoke Eq. (9) in order to replace the Berry fluxes φnj
with sums of Berry phases that are only defined mod-
ulo 2π,

ϕnaj =

˛
Cnaj

dk ·An(k) . (40)

The oriented curve Cnaj consists of one or more planar
circuits at the intersections of the sheet Sna with the BZ
face at κj = κj0 + 1, so that ∪aCnaj = δBnj . If we view
the BZ face as an open parallelogram with edges, those
circuits may include non-FS segments along the edges.
If instead we view it as a closed 2-torus, a nonvanishing
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Cnaj consists exclusively of Fermi loops and we arrive at
Haldane’s FS expression, Eq. (21) of Ref. 21, in the form

K :=
∑
na

′
K(Ω)
na +

1

2π

∑
naj

′
bjϕnaj , (41)

where a prime on a sum indicates that n only runs over
bands crossing EF . The symbol := indicates that the
quantity on the left-hand-side is equal to the right-hand
side modulo a reciprocal lattice vector G. Since the Berry
phases ϕnaj are defined for loops lying on the Fermi sur-
face, this is now a true Fermi-surface property.

C. Tomographic Fermi-surface formulation

Equation (41) for the nonquantized part of the AHC
involves Berry curvatures on the Fermi sheets as well as
Berry phases around Fermi loops on the BZB. An alterna-
tive FS formula was obtained in Ref. 44 that only involves
Berry phases. In this section we recover this Fermi-loop
expression starting from Eq. (41). The present derivation
is therefore complementary to the one given in Ref. 44,
which starts from the Fermi-sea formulation of Sec. IV A
and does not make an explicit connection to Haldane’s
expression.

We work sheet by sheet, treating each sheet as one
connected piece. Sheets with nonzero Chern numbers
are grouped together in such a way that their combined
Chern number vanishes. This is needed to obtain an
AHC contribution that is origin-independent in the sense
of Eq. (33). Thus, in the following Sna denotes either a
single sheet with Cna = 0, or a group of sheets whose
Chern numbers add up to zero.

Writing the contribution from Sna to Eq. (41) as

Kna =

3∑
j=1

Knajbj , (42)

we find

2πKnaj =

ˆ
Sna

d2k κj v̂F ·Ωn(k)+

˛
Cnaj

dk·An(k) . (43)

If the sheet is hole-like, the Fermi loops Cnaj should be
traversed in the negative direction of circulation.

Recalling the interpretation of Eq. (27) as a dipole mo-
ment in k space, we can similarly view the first term in
Eq. (43) as an intracell dipole moment of a surface distri-
bution of bound chiral charge, and the second term as an
intercell “charge-transfer” term. Separately, each term
depends on the choice of cell vectors and on the place-
ment of the cell boundaries, but their sum is independent
of those arbitrary choices.

Since the total Knaj given by Eq. (43) is cell-invariant,
we are allowed to average the right-hand-side over several
different BZ cells. We choose for this purpose the range
of cells obtained by sliding a parallelepiped BZ along the

full length of its edge bj . The dipole term then averages
to zero (because the net charge per cell Cna vanishes),
and we are left with the average of the intercell term. As
the cell slides over one period the forward-facing bound-
ary cuts through an entire BZ, producing a tomographic
scan of the Fermi sheet. The contribution from each slice
(viewed as a 2-torus) is given by the Berry phases of the
inscribed Fermi loops. Averaging over a discrete set of
slices spanning the entire BZ we find

Knaj =
1

nslice

nslice∑
i=1

ϕnaj(i)

2π
, (44)

and summing over all Fermi sheets we recover the FS
expression in Ref. 30 for the nonquantized AHC,

Kj :=
∑
na

′
Knaj . (45)

Equations (44-45) must be supplemented with a pre-
scription for choosing the branch cuts of the Berry
phases. The allowed choices are strongly constrained by
the BZ-averaging procedure: the first term in Eq. (43)
changes continuously with the position of the BZ cell
(because the “bound chiral charge” is spread across the
sheet Sna), and this should be exactly balanced by the
change in the second term. Thus ϕnaj must change grad-
ually (by much less than 2π) from one slice to the next.
Note that enforcing smoothness only fixes the branch cut
on a slice relative to that on the previous slice. The free-
dom to choose the branch cut on the first slice leaves the
integer part of Knaj undetermined, as expected of a FS
formulation.

After summing Eq. (44) over the indices n and a, the
overall quantum of indeterminacy can be resolved by
equating

∑
na ϕnaj with the total Berry flux

∑
n φnj on

the first slice (a Fermi-sea quantity).30 It is however not
always possible to similarly resolve the quantum for the
AHC contribution from an individual Fermi sheet Sna.
If the sheet encloses chiral PNs, the integer part of Knaj
obtained by anchoring the Berry phase ϕnaj on the first
slice to the Berry flux φnaj will depend on where that
slice stands relative to those PNs.

For a composite sheet comprising several disconnected
pieces, ϕnaj changes by 2πCα while traversing a single
piece Sα with Chern number Cα.29 If we fix the branch
choice by arbitrarily setting ϕnaj = 0 below the first
piece, ϕnaj reaches 2πC1 at the top of that piece, re-
mains constant until hitting the next piece, and finally
drops back to zero at the top of the last piece. We will
encounter this type of behavior when studying the AHC
of bcc Fe in Sec. VI C.
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V. COMPUTATIONAL DETAILS

A. First-principles calculations and
Wannier-function construction

Our electronic structure calculations including SOC
are carried out for ferromagnetic Fe in the bcc struc-
ture. We fix the lattice constant at the experimental
value a = 5.42 bohr, and orient the magnetization along
the easy axis [001]. (That is, minority and majority spins
point up and down respectively.) In reality, α-Fe distorts
very slightly from body-centered cubic to body-centered
tetragonal on cooling through the magnetic transition,
but we ignore this lattice strain effect and set c/a = 1 in
our calculations.

We use the plane-wave pseudopotential method
as implemented in the Pwscf code from the
Quantum-Espresso package,45 in a noncollinear spin
framework. Relativistic norm-conserving pseudopoten-
tials are generated from parameters similar to those
in Ref. 44, and an energy cutoff of 120 Ry is used
for the plane-wave expansion of the wavefunctions.
Exchange and correlation effects are treated within
the PBE generalized-gradient approximation.46 The
self-consistent total energy calculations are done with
a 16 × 16 × 16 Monkhorst-Pack mesh for the BZ inte-
gration, while for the non-self-consistent calculations a
10× 10× 10 mesh is used. A Fermi smearing of 0.02 Ry
is used during the self-consistent cycle, and the 28 lowest
bands are calculated in the non-self-consistent step.

Starting from the Bloch functions computed in the
non-self-consistent step, maximally-localized Wannier
functions47,48 are constructed using the Wannier90
code.49 The choice of trial orbitals and energy windows is
the same as in Refs. 44 and 30, resulting in eighteen par-
tially occupied spinor Wannier functions. We also carry
out some SOC-free calculations where nine Wannier func-
tions are generated separately for each spin channel.

B. Berry phases, curvatures, and Chern numbers

For the evaluation of Berry curvatures and Berry
phases in k space we use the efficient Wannier-
interpolation algorithms of Refs. 44 and 30. In this sec-
tion we focus on the aspects that are specific to the
present work, and refer the reader to those papers for
other details.

We begin by describing how to compute the slice Chern
number Cn(kz) of Eq. (5) [the same approach is used

for the slice Chern number C̃n(kz) of Eq. (7), and also
for the box Chern number of Eq. (15)]. The most di-
rect approach would be to evaluate the Berry curvature
on a k-point mesh covering the 2D BZ. The disadvan-
tage is that for any finite mesh the result is not exactly
quantized, and we have encountered situations where the
deviations were significant even for very dense meshes

(this can happen close to critical kz values where the
true Chern number changes discontinuously).

The interpretation of the Berry curvature as a Berry
phase per unit area suggests an alternative strategy: tile
the 2D BZ with square plaquettes, and compute the
Berry phases ϕ�

n (kz) around their edges.50 The Chern
number is

Cn(kz) =
1

2π

2D BZ∑
�

ϕ�
n (kz) , (46)

where the plaquette Berry phase ϕ�
n (kz) is evaluated with

the discretized Berry-phase formula51 on a counterclock-
wise path consisting of its four corners. In our imple-
mentation we use the Wannier-based version of the dis-
cretized Berry-phase formula, Eq. (25) in Ref. 30. (In

the case of C̃n(kz) the multiband generalization51 of the
second term in that equation should be used instead.)
Note that because each link along the discretized path
is traversed twice in opposite directions when evaluat-
ing Eq. (46), the net contribution from the first term in
Eq. (25) of Ref. 30 vanishes identically.

The above prescription is guaranteed to give an inte-
ger result for Cn(kz) for arbitrary lattice spacings.50 The
correct Chern number is obtained by choosing each Berry
phase ϕ�

n (kz) in the principal branch between −π and π,
provided that the magnitude of the Berry-curvature flux
through every plaquette is safely below π. In practice
we start by tiling the 2D BZ with a uniform array of
equally-sized plaquettes (e.g. 200 × 200), and whenever
|ϕ�
n (kz)| > π/3 for some plaquette we divide it into sub-

plaquettes so as to meet the above requirement.52 The
slice Chern number is then obtained by summing the
Berry phases over all (sub)plaquettes covering the 2D BZ.
Care must be taken to ensure that every link is traversed
twice, once in each direction. If, for example, a plaquette
has been divided into four subplaquettes but a neighbor-
ing plaquette has not, then when computing the Berry
phase for the larger plaquette the middle point of the
shared edge should be included in the discretized path
along with the four corner points.

We use the same algorithm to determine the Berry flux
through the occupied portions of a BZ slice, Eq. (38).
For a partially filled band the flux is not quantized, and
the first term in Eq. (25) of Ref. 30 must be included;
because the links along the edge between occupied and
empty regions are traversed only once, that term gives
a net contribution. As far as the nonquantized part of
the Berry flux is concerned (i.e., the Berry phase around
the Fermi loops), this approach is equivalent to integrat-
ing the Berry connection over a ragged path at the edge
approximating the Fermi loops. For improved numerical
accuracy we triangulate the edge with new k points cho-
sen to approximate the location of the Fermi loops; this
changes the shape of the plaquettes along the edge from
squares to triangles or irregular quadrilaterals.



11

VI. NUMERICAL RESULTS FOR BCC IRON

A. Band degeneracies

1. Overview of the spinor bandstructure

Our electronic structure calculations including SOC
are carried out for ferromagnetic Fe in the bcc struc-
ture, as discussed in Sec. V A. The energy bands,
shown in Fig. 2, are in good agreement with previous
bandstructure calculations for bcc Fe where SOC was
included.34,53,54 The smaller exchange splitting at the
band bottom (at around −8 eV) compared to Ref. 53
is a consequence of using the PBE generalized-gradient
approximation rather than the local-density approxima-
tion to treat exchange and correlation effects.

Even though an undistorted cubic structure is used,
the combined action of spin polarization and SOC re-
duces the symmetry of the electronic states from cubic to
tetragonal, and the conventional labeling scheme for the
high-symmetry points and lines in the BZ must be mod-
ified accordingly. For example, the six points N inside
the BZ get split into two groups. We reserve the label N
for the two points lying on the kz = 0 plane, and label
the four points lying on the kz = π/a plane as N′; within
each separate group, symmetry points are related to one
another by four-fold rotations. The ΓH high-symmetry
line along the (001) direction also becomes inequivalent
to the other two, since it is no longer related to them
by any point-group symmetry; we label them ∆ and ∆′

respectively. The symmetry points and lines are indi-
cated in the half-BZ shown in the top part of Fig. 3. The
full tetragonal BZ is spanned by the vectors (2π/a)(110),
(2π/a)(110), and (2π/a)(001). Note that only the first
two are reciprocal-lattice vectors.

The lowering of symmetry due to SOC is reflected in
the bandstructure in Fig. 2, but since SOC is weak the
effect is small on the scale of the figure. As we shall see in
Sec. VI B 1, somewhat larger splittings occur away from
the symmetry lines.53

2. Types of degeneracies

Band degeneracies can be classified as essential or
accidental.55 An essential degeneracy is a band cross-
ing at a high-symmetry point or along a high-symmetry
line in the BZ where an irreducible representation (“ir-
rep”) of dimension larger than one exists. It has been
shown that essential degeneracies do not occur in the
bandstructure of tetragonal ferromagnets when SOC is
included.18–20 Thus, all band degeneracies in bcc Fe are
accidental. While their exact locations in k space are not
fixed by symmetry, most (but not all) degeneracies in bcc
Fe lie along symmetry lines or planes in the BZ. Below
we give an overview of the types of accidental degenera-
cies that are present, classified by symmetry (they are in

fact the generic types of degeneracies in any tetragonal
ferromagnet).

The magnetic point group of bcc Fe is 4/mm′m′.20 The
four-fold axis points along the magnetization direction
[001], and m denotes mirror reflection about the (001)
plane orthogonal to the four-fold axis. The symmetry
elementsm′ are reflections about the inequivalent vertical
planes (010) and (110), combined with time reversal.

Turning to the symmetries in reciprocal space, inspec-
tion of Fig. 3 reveals four-fold symmetry about the axis ∆
that project onto Γ, and also about the one that projects
onto M.56 At an arbitrary point on one of the four-
fold axes no other symmetries are present when SOC
is included, and each band belongs to one of four one-
dimensional irreps of the little group C4; bands belonging
to different irreps can cross, so that for critical values of
kz (not fixed by symmetry) PNs are generated.

The four irreps along the four-fold axes are labeled by
their symmetry eigenvalues eiπ(m+1/2)/2, and the labels
of the crossing bands carry information about the chiral
charge at the degeneracy point.16 Two types of degenera-
cies can occur. (i) If the two bands have adjacent labels
on the complex unit circle, they disperse linearly in all
directions away from the degeneracy point; the chirality
of the WP is positive (χnα = +1) if the label of the lower
band n changes by a factor of i with increasing kz, and
negative (χnα = −1) it it changes by a factor of −i. (ii) If
the labels are not adjacent, the crossing is a double-Weyl
node with χnα = ±2, where the dispersion away from the
node is linear along the symmetry axis and quadratic on
the orthogonal plane; in this case, the sign of the chi-
ral charge cannot be inferred from the symmetry labels
alone.

The axis that projects onto X is a two-fold axis, where
there are two one-dimensional irreps (little group C2).
Along this axis, crossings between bands belonging to
different irreps are always linear (χnα = ±1), but the
chirality of the WP cannot be deduced from the symme-
try labels.16

A different type of degeneracy occurs on the simple
mirror plane at kz = 0, i.e., the ΓNH plane in Fig. 3.
(Equivalent planes are separated by integer multiples of
2π/a; because the structure is body-centered, the plane
TPN′ at kz = π/a is not a mirror plane). There can be no
chiral PN degeneracies on a simple mirror plane, because
the chiral charge is odd under reflection [Eq. (A10)]. In-
stead, the generic degeneracies are nonchiral nodal rings.
The spinor energy eigenstates carry mirror symmetry la-
bels ±i; bands with different labels can cross, and since
the condition Enk = En+1,k is one constraint for the two
degrees of freedom kx and ky, the crossing takes place
along lines.

Next we consider the vertical symmetry planes ΓN′H,
ΓNP, and HNP that project onto the lines Γ M, Γ X, and
X M respectively. In real space these are m′ planes (mir-
ror composed with T ), but because of the time-reversal
component, a generic point on the reciprocal-space plane
is not invariant under m′. Instead, the symmetry oper-
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FIG. 2. Bandstructure of bcc Fe with spin-orbit coupling included. Energies are measured from the Fermi level, and the bands
are color-coded by the expectation value of the spin component Sz in units of ~/2, ranging from red (majority down-spin
character) to blue (minority up-spin) as indicated by the colorbar.

FIG. 3. Symmetry points and lines in reciprocal space for
bcc Fe with spin-orbit coupling included. The top volume is
the half Brillouin zone between kz = 0 and kz = π/a (becomes
a full BZ when expanded using inversion through Γ). The
shaded area at the bottom is a two-dimensional projection.
Therein, Γ is a projection of Γ-T-H-T-Γ (∆), X is a projection
of N-P-N-P-N, and M is a projection of H-T-Γ-T-H. Note that
T is not actually a symmetry point, but N′ is.

ations that leave the wavevector invariant (modulo G)
on those planes are of the form C2T , where C2 is a two-
fold rotation about an axis normal to the plane. Because
the C2T operator is antiunitary it does not admit multi-
ple irreps, and so does not lead to nodal rings as in the
case of simple mirror planes. However, it does place ad-
ditional restrictions on the form of the Hamiltonian on
the plane. In particular, it forces the Hamiltonian matrix
to be real when expressed in terms of symmetry-adapted
Bloch basis orbitals |χnk〉 whose phases are chosen such

that C2T |χnk〉 = |χnk〉. Since degeneracies occur with
codimension two for real Hamiltonians, WPs generically
occur on the symmetry plane.57

Finally, we will encounter one more type of degeneracy,
namely those occurring at generic points in the interior of
the BZ. Here a division into distinct irreps again plays no
role, since no symmetry is present. One still gets isolated
touchings in general, however, because the codimension
is three for the occurrence of degeneracies in Hermitian
Hamiltonians. That is, by adjusting the wavevectors
(kx, ky, kz) one can generically zero the prefactors of the
Pauli matrices (σ1, σ2, σ3) needed to express the effective
Hamiltonian in the vicinity of a putative crossing of two
bands. In the absence of fine tuning, these are always
simple Weyl nodes with a chiral charge of ±1.

We emphasize that all of the above considerations ap-
ply when SOC is present. When it is neglected, addi-
tional degeneracies can occur, as will be discussed briefly
in Sec. VI B 1.

3. Survey of degeneracies

We have used a combination of numerical tools to lo-
cate and characterize the degeneracies in the spinor band-
structure of bcc Fe. In this section we present some rep-
resentative results from our survey.

In order to locate all the degeneracies between a pair
of bands, we carry out a steepest-descent minimization of
the gap function (En+1,k−Enk)2 starting from a uniform
grid covering the BZ, and look for gap-closing points.58

(In practice we flag as a potential degeneracy any point
where the gap is below some small threshold, of the or-
der of 10−5 eV.) The chiral charge of each degeneracy is
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FIG. 4. (Color online.) Degeneracies between bands six and
seven in the half Brillouin zone of Fig. 3. (a) Black dots de-
note Weyl points of positive chirality (monopole sources of
Berry curvature on band six). (b) Open circles denote Weyl
points of negative chirality, and the single open square rep-
resents a negative double-Weyl node. Each chiral degeneracy
is threaded by a vertical line to help locate it with respect to
the projected high-symmetry lines (dashed grey lines). The
solid grey lines on the kz = 0 plane represent nonchiral nodal
rings.

determined by enclosing it in a small box and evaluating
the outward Berry flux [Eq. (15)]; in this way we are able
to discriminate between a true chiral band crossing with
nonzero quantized flux, and a tiny avoided crossing for
which the flux vanishes. Figure 4 shows a map of the
degeneracies between bands six and seven in the half-BZ
of Fig. 3.

In addition to finding isolated degeneracies, the above
procedure results in a rather dense set of nonchiral de-
generacies between bands six and seven lying on the mir-
ror plane at kz = 0. These are organized along closed
loops, consistent with the line-node scenario of Sec. II C.
In order to confirm that they are nodal rings protected
by mirror symmetry, we have performed two separate
numerical tests. First we checked that these are true
crossings between states belonging to different irreps, by
plotting in Fig. 5 the mirror symmetry label of band six
across the kz = 0 plane. The boundaries between re-
gions of different symmetry (the grey and white regions)
coincide with the locus of degeneracies of band six with
either band seven or band five, indicated with lines. For
example, when going between a grey and a white region
across a thick (red) line, bands six and seven cross with
one another and exchange symmetry labels.

The second test was to determine the Berry flux car-

(110)

(1
1
0)

Γ
N

H

FIG. 5. (Color online.) Mirror symmetry labels (+i in grey
and −i in white) of band six on the mirror plane at kz = 0.
The degeneracy lines of band six with bands five and seven
are drawn in thin (green) and thick (red) lines respectively.

ried by each ring. To this end we evaluated numeri-
cally the Berry phases of small circular loops interlinked
with the rings, obtaining the value π expected for nodal
rings. Note that the sign of the Berry phase of a mirror-
symmetric vertical loop is flipped by the mirror opera-
tion, but because the Berry phase is only defined modulo
2π, the nontrivial value π is still allowed.

Recently, the Fermi surfaces of several T -invariant
crystals (some P -broken,7,8 others P -invariant59,60) were
found to consist of nodal rings on mirror planes, but only
when SOC is absent. Those Fermi rings are crossings
between pairs of spin-degenerate bands, and SOC hy-
bridizes the states of opposite spin, gapping the rings
everywhere except at a few isolated points despite the
unbroken mirror symmetry.8,60 In bcc Fe the spin de-
generacy is lifted by the exchange interaction, removing
the hybridization channels and stabilizing the nodal rings
against SOC (except when SOC destroys the mirror sym-
metry itself, e.g., on the vertical symmetry planes).

Let us now analyze the isolated degeneracies away from
the kz = 0 plane in Fig. 4. There are 45 in total in
the half-BZ, and except for a double-Weyl node along
the four-fold axis ∆ all of them are simple WPs. Their
properties are listed in Table I. Each row represents one
or more symmetry-related PNs lying on the same BZ
slice at fixed kz, and their multiplicity (one, two, four, or
eight) is determined by the projection onto the 2D BZ at
the bottom of Fig. 3. Multiplicities of two and four are
generated by C4 symmetry, and multiplicities of eight are
generated by C4 symmetry together with C2T symmetry
about the vertical symmetry planes. A mirror-equivalent
set of nodes, but with reversed chiral charges, appears in
the kz < 0 half of the BZ.

The degeneracies between bands six and seven real-
ize almost all possibilities that can generically exist in a
tetragonal ferromagnet: nodes of chiral charge ±1 that
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kx ky kz Proj. E Spin χ Mult.

0.0 0.0 0.027 Γ −1.16 ↓↓ −2 1
0.0 1.0 0.056 M 0.06 ↓↓ −1 1
0.5 0.5 0.130 X −0.96 ↓↓ +1 2
0.180 0.820 0.180 X M −0.34 ∼↓↓ +1 4
0.074 0.322 0.242 gen. −1.01 ↑↓ −1 8
0.0 0.327 0.243 Γ M −0.99 ↑↓ +1 4
0.0 0.583 0.284 Γ M −0.87 ↓↓ +1 4
0.0 0.217 0.316 Γ M −0.99 ↑↑ +1 4
0.135 0.662 0.338 gen. −1.07 ↓↓ −1 8
0.0 0.365 0.365 Γ M −1.02 ↑↑ −1 4
0.118 0.118 0.429 Γ X −0.84 ↑↓ −1 4
0.0 1.0 0.446 M −0.94 ↑↓ +1 1

TABLE I. Census of chiral degeneracies between bands six
and seven in the half BZ of Figs. 3-4. The coordinates
(kx, ky, kz) are in units of 2π/a; energy E is in eV rela-
tive to the Fermi level. “Proj.” indicates the projection
onto the 2D BZ at fixed kz (bottom of Fig. 3; “gen.” is
a generic point). Last three columns indicate spin crossing
type (↓ and ↑ are majority and minority spins respectively),
chiral charge (χ > 0 if the band touching is a source of Berry
curvature on band six), and multiplicity within the 2D BZ.

project onto Γ or M (multiplicity one), X (multiplicity
two), Γ M, Γ X, or X M (multiplicity four), or generic
points (muliplicity eight); and nodes of chiral charge ±2
projecting onto Γ or M. Only the very last possibility is
missing between bands six and seven in Table I, but an
opposite-spin crossing of this type occurs, for example,
between bands four and five at kz ' 0.376× 2π/a.

The correctness of the PN assignments in Table I is
confirmed in Fig. 6, where we plot between kz = 0 and

kz = π/a the joint slice Chern number C̃ [Eq. (7)] of
the six lowest bands. Each step discontinuity signals the
presence on the corresponding BZ slice of one or more
chiral PNs connecting bands six and seven. The positions
of the steps match the kz coordinates listed in Table I,
and their sizes satisfy

∆C̃ = (Multiplicity)× (Chiral charge) (47)

for the chiral charges and multiplicities in Table I.
Let us contrast the behavior of the energy bands and

symmetry labels in the vicinity of a simple WP and of
a double-Weyl node, when both lie along four-fold axes.
Figure 7 pertains to the WP at kz ' 0.446 projecting
onto M. The upper and lower panels show respectively
the linearly-dispersing bands and the evolution of the
symmetry labels along the symmetry axis. As expected
for a WP of positive chirality, the label of the lower band
changes by a factor of i at the crossing.16 Exactly at the
crossing the two bands retain their separate spin charac-
ters, but moving slightly away from M (left inset) they
hybridize and no longer touch. The right inset shows that
the bands also disperse linearly away from the touching
point in the orthogonal directions (the leading behavior
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FIG. 6. Slice Chern number C̃ [Eq. (7)] associated with the

six lowest bands of bcc Fe. Since C̃ is symmetric about kz = 0
and kz = π/a [Eqs. (A4) and (A5)], only half of the range of
kz is shown.
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FIG. 7. (Color online.) A Weyl point between bands six and
seven along the four-fold axis that projects onto M in Fig. 3.
The top panel and the right inset show the band dispersions
as one passes through the touching point along the symmetry
axis and on the orthogonal plane respectively. The left inset
shows the dispersion along a vertical line that is shifted from
the symmetry axis by δkx = 0.05 × 2π/a. The bands are
color-coded by the spin as in Fig. 2. The main bottom panel
shows the evolution along the symmetry axis of the phase of
the C4 eigenvalues (symmetry labels) of the crossing bands.

is linear even though strong nonlinearities are present),
but now with strong spin mixing near the crossing. The
behavior around the double-Weyl node on the ∆ axis is
shown in Fig. 8, and it is qualitatively different. Here the
bands still disperse linearly away from the node along the
axis, but the dispersion is quadratic on the orthogonal
plane at the critical kz. Moreover, the symmetry labels
of the crossing bands are noncontiguous on the complex
unit circle.16

This concludes our survey of the degeneracies between
bands six and seven; other bands display the same ba-
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FIG. 8. (Color online.) A double-Weyl node between bands
six and seven along the four-fold axis ∆ in Fig. 3. The top and
bottom panels and the right inset have the same meaning as
in Fig. 7. Near the crossing the two bands have majority-spin
character, as indicated by the red color.

kx ky kz Proj. E Spin χ Mult.

0.0 1.0 0.047 M 2.35 ↑↑ +1 1
0.0 0.0 0.065 Γ −0.25 ↑↑ +1 1
0.188 0.812 0.188 X M 1.85 ↑↑ −1 4
0.322 0.322 0.331 Γ X 1.81 ↑↓ +1 4
0.0 0.0 0.428 Γ −0.06 ↑↑ −1 1
0.233 0.233 0.446 Γ X 1.39 ↑↑ −1 4
0.0 0.0 0.480 Γ 0.07 ∼↑↑ +2 1

TABLE II. Census of chiral degeneracies between bands nine
and ten in the half BZ of Fig. 3. The table is organized in the
same way as Table I.

sic types of degeneracies. For future reference we list in
Table II the chiral degeneracies between bands nine and
ten.

B. Fermi surface

1. Overview and spin-orbit effects

We begin by analyzing the FS of bcc Fe with SOC
switched off. Callaway and co-workers34,61 introduced
a labeling scheme for the Fermi sheets that has been
widely adopted in the literature. The sheets are orga-
nized into eight groups. In a calculation without SOC the
majority-spin Fermi sheets belong to groups I–IV, and
the minority-spin sheets to groups V–VIII. Figure 9(a)
shows the labeled Fermi contours on the mirror plane at
kz = 0. We now consider the possible touchings and in-
tersections between Fermi sheets, starting with the SOC-
free case.

Crossings between Fermi sheets of opposite spin occur
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FIG. 9. (Color online.) (a) Fermi contours of bcc Fe on the
ΓNH plane at kz = 0, calculated without spin-orbit coupling.
The majority-spin contours I–IV are in red, the minority-spin
contours V–VIII in blue. Curved grey lines are accidental
degeneracy lines (nodal rings) that cross the Fermi level at
points of contact between like-spin Fermi sheets, where they
change from solid (Edegen < EF ) to dashed (Edegen > EF ).
The dashed-dotted line from Γ to H is a line of essential de-
generacy. (b) Energy bands close to the Fermi level along the
ΓH line. In both panels, the spin-dependent band indices are
indicated.

along entire loops in the 3D BZ where the two constrains
En↑(k) = Em↓(k) = EF are satisfied. Some of those
loops intersect the portion of the kz = 0 plane shown in
Fig. 9(a), at the six points where sheets I or II (red) cross
V or VIII (blue).

Touchings between like-spin Fermi sheets can occur
along lines of degeneracy, at the isolated points where the
degeneracy energy Edegen equals EF . Four such contact
points can be seen in Fig. 9(a). Two are linear touch-
ings between majority-spin sheets I-II, and they are lo-
cated along nodal rings (the curved grey lines) connect-
ing bands five and six on the mirror plane.62 Each nodal
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ring changes from a solid line (Edegen < EF ) to a dashed
line (Edegen > EF ) at the Fermi touching points, and the
band indices of the two Fermi sheets that touch tell which
bands are degenerate along a given ring. The other two
are quadratic touchings, one between sheets III-IV for
majority spins and the other between sheets V-VII for
minority spins. Both of them lie on the dashed-dotted
grey line ∆′ from Γ to H, where there is an essential
degeneracy between pairs of bands in each spin channel
(without SOC the little group along ∆′ is C4v, which
has a two-dimensional irrep). The bands close to the
Fermi level are plotted along ∆′ in Fig. 9(b). Note that
the essential degeneracy is between bands two and three
near Γ, and between bands three and four near H.

There is one more opportunity for like-spin Fermi
touchings, namely at generic points in the BZ along
nodal rings located away from any symmetry lines or
planes: the removal of SOC restores an effective T sym-
metry in each spin channel, which combined with par-
ity produces an effective PT symmetry protecting such
rings.39,59 Several low-symmetry nodal rings are present
in the bandstructure near the Fermi level, but none of
them cross EF . For example, they occur below EF be-
tween majority-spin bands three and four and also five
and six, and between minority-spin bands two and three;
and above EF between minority-spin bands four and five.

Now we turn to the FS with SOC included. Figure 10
shows the calculated FS in the 3D BZ. Each Fermi sheet
is labeled Sna as in Sec. III, and sheets with the same
band index n are displayed together. The unoccupied
sides are colored in blue, and the occupied sides in yel-
low/gold. Thus the pockets in bands five to seven are
hole-like, and so is the connected tubular structure in
band eight, while the pockets in bands nine and ten are
electron-like.

The spin-orbit interaction changes both the symmetry
and the connectivity of the FS, and its organization into
groups of symmetry-related sheets must be modified ac-
cordingly. Without SOC, group VIII comprises the six
pockets surrounding each of the points N in the BZ (the
centers of the faces of the Wigner-Seitz cell in Fig. 10).
With SOC, this group splits in two: group VIII(a) formed
by the four pockets surrounding the points N′ in Fig. 3
[sheets two to five in Fig. 10(c)], and group VIII(b) con-
taining the two pockets surrounding the points N [sheets
six and seven in Fig. 10(c)].

The other group that gets split by SOC is group VII
comprising the six “satellite” electron pockets in band
ten. The four pockets along the lines ∆′ in Fig. 3 [pockets
two to five in Fig. 10(f)] remain related by C4 symmetry,
so we group them together as VII(a). Pockets six and
seven along ∆ are no longer related by symmetry to the
other four; they are however related to each other by both
parity and mirror reflection, and we label them VII(b).

Figure 11(a) displays the Fermi contours on the kz = 0
plane. The contours are labeled as in Fig. 1, but using the
more compact notation na instead of Sna. (The corre-
spondence with the labels for groups of symmetry-related

(a)Band 5 (b)Band 6

(c)Band 7 (d)Band 8

(e)Band 9 (f) Band 10

FIG. 10. (Color online.) Fermi surface of bcc Fe with spin-
orbit coupling included. The indices a of the individual Fermi
sheets Sna on each band n are indicated.

Fermi sheets is given in Table III below.) Comparison
with Fig. 9(a) shows that some, but not all, of the gluing
points between Fermi sheets have been removed by SOC,
with sizable gaps opening up in some cases. In particu-
lar, the quadratic touching between sheets III-IV along
∆′ has been lifted, and the one between sheets V-VII
turned into a pair of linear crossings between the pair
(9, 102) on either side of ∆′.

Generic Fermi-sheet touchings require a locus of band
degeneracies of dimension d ≥ 1 since the additional con-
straint Edegen = EF reduces the dimensionality by one,
and with SOC the only eligible degeneracies are nodal
rings on the kz = 0 plane. The nodal rings connecting
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FIG. 11. (Color online.) Fermi contours of bcc Fe on the ΓNH plane at kz = 0, with spin-orbit coupling included. (a) The
contours are color-coded by the band index n and labeled na, where a is the sheet index (it is omitted for bands with a single
Fermi sheet). (b) The Fermi contours are color-coded by the spin in the same way as the energy bands in Fig. 2, and the grey
lines labeled α, β1, β2, γ, and δ are degeneracy lines (nodal rings) that cross the Fermi level at points of contact between Fermi
sheets, where they change from solid (Edegen < EF ) to dashed (Edegen > EF ).

bands six and seven in Figs. 4 and 5 lie entirely below EF
and thus play no role here. However, several nodal rings
lying on the kz = 0 plane do cross EF , as indicated by the
solid/dashed grey curves in Fig. 11(b). The ones labeled
α, β1, and β2 are degeneracy loops between bands seven
and eight; α glues sheet 8 to sheet 71 at eight points,
while β1 and β2 provides gluings to sheets 76 and 77 at
four points each. Ring γ provides eight points of contact
between sheets 8 and 9, and ring δ connects sheet 9 twice
to each of 102, 103, 104, and 105. We thus see that it is
quite common for Fermi sheets to be glued to one an-
other on the kz = 0 plane in bcc Fe. The gluing-together
of Fermi sheets is protected by mirror symmetry, and
hence it does not require fine tuning. By tuning external
parameters, it is also possible to arrange for sheets to
touch away from the kz = 0 plane. Two example will be
discussed in Secs. VI B 3 and VI C 2.

The situation is very different on the ky = 0 plane of
Fig. 12, which is not a mirror plane with SOC present.
No actual Fermi touchings occur there, although some
of the avoided crossings are very small and difficult to
discern on the scale of the figure. In particular, what
look like two touchings between sheets (8, 9) in the lower
half of the figure are in fact tiny avoided crossings, as will
become clear in Sec. VI C.

2. Fermi-sheet Chern numbers

Without SOC all the band degeneracies in bcc Fe are
nonchiral, the Berry curvature vanishes identically, and
as a result the Fermi surface is topologically trivial. As
we have seen, the inclusion of SOC generates chiral band

touchings that act as sources and sinks of Berry curva-
ture. We will now determine the Chern numbers induced
on the Fermi sheets from the census of chiral PNs, as de-
scribed in Sec. III. For isolated Fermi sheets the Chern
number is unique and is correctly obtained from this cen-
sus. For those that are glued to neighboring ones by
nodal rings lying on the kz = 0 plane, on the other hand,
it provides only part of the story. The true sheet Chern
number is ill-defined until the symmetry protecting the
nodal rings is broken, and when it is, the sheet Chern
number may have additional contributions from new PNs
that appear at special points along the vaporized nodal
ring. This will be discussed in Sec. VI B 3.

We use the formulation of Sec. III C, based on the PN
population in “immediate regions.” (Since no Luttinger
anomalies are present, the special treatment that is re-
quired in such cases is not needed here.) Inspection of
Fig. 10 shows that, for each Fermi sheet, it is possible
to identify an occupied or empty connected BZ region
having that Fermi sheet as the sole boundary. For the
hole-like sheets of band seven that means working with
exterior-like regions, while for the electron-like sheets
of band ten it means working with interior-like regions;
bands five, six, eight and nine have a single sheet each, so
that either approach can be used (in practice we choose
the one leading to the smallest number of enclosed PNs).
In this way we are able to determine the Chern num-
ber of each Fermi sheet from a single evaluation of either
Eq. (19) or Eq. (20), without the need for a recursive
procedure.

Our implementation of Eq. (19) for electron pockets is
as follows. In order to determine the internally connected
occupied subvolumes Vnj , we cover the BZ with a uniform
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FIG. 12. (Color online.) Same as Fig. 11(b), but for the
ΓN′H plane at ky = 0. The Fermi contours are labeled in
the same way as in Fig. 11(a). Because the symmetry on this
plane is reduced by the spin-orbit interaction, the displayed
region has twice the area compared to Fig. 11 and there are
no symmetry-protected nodal rings.

300×300×300 grid and set up an undirected graph with
nodes at those grid points where band n is occupied, and
whose edges are the links to the nearest-neighbor points
that are also occupied. The problem becomes a standard
one in graph theory, namely, to identify the connected
components of an undirected graph. Once the subvol-
umes Vnj have been identified in this way (the algorithm
“wraps around” the BZ, so that the BZ boundaries are
excluded from the definition of δVnj), we go through the
list of occupied PNs Wnα and Wn−1,α and assign each
of them to the subvolume Vnj containing the closest grid
point. This allows us to carry out the summations on
the right-hand-side of Eq. (19) to determine the Chern
number Cna of each electron pocket Sna = δVnj . The
implementation of Eq. (20) for the hole-like Fermi sheets
is completely analogous.

The results are summarized in Table III, and sev-
eral features can be readily understood from symme-
try considerations. The vanishing of the Chern num-
bers summed over all the sheets of any given band is a
consequence of inversion symmetry [Eq. (22)], and this

Band Sheet Group Type Enclosed Enclosed Chern
n a label symm. points PNs number
5 1 IV Hole H 0,0 0
6 1 III Hole H 0,2 0
7 1 V Hole H 2,0 0*
7 2,3,4,5 VIII(a) Hole N′ 0,4 0
7 6,7 VIII(b) Hole N 0,0 0*
8 1 II Hole H,N,N′ 16,36 0*
9 1 I Elec. Γ 42,4 0*
10 1 VI Elec. Γ 2,0 0
10 2,3,4,5 VII(a) Elec. Along ∆′ 0,0 0*
10 6,7 VII(b) Elec. Along ∆ 1,0 −1,+1

TABLE III. Chern numbers of the Fermi sheets of bcc Fe, with
spin-orbit coupling included. Symmetry-related Fermi sheets
are listed on the same row and are assigned a group label. The
Chern numbers are determined from the populations of chiral
points nodes (PNs) within “immediate regions,” which are
exterior-like (interior-like) for hole-like (electron-like) Fermi
sheets. For non-isolated Fermi sheets (labeled by an asterisk),
this definition neglects the possible contribution of π fluxes at
touching points between Fermi sheets (see Sec. VI B 3). The
high-symmetry points enclosed by each Fermi sheet are indi-
cated, and if none are enclosed the symmetry line where the
pocket lies is indicated instead. The numbers i, j of enclosed
PNs with bands n− 1 and n+ 1 are also indicated.

explains the values Cna = 0 for bands six, eight, and
nine with one Fermi sheet each (the small hole pocket
in band five does not enclose any PNs, and so its Chern
number vanishes trivially). According to Sec. III D, in
bands with several Fermi sheets inversion symmetry still
imposes Cna = 0 on those which enclose parity-invariant
momenta (the points Γ, H, N and N′ in Fig. 3). This
accounts for all sheets in band seven, as well as the cen-
tral pocket 101 in band ten. Note that the vanishing
Chern numbers come about in different ways for Fermi
sheets belonging to groups VIII(a) and VIII(b) in band
seven: the latter do not enclose any PNs, while the former
enclose four PNs each with band eight (two inversion-
symmetric pairs).

This leaves the six satellite pockets in band ten. The
pockets (102, 103, 104, 105) located along ∆′ do not en-
close any PNs. The pockets (106, 107), on the other
hand, enclose a single WP each. These are touchings
with band nine, located along ∆ at kz = ∓0.428× 2π/a
(see Table II). As their chiralities are reversed by mir-
ror symmetry, the enclosing pockets have opposite Chern
numbers ∓1.

Figure 13 shows the energy bands near a pocket of type
VII(b) [panel (a)], and near one of type VII(a) [panel (b)].
Upon lowering the Fermi level the electron pocket 107

in panel (a) will shrink, eventually turning into a hole
pocket in band nine with the same Chern number +1.
The situation with pocket 102 in panel (b) is less clear,
because of the degeneracy between bands nine and ten
near the bottom of band ten. That degeneracy can be
lifted by tilting the magnetization in certain directions
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FIG. 13. (Color online.) Detail of the spinor bandstructure
of Fig. 2 along the line ∆ close to the electron pocket 107

[panel (a)], and along the line ∆′ close to the pocket 102

[panel (b)]. The spin-orbit-free energy bands of Fig. 9 are
shown as dotted grey lines.

(those for which no WPs are left inside the now-isolated
pocket, as will be discussed in Sec. VI B 3). Under those
conditions pocket 102 simply disappears as EF dips be-
low the bottom of band ten; because its Chern number
vanishes, this does not violate the sum rule of Eq. (21).

In order to understand how the two satellite pockets
along ∆ become different from the four along ∆′ when
SOC is included, and why nonzero Chern numbers are in-
duced on the former but not the latter, it is instructive to
follow the evolution of the relevant bands in Figs. 13(a-b)
as SOC is turned on. In the SOC-free limit bands eight
to ten [corresponding to minority-spin bands two to four
in Fig. 9(b)] behave identically along ∆ and ∆′, with
a doubly-degenerate band (eight and nine on the left,
nine and ten on the right) crossing a singly-degenerate
one (ten on the left, eight on the right). Along ∆ in
Fig. 13(a), SOC lifts the two-fold degeneracy between
bands eight and nine, and the crossing of band ten cre-
ates two nearby WPs, with the one between bands nine
and ten inducing a Chern number of +1 on the enclosing
pocket 107. Along ∆′ in Fig. 13(b), however, the na-
ture of the hybridization with band ten is very different.
While no mirror plane containing ∆ survives when SOC
is turned on, the Mz mirror plane containing ∆′ does
survive, and such a plane can only harbour nodal rings,
not chiral PNs. The touching between bands nine and
ten in Fig. 13(b) belongs to just such a nodal ring – in
fact, the same one that appears as ring δ in Fig. 11(b).
Since no chiral PNs are enclosed by pocket 102, its Chern
number vanishes.

On their own, the pockets (106, 107) are an almost ideal
realization of the simplest T -broken Weyl semimetal. It
is therefore natural to ask whether their presence gives
rise to “Fermi-arc” surface states connecting their pro-
jections onto the surface BZ, as in actual Weyl semimet-

π π 

(a)

(b)

± π ± π 

Sn Sn+1 

Sn Sn+1 

FIG. 14. (a) Gluing together of two Fermi sheets along a
symmetry-protected degeneracy line carrying a Berry flux of
π modulo 2π, indicated as ±π. (b) The symmetry has been
broken weakly, gapping the degeneracy line and separating
the Fermi sheets. A Berry flux of definite sign now exits one
sheet and enters the other.

als. Although we have not explicitly calculated the sur-
face bands of bcc Fe, that seems unlikely: almost every-
where on the surface BZ there are projected bulk states at
the Fermi level coming from all the other (trivial) Fermi
sheets, and their presence destroys the stability of the
putative Fermi arcs.

In summary, although chiral degeneracies abound in
the spinor bandstructure of bcc Fe, most Fermi sheets
are constrained by symmetry to have zero Chern num-
bers. The only ones that are free from such constraints
are the isolated electron pockets (106, 107). In our calcu-
lation their Chern numbers are ∓1, turning bcc Fe into
a topologically nontrivial metal.

3. Chern numbers of non-isolated Fermi sheets

In Table III we have assigned Chern numbers to all
the sheets making up the Fermi surface bcc Fe, includ-
ing those in groups I, II, V, VII(a), and VIII(b) that
are glued together along nodal rings lying in the mirror
plane [Fig. 11(b)]. For these sheets, the meaning of the
assigned Chern number requires a more careful expla-
nation, since Chern numbers are in principle only well-
defined for isolated Fermi sheets, and they can change
when sheets touch as a function of a control parameter.

Figure 14(a) shows a simplified sketch of a generic sit-
uation in which Fermi sheets Sn and Sn+1 are glued to-
gether at an isolated “gluing point” where a nodal ring
passes through EF . In our case, the nodal ring lies in
the kz = 0 plane and is protected by Mz symmetry. The
local two-band k · p Hamiltonian in the vicinity of the
touching has a form like

H(k′x, k
′
y, kz) = EF + αk′x + βk′yσ3 + γkzσ1 (48)

where k′x and k′y are measured relative to the gluing point
and are parallel and normal to the nodal line respectively,
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and σj are Pauli matrices. The E = 0 solutions are con-
ical as shown in the figure, with the nodal line passing
through the conical intersection point. Each nodal line
carries a Berry flux of π modulo 2π, which is indicated
as ±π in the figure; without breaking the symmetry we
cannot say which value applies. The Fermi-sheet Chern
numbers reported in Table III correspond to the inte-
gral of the Berry curvature over the sheet in question,
Eq. (16), but neglecting these possible π-flux contribu-
tions. This is the same as the sum of the chiral charges
of enclosed PNs that are unrelated to the nodal ring, as
will become clear shortly.

Now imagine that the symmetry that was protecting
the nodal ring is broken weakly; in our case this can
be done by tilting the magnetization M away from the
tetragonal axis. Then the two bands become gapped ev-
erywhere along the path except possibly at PNs along
it, corresponding to the addition of a term µ(k)σ2 to
Eq. (48), where the argument k is a reminder that µ
can vary along the path. Then a definite flux of +π or
−π (depending on the sign of µ) flows along the previ-
ous path of the ring, concentrated in a small vicinity (of
size proportional to µ) around the path. As shown in
Fig. 14(b), the previously glued Fermi sheets now sep-
arate and become hyperboloids, and a concentration of
π flux now exits one sheet and enters the other. These
π-flux contributions must be included when computing
the true Chern number of the sheet in the presence of
the symmetry breaking.

Note, however, that if the nodal ring enters a given
Fermi sheet at one point, it must exit at another, and
the total contribution of the π fluxes will be of opposite
sign and will cancel unless µ(k) crosses through zero and
changes sign at some special point along the ring, gener-
ating a new chiral PN at this location. As long as this
PN is included in the census of enclosed PNs, the total
Chern number of the sheet will still be correctly given by
the sum of enclosed chiral charges.

In order to see how this works out in the present con-
text, we have investigated the consequences of breaking
the Mz mirror symmetry, which is responsible for the
nodal rings shown in Fig. 11(b). When we tilt M away
from [001] the nodal rings evaporate, leaving behind a
few extra PNs, and the previously glued-together Fermi
sheets become detached. We can then safely determine
their individual Chern numbers from the populations of
enclosed chiral degeneracies (including the newly formed
PNs).

Parameterizing the magnetization direction by polar
and azimuthal angles θ and φ, we compute the proper-
ties at a series of values of φ at a fixed polar angle of
θ = 20°. Since parity remains a crystal symmetry even
for arbitrary (θ, φ), the Chern numbers must still van-
ish individually for the Fermi sheets surrounding parity-
invariant momenta, i.e., sheets 71, (76, 77), 8, and 9. The
Chern numbers of those sheets thus vanish unambigu-
ously in the limit θ → 0.

According to Table III, this leaves the four pockets

(102, 103, 104, 105) as the only ones that may acquire a
non-zero Chern number as a result of the breaking of Mz

symmetry. We find that the Chern number of any one
pocket fluctuates between values of −1, 0, and 1 as φ
is varied; the Chern numbers of inversion-related pairs
of sheets are always opposite, as required by parity; and
that the sum of the four is always zero. As discussed
above, the nonzero individual values result from remnant
WPs from the vaporized nodal rings that are left lying in-
side the sheet in question. Those Weyl nodes move along
the ring paths as a function of φ, and at critical angles
two nodes of opposite chirality join sheet 9 with a pair
of inversion-related pockets in band ten. This concerted
touching event leads to a net transfer of Chern number
between the two pockets in the pair, mediated by sheet 9
whose Chern number remains at zero. One such touch-
ing event between sheets 9 and 102, and the subsequent
annihilation of a pair of remnant WPs inside 102, are
depicted in the Supplemental Material.63

C. Anomalous Hall conductivity

The intrinsic AHC of bcc Fe has been calculated from
first-principles by several authors. In Refs. 54 and 44
two different implementations of the Fermi-sea approach
of Sec. IV A were used, while in Ref. 30 a Fermi-surface
calculation was carried out along the lines of Sec. IV C.
In all these works the focus was on the total intrinsic
AHC (i.e., summed over all bands in the Fermi-sea cal-
culations, and over all Fermi sheets in the Fermi-surface
calculation). The resulting AHC values were found to be
in excellent agreement with one another, and in reason-
able agreement with measurements at room temperature.

In this section we provide a breakdown of the intrinsic
AHC first into band contributions and then into Fermi-
sheet contributions. Even though only the total intrinsic
AHC is a well-defined physical observable, such decom-
positions provide insights into the role played by band
degeneracies. It can be readily understood that nodal
rings do not contribute to the AHC: they form when
M ‖ [001], in which case the AHC vector K of Eq. (24)
is constrained by symmetry to point along kz, while in-
stead the Berry flux carried by the nodal rings is directed
along the tangential direction on the (kx, ky) plane. As
for the chiral Weyl nodes, they do contribute to the AHC
by acting as sources and sinks of Berry curvature, as will
become apparent in the ensuing discussion.

1. Band-by-band decomposition

We work with the AHC vector K =
∑
n Kn, where

the contribution from a single band is given by Eq. (25).
Following Ref. 30 we calculate Kn in reduced coordinates
as an average over BZ slices of the Berry flux through the
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Band K(Ω)
n3 K(χ)

n3 Kn3 AHC
n (S/cm)
1 2 0.51 2.51 −3394
2 −6 3.03 −2.97 4018
3 2 1.96 3.96 −5345
4 6 −8.85 −2.85 3840
5 −8.01 6.22 −1.79 2413
6 −7.80 3.27 −4.53 6111
7 14.12 −6.44 7.68 −10368
8 −3.17 −0.31 −3.48 4702
9 −0.53 1.33 0.80 −1076
10 0.83 −0.72 0.11 −146

Total −0.56 0 −0.56 755

TABLE IV. Band-by-band decomposition of the anomalous
Hall conductivity (AHC) of bcc Fe. In the three middle
columns the dimensionless AHC is further decomposed ac-
cording to Eq. (50).

occupied portions of each slice,

Knj =
1

2π
aj ·Kn =

1

nslice

nslice∑
i=1

φnj(i)

2π
, (49)

where the Berry flux φnj(i) [Eq. (38)] is evaluated by
adding up the Berry phases around small plaquettes cov-
ering the occupied portions of the BZ slice (see Sec. V B).
Since we take the magnetization to point along a3 =
(0, 0, a), the only nonzero components of the AHC ten-
sor are σxy = −σyx, and Knj only needs to be evaluated
for j = 3.

The calculated fluxes φn3 are piecewise continuous
functions of kz, jumping by integer multiples of 2π when
passing through chiral PNs. In our calculations we ini-
tially divide the BZ into 800 evenly-spaced slices, and
whenever |φn3(i+ 1)− φn3(i)| > π we interpose four ad-
ditional slices. This allows us to locate more precisely the
step discontinuities, and to distinguish them from rapid
but continuous variations in the flux.

Table IV shows the breakdown of the AHC into band
contributions. In the middle columns the dimensionless
band contribution given by Eq. (49) is further decom-
posed according to Eq. (27),

Kn3 = K(Ω)
n3 +K(χ)

n3 , (50)

and in the last column the total contribution from
band n is converted to S/cm using σn,xy = −(e2/ha)Kn3.

In practice we calculate Kn3 and K(χ)
n3 from Eqs. (49)

and (29) respectively, and then obtain K(Ω)
n3 as the differ-

ence. Recall from Sec. IV B that depending on the place-
ment of the cell boundaries relative to the PNs, integer
amounts may get transferred between the two terms in
Eq. (50); the values in Table IV are for a BZ cell located
between kz = −π/a and kz = π/a.

All non-empty bands (n ≤ 10) contribute to the AHC
in Table IV, as expected for a Fermi-sea formulation.

For bands that are fully occupied (n ≤ 4) the Ω term in
Eq. (50) becomes the slice Chern number of Eq. (5) eval-
uated on the cell boundary at kz = ±π/a; the total Kn3

of each of those four bands is not quantizated, however,
because of the additional term in Eq. (50) contributed by
the chiral degeneracies.64 Since those χ terms sum up to
zero over all bands, we can choose to focus exclusively on
the Ω terms, in which case the nonquantized part of the
AHC is apportioned entirely to the bands crossing EF
(5 ≤ n ≤ 10). This viewpoint will be adopted in the
next section.

2. Fermi-surface decomposition

Following Sec. IV C, we write the AHC contribution
from each Fermi-sheet as an average over BZ slices of
Fermi-loop Berry phases [Eq. (44)]. Instead of evaluat-
ing the Berry phases ϕnaj(i) directly on the FS as done
in Ref. 30, we first compute Berry fluxes and then re-
move the discontinuities, as explained below. In the
case of bands nine and ten with electron-like pockets,
we determine the flux φnj(i) through the occupied por-
tions of each BZ slice in the same way as in Sec. VI C 1,
by adding up the Berry phases around small occupied
plaquettes.65 In the calculations of Sec. VI B 2 we had
identified the connected BZ subvolumes where band n is
occupied. Since in bcc Fe each subvolume is bounded
by a single Fermi sheet Sna (this is not true in general),
that information can be used to decompose the Berry
flux as φnj(i) =

∑
a φnaj(i) by assigning each plaquette

to the appropriate subvolume. Having done this for every
slice we then set ϕnaj(i) = φnaj(i) + 2πNnaj(i), choosing
nonzero integers Nnaj(i) at the critical slices so as to can-
cel the jumps in φnaj(i). The procedure is the same for
the hole-like sheets in bands five to eight, except that we
switch from occupied to empty subvolumes and flip the
signs of the Berry fluxes. As in Sec. VI C 1, calculations
only need to be carried out for j = 3.

The Fermi-sheet contributions to the AHC are listed
in Table V. Because these are nonquantized contribu-
tions, they are only defined modulo e2/ha = 1350 S/cm.
This ambiguity arises from the freedom to choose the
branch cut of the Berry phase ϕna3 on some reference
slice (Sec. IV C), and below we describe the choices we
have made in order to arrive at the values in the table.

For the sheets in groups I, III, IV, V, VI, VII(a),
VIII(a), and VIII(b), all of which have zero Chern num-
bers, we arbitrarily set ϕna3 = 0 on an “empty” slice be-
low the Fermi sheet. As an example, Fig. 15(a) shows the
evolution of the phase −ϕna3 for n = 10 and a = 1 [the
large pocket centered at Γ in Fig. 10(f)]. Upon hitting
the pocket it first rises continuously from zero, reaches a
maximum, and then starts to decrease, returning to zero
at the top of the pocket.

The two pockets (106, 107) have nonzero Chern num-
bers. It is therefore not possible to set the Berry phase
to zero both at the bottom and at the top of each of
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Band Sheet Group Distance to a PN AHC
n a label (2π/a) (S/cm)
5 1 IV 0.30 9
6 1 III 0.02 −274
7 1 V 0.06 459
7 2,3,4,5 VIII(a) 0.01 −203×4
7 6,7 VIII(b) 0.09 100×2
8 1 II 0.03 242
9 1 I 0.02 714
10 1 VI 0.10 58
10 2,3,4,5 VII(a) 0.31 −1×4
10 6,7 VII(b) 0.01 167

Total 759

TABLE V. Decomposition of the AHC of bcc Fe into
nonquantized Fermi-sheet contributions. Symmetry-related
sheets are grouped in the same row, and they contribute equal
amounts. The two pockets (106, 107) [group VII(b)] with
opposite Chern numbers are treated as a single “composite
sheet” and assigned a joint AHC contribution. The shortest
distance from each Fermi sheet to a chiral point node (PN)
on the same band is also indicated.
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FIG. 15. Evolution with kz of the Berry phase along the
intersection loops between a Fermi sheet and a Brillouin-zone
slice, enforcing continuity from one slice to the next. (a) Fermi
pocket 101. (b) Topological pockets (106, 107), treated as a
composite Fermi sheet. (c) Fermi sheet 81.

them, while at the same time insisting on a continuous
evolution across each pocket.29 Following Sec. IV C we
treat the two pockets as a composite Fermi sheet with
an overall zero Chern number, and assign them a joint
AHC contribution. There are two possibilities for setting
ϕna3 = 0 on empty slices between the two pockets: ei-
ther in the wide region around kz = 0, or in the narrow
region around kz = π/a. We have arbitrarily chosen the
former, and the resulting Berry-phase curve is shown in
Fig. 15(b) (with the latter choice the entire curve would
be shifted downwards by one). The phase−ϕna3(kz) rises
quickly from zero to 2π while traversing the small pocket

with C = +1 on the right side of the panel, stays constant
at 2π in the narrow region between the two pockets, and
finally drops rapidly back to zero while traversing the
periodic image of the pocket with C = −1 on the left
side.

The third case we have encountered is that of the tubu-
lar Fermi sheet in band eight. As in the first case consid-
ered above the Chern number vanishes, but here there are
no empty slices that can be used to set the Berry phase to
zero [see Fig. 10(d)]. Instead, we have made in Fig. 15(c)
the unique branch choice leading to the correct total in-
trinsic AHC when summing the contributions from all the
Fermi sheets. (We have verified that the curve −ϕ3(kz)
obtained by summing −ϕna3(kz) over all Fermi sheets
agrees with Fig. 5 of Ref. 30.) Note the very steep vari-
ation in the Berry phase around kz = 0.465× 2π/a: it is
caused by the tiny avoided crossing between sheets (8, 9)
in Fig. 12 that was mentioned at the end of Sec. VI B 1.

Regarding the magnitude of the nonquantized AHC
contributions, inspection of Table V and Fig. 10 reveals
that the most significant contributions tend to come from
large Fermi sheets with chiral PNs closeby. This makes
intuitive sense, as can be seen by considering a typi-
cal Fermi pocket with zero Chern number and that can
be completely enclosed inside a BZ cell. Using Hal-
dane’s formulation with such a choice of BZ cell, its AHC
contribution equals the dipole moment of the surface-

normal Berry-curvature [the term K
(Ω)
na in Eq. (39)]. This

quantity scales with the pocket size, and is enhanced
by the presence of nearby sources and sinks of Berry
curvature. As a specific example, compare the pockets
(72, 73, 74, 75) in group VIII(a) with the pockets (76, 77)
in group VIII(b). Although they are almost identical in
size and shape, the former contribute twice as much AHC
per pocket, by virtue of being much closer to chiral PNs.

The joint AHC contribution from the topological pock-
ets (106, 107) is considerable (about 20% of the total),
despite the fact that the pockets themselves are rather
small. In this case the AHC contribution scales not with
the size of the pockets but with the distance between
them, as can be seen from Fig. 15(b). An estimate is pro-
vided by the k-space dipole moment between the mirror-
symmetric WPs enclosed by each of the two pockets,

(+1)× 0.428 + (−1)× (−0.428)− 1 = −0.144

in units of 2π/a (note that the WP at kz = 0.428 ×
2π/a in Table II acts as a sink of Berry curvature in
band nine, and therefore it acts as a source in band ten).
This corresponds to a nonquantized AHC contribution
of −0.144× (−e2/ha) = 194 S/cm, close to the ab initio
value of 167 S/cm in Table V; the small overestimation
has to do with the finite size of the pockets.

We conclude by analyzing the evolution of the Fermi-
sheet Chern numbers and AHC upon varying the Fermi
level. Inspection of Fig. 13(a) and Table II shows that
at the critical value ∆EF = 0.07 eV the Fermi level co-
incides with the energy of a double-Weyl node between
bands nine and ten, located along the four-fold axis ∆ at
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kz = 0.48 × 2π/a. The evolution with ∆EF of sheets 9
and 107 is depicted in the Supplemental Material.63 At
the critical value the two sheets touch at the node, and
there is a simultaneous touching between sheets 9 and 106

at the mirror symmetric node in the lower half of the
BZ. Since the chiral charges at the touching points are
±2, sheet 9 donates to 107 a Chern number of +2, and
it simultaneously receives a compensating amount from
106. The net result is that the Chern numbers on pock-
ets 106 and 107 flip sign, while that of sheet 9 remains
at zero. As for the AHC, the joint contribution from
the pair (106, 107) changes abruptly by a nonquantized
amount, but the total AHC remains continuous because
of a compensating discontinuity in the contribution from
sheet 9.66 This example suggests that a measurement of
the AHC cannot by itself resolve the Berry topology of
the Fermi sheets.

VII. SUMMARY

In summary, we have used first-principles methods to
survey the degeneracies in the spinor bandstructure of
bcc Fe, and to calculate the chiral charges of those de-
generacies. From the census of chiral band touchings
we then determined the Chern numbers of the individ-
ual Fermi sheets, paying attention to the subtleties that
arise when Fermi sheets are not isolated, but glued to-
gether along nodal rings. We found that when the mag-
netization points along the easy axis [001] most Fermi
sheets in bcc Fe are topologically trivial, except for two
low-symmetry electron pockets along ∆ with Chern num-
bers ±1, and four others along ∆′ with ill-defined Chern
numbers due to Fermi-gluing.

The systematic relations we derived between the
Fermi-sheet Chern numbers and the enclosed chiral
charges are generally applicable to any metal with bro-
ken PT symmetry. In particular, we have considered in
our formal discussion the case of complex Fermi surfaces
with nested sheet structures, as well as the case where
sheets with a Luttinger anomaly are present. Combined
with the efficient steepest-descent strategy that was used
to locate band degeneracies, our algorithm for deter-
mining the FS Chern numbers could be useful in high-
throughput ab initio searches for topological metals.

The role played by chiral degeneracies in the intrin-
sic AHC was carefully examined, confirming that they
do not pose an impediment to a bulk Fermi-surface for-
mulation for the nonquantized part. We identified two
different ways of decompositing the AHC (band by band
and in terms of Fermi sheets), and showed how the two
decompositions are related by dipole moments of the dis-
tribution inside the BZ of chiral band touchings below
the Fermi level. We carried out both decompositions
numerically for bcc Fe, and found the Fermi-surface de-
composition to be particularly informative and physically
transparent: chiral degeneracies act as sources and sinks
of Berry curvature in k space, and the distribution of

Berry curvature across the Fermi sheets in turn governs
the nonquantized AHC response. So, for example, Fermi
sheets with chiral PNs very nearby tend to contribute
more to the AHC than otherwise similar Fermi sheets
that are farther from chiral PNs.

By showing that two out of eighteen Fermi sheets in
bcc Fe are topologically nontrivial we have established
that nonzero Chern numbers are not only possible in
principle in T -broken Fermi surfaces, but that they actu-
ally occur in realistic ferromagnetic bandstructures. Fur-
ther studies on other ferromagnets will be needed before
it becomes clear how common they are. Since symme-
try was seen to play a an important role, it would be
interesting to explore materials with other symmetries,
e.g., a six-fold axis. The fact that parity imposes zero
Chern numbers on most Fermi sheets in bcc Fe sug-
gests that topologically nontrivial sheets may be more
common in P -broken metals. Known examples include
MnSi and related ferromagnetic compounds with the B20
structure, and also metals such as LiOsO3 that undergo
ferroelectric-like polar distortions.67

By varying either the magnetization direction or the
Fermi level, we were able to change the Chern numbers
on the Fermi surface of bcc Fe. The process consisted of
concerted chiral touching events involving three electron-
like Fermi sheets, with a large, topologically trivial sheet
in band nine mediating the transfer of Chern number
between two small enclosed pockets in band ten. The ex-
perimental consequences of such topological transitions
remain largely unexplored. The manner in which the
topological properties can change as a function of other
external parameters such as pressure, e.g., via discrete
Fermi-sheet reconnection or PN pair annihilation or cre-
ation events, is also an attractive subject for future in-
vestigation.
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Appendix A: Symmetry constraints

In this appendix we list the constraints imposed on sev-
eral k-space quantities by the spatial inversion symmetry
P of bcc Fe, and also by the additional mirror symmetry
Mz that is present when the magnetization points along
the easy axis [001]. The quantities of interest are the en-
ergy eigenvalues En(k), the Berry curvature Ωn(k), the
chiral charge χnα, and the slice Chern numbers Cn(kz)

and C̃n(kz).
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Inversion symmetry implies

En(−k) = En(k) , (A1)

Ωn(−k) = Ωn(k) , (A2)

χnα′ = −χnα , (A3)

where Eq. (A3) follows from Eqs. (10) and (A2), and the
node nα′ in Eq. (A3) is the parity-reflected partner of
nα. Evaluating Eq. (5) at −kz we find

Cn(−kz) =
1

2π

ˆ
d2kΩn,z(−k) = Cn(kz) , (A4)

where we first made the change of variables kx → −kx,
ky → −ky, and then used Eq. (A2). Because of the
periodicity condition (6) we also have

Cn(π/a− kz) = Cn(π/a+ kz) , (A5)

so that Cn(kz) is even with respect to both kz = 0 and

kz = π/a, and the same is of course true for C̃n(kz).

The presence of mirror symmetry Mz implies

En(Mzk) = En(k) , (A6)

Ωn,x(Mzk) = −Ωn,x(k) , (A7)

Ωn,y(Mzk) = −Ωn,y(k) , (A8)

Ωn,z(Mzk) = Ωn,z(k) , (A9)

χnα′ = −χnα , (A10)

where Mz(kx, ky, kz) = (kx, ky,−kz) and nα′ is the
mirror-reflected partner of nα.
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