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We study charge ordered solutions for fermions on a square lattice interacting with dynamic
antiferromagnetic fluctuations. Our approach is based on real space Eliashberg equations which
are solved self-consistently. We first show that the antiferromagnetic fluctuations can induce arc
features in the spectral functions, as spectral weight is suppressed at the hot spots; however, no
real pseudogap is generated. At low temperature spontaneous charge order with a d-form factor can
be stabilized for certain parameters. As long as the interacting Fermi surfaces possesses hot spots,
the ordering wave vector corresponds to the diagonal connection of the hot spots, similar to the
non-self-consistent case. Tendencies towards observed axial order only appear in situations without
hot spots.

PACS numbers: 71.10.Fd,74.72.-h,71.27.+a

I. INTRODUCTION

Signatures of charge order in the copper-oxide based
superconductors have attracted a lot of recent attrac-
tion. By now charge ordered states have become an es-
sential ingredient of the phase diagram for the different
families.1,2 Whilst in La-based compounds charge and
spin stripe order have a considerable history,3–5 it was
only firmly established in recent years in other cuprate
families. Early reports include scanning tunneling mi-
croscopy (STM) studies,6–9 followed by bulk property
measurements by resonant X-ray scattering (REXS).10–12
The order has a finite correlation length in zero magnetic
field and becomes long range ordered at high magnetic
fields.13,14 This helps to understand previously puzzling
quantum oscillation data.15–17

By now the charge order has been carefully charac-
terized experimentally. It is unconventional in the sense
that it possesses an incommensurate wave length between
λ = 3a . . . 4a, where a is the Cu-Cu distance in the cop-
per oxide planes and an internal form factor. In both
STM and REXS the direction of the wave vector has
been established as pointing along the axes in the Cu-
Cu square lattice, Q = Q0(1, 0).10,11,18,19 Its magnitude
follows the Fermi surface, or more precisely, Fermi arc
evolution; concretely this means that it decreases with
increasing hole doping.18 This suggests that the order is
connected to Fermi surface properties and can possibly
be understood as a Fermi surface instability.18,19 In con-
trast, in La-based compounds the ordering wave vector
shows the opposite trend, and Q increases with increas-
ing hole doping.20,21 Recent experiments have revealed
further details of the charge order in Bi- and Y-based
compounds. Both STM and REXS data are well under-
stood based on a d-form factor as an internal structure
for the order.22–24

Many theories have addressed the microscopic origin
of the charge order including its onset temperature, its
wave vector, form factor and dependence on doping and

FIG. 1: (Color online) Schematic picture of Fermi surface with
antiferromagnetic wave vector connecting hot spots K and
examples of diagonal, Q = Q0(1, 1), and axial, Q = Q0(1, 0),
charge ordering wave vectors.

magnetic field.2,25–30,30–35 One line of reasoning starts
with fermions interacting with antiferromagnetic spin
fluctuations peaked at wave vector K (see Fig. 1).28,36–39
The hot spot model with linearized dispersion has a
strong nesting instability with a diagonal wave vector
Q = Q0(1, 1) connecting the hot spots (see Fig. 1).36
In models starting with an intact Fermi surface this in-
stability is at least as strong as the one with an axial
wave vector Q = Q0(1, 0), and it is therefore difficult to
explain the experiments based on such a theory. A num-
ber of recent works have explored situations where the
non-interacting Fermi surface has been modified due to
magnetic order and pocket formation40–42 or pseudogap
features.43 It has been argued that it is important to take
such features into account, such that the dominant insta-
bility can be altered. Also fluctuation effects,44–47 strong
correlation effects,38,39 and starting points of fractional
Fermi liquids48 have been considered as a possibility to
favor axial order over the diagonal one.

The main idea of this work is to analyze whether sin-
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gle particle self-energy modification, due to a coupling to
dynamic spin fluctuations, and without appeal to more
exotic states, is sufficient to establish charge order with
properties as observed in experiments. Our analysis will
be carried out with a semi-phenomenological model of
fermions coupled to dynamic spin fluctuations, also called
spin-fermion model in the literature. Such a model is ap-
pealing as it naturally captures the d-wave superconduc-
tivity in a range of dopings.49,50 We show that in the rel-
evant doping regime for charge order, dynamic magnetic
fluctuations with a finite correlation length ξ ∼ 2a are a
more realistic description for the cuprates than including
static magnetic order.40,41 To analyze the model, we use
a real space formulation which allows us to probe charge
order directly in the ordered phase. Our formulation also
allows for simple extensions to include impurities or dis-
order, spin order, coupling to phonons, superconducting
order, and a magnetic field. The paper is structured as
follows: In Sec. II we describe the details of the model
and approach. In Sec. III we analyze ordered solutions
in the static limit in order to connect to previous work.
In Sec. IV we analyze the full dynamic model before con-
cluding in Sec. V.

II. MODEL DEFINITION AND REAL SPACE
ELIASHBERG APPROACH

We use a model with the action of the form,49,50

S = −
∑
σ

∑
ij,n

ψi,σ(iωn)G−1ij,0(iωn)ψj,σ(iωn) (1)

− g2

2

∑
i,j

∫
dτ

∫
dτ ′ χ(ri − rj , τ − τ ′)S(ri, τ) · S(rj , τ

′),

where

Gij,0(iωm)−1 = (iωm + µ)δij − tij , (2)

and

Sα(ri, τ) = ψi,σ1
(τ)σασ1,σ2

ψi,σ2
(τ). (3)

Here, ψi,σ is a fermionic field for site i and spin label σ.
The non-interacting dispersion in momentum space is

εk = −2t1[cos(k1) + cos(k2)]− 4t2 cos(k1) cos(k2)(4)
−2t3[cos(2k1) + cos(2k2)], (5)

where the copper-copper lattice spacing is set to a = 1.
For the spin-fluctuation spectrum we assume,49–51

χ(q, iωm) =
aχ
NK

NK∑
i=1

1

ωKi(q) + a2vsω
2
m + |ωm|

ωsf

. (6)

To preserve lattice periodicity we define ωKi
(q) = 2(2−

cos(qx − Kx,i) − cos(qy − Ky,i)) + Γ2, and we usually
take for simplicity K = (π, π). Γ is directly related to

the correlation length Γ = ξ−1. For avs = 0 this form is
common in the literature such as in the well-known work
of Millis et al.51 and fits experimental data from neutron
scattering well. In real space we have

χ(ri − rj , iωm) =
1

Ns

∑
q

χ(q, iωm)eiq(ri−rj), (7)

where Ns is the number of lattice sites.
a. Real space equations - The basic equation for the

Eliashberg approach is

Σij(iωn) = 3Tg2
∑
m

χ(ri−rj , iωn− iωm)Gij(iωm), (8)

where G is the full Green’s function. We assume that
no spin order occurs and omit spin labels on G and Σ.
In order to compute Σ self-consistently we also need to
solve the Dyson equation,

Gij(iωm)−1 = (iωm + µ)δij − tij − hij − Σij(iωm). (9)

When working in real space Gij(iωm) can be obtained
by matrix inversion for each iωm, a computation which
can be easily parallelized. The calculation of Σ in Eq. (8)
can also be parallelized well. In the Green’s function G in
Eq. (9), we have included a general symmetry breaking
field, which can be introduced into the Hamiltonian by

Hco =
∑
i,j,σ

hijc
†
i,σcj,σ. (10)

In order to find inhomogeneous solutions we have to ini-
tialize the calculations with such a field. We assume that
χ in Eq. (6) is fixed by the input parameters and not fur-
ther renormalized in a self-consistent manner. We work
on a two-dimensional lattice with Ns = N1 × N1 sites
and periodic boundary conditions.

b. Homogeneous case - In the homogeneous situa-
tion G and Σ only depend on ri − rj . With a Fourier
transform we can then write,

Σk(iωn) = 3g2T
∑
m,q

χ(k− q, iωn − iωm)G(q, iωm) (11)

and the Dyson equation can be solved explicitly,

Gk(iωm) =
1

iωm − εk + µ− Σk(iωm)
. (12)

In the spectral representation we have

Σk(iωn) = 3g2
∑
q

∫
dω1

∫
dω2

ρχ(k − q, ω1)ρG(q, ω2)

iωn − ω1 − ω2

×[nF(ω2) + nB(−ω1)], (13)

where ρχ(q, ω) is the spectral function for the spin-
fluctuation spectrum, and nF(ω), nB(ω) denote the
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fermionic and bosonic distribution functions, respec-
tively. Analytic continuation, iω → ω + iη, yields the
imaginary part of the self-energy

ImΣk(ω) = −3πg2
∑
q

∫
dω2 ρχ(k − q, ω − ω2)ρG(q, ω2)

×[nF(ω2) + nB(ω2 − ω)]. (14)

and the real part can be computed from the Kramers-
Kronig transformation. From this the electronic spectral
function ρG(k, ω) can be computed. For a numerical cal-
culation it is favorable to use the real space form for the
self-energy equation and switch to momentum space by
Fast Fourier transforms.

c. Charge order observables - For the order param-
eter we focus on the inhomogeneous part of

∆ij =
∑
σ

〈c†i,σcj,σ〉 =
∑
Q

[ 1

V

∑
k

∆Q(k)eikr
]
eiQR. (15)

where r = ri − rj and R = (ri + rj)/2. Given a
spin-diagonal Green’s function Gij(iωn) we can com-
pute ∆ij = 2T

∑
nGij(iωn)eiωnτ

−
, τ− → 0. To ex-

tract the inhomogeneous part ∆ih we map it to co-
ordinates R, r, ∆ij → ∆(R, r) and then compute
∆(r) = 1

NR

∑
R ∆(R, r). Then we find ∆ih(R, r) =

∆(R, r) − ∆(r). Without any charge order symmetry
breaking ∆ih is zero.

We assume that the inhomogeneous part ∆ih
Q(k) can

be expanded as

∆ih
Q(k) =

∑
n

an(Q)fn(k), (16)

with a suitable set of orthonormal basis functions
{fn(k)}. The explicit form of the relevant functions used
here can be found in the appendix. These can be trans-
formed to the real space representation,

fn(r) =
1

Ns

∑
k

fn(k)e−ikr. (17)

For a given function ∆ih(R, r), the coefficients an(Q) can
be calculated from

an(Q) =
∑
R,r

∆ih(R, r)e−iQRfn(r). (18)

d. Parameters of the model - The model in Eq. (1)
contains a number of parameters, which we summarize
here for clarity. The bare electronic structure is de-
termined by the hoppings t1, t2 and t3, and the filling
n = 1/Ns

∑
i,σ ni,σ by the chemical potential µ. Unless

otherwise mentioned t1 = 1 sets the energy scale. To
get a rough idea about absolute scales we can think of a
typical identification t1 ' 300meV' 3481K; however, we
make no attempt for a quantitative theory in comparison
with experiment here. The spin fluctuation spectrum has

the following parameters: the overall weight factor aχ,
the inverse correlation length Γ = ξ−1, the spin fluctua-
tion scale ωsf and the ω2 coefficient avs . We use parame-
ters similar to the recent work of Mishra and Norman.34
In addition we have the temperature T , where the lowest
value reached is T = 0.02t1 (' 70K). Moreover we have a
coupling constant g. A technical parameter is the size of
the real space lattice. We did most of our calculations for
N1 = 32. The limit for this is set by memory constraints.

III. RESULTS FOR THE STATIC MODEL

We first consider the situation where the spin-
fluctuation spectrum is a static, which corresponds to
the limit ωsf → ∞ and avs → 0 in Eq. (6). This helps
us to connect to previous results28 and test our formal-
ism and procedure. The equation for the self-energy then
simplifies to,

Σij = 3g2χ(ri − rj)
∆ij

2
. (19)

This purely static renormalization does not lead to any
quasiparticle damping. However, it leads to a sizeable
renormalization of the chemical potential and hopping
parameters. Using the relative coordinate r = ri−rj , we
can relate the renormalized parameters {µ, ti} to the bare
ones {µ0, t

0
i } by µ = µ0 + Σ(r = 0), t1 = t01 + Σ(|r| = 1)

t2 = t02 + Σ(|r| =
√

2), and t3 = t03 + Σ(|r| = 2), where
t0i are the bare parameters.

In our procedure we search for spontaneously ordered
solutions of the self-consistency equations (8) and (9) by
initializing the calculations by a random field hij [see
Eq. (10)]. This is initially included in the Green’s func-
tion in Eq. (9) and then set to zero from the second iter-
ation on. We use a real space lattice with N1 = 32 sites
in one direction and iteratively calculate the full Green’s
function Gij and self-energy Σij . Some mixing of itera-
tions and initial onsite homogenization is used to improve
convergence. One example for a charge order solution is
obtained with the parameter set t01 = 0.764, t02 = −0.33,
t03 = 0.154, and µ0 = 0.393. For T = 0.05, Γ = ξ−1 = 0.5,
and g2 = 3, we obtain t1 ≈ 1.0, t2 ≈ −0.32, t3 ≈ 0.11,
µ ≈ −1.1, and the renormalized Fermi surface looks very
similar to Fig. 1. From the converged result for Gij , the
expectation values ∆ij and ∆ih

ij are obtained as described
in Sec. II. In Fig. 2, we plot the result for the nearest
neighbor bonds in x− and y−direction as obtained from
∆ih
ij . This shows how an ordering pattern spontaneously

appears and is stabilized after 30 iterations.
The properties of the ordering pattern can either be

identified directly from the real space representation in
Fig. 2 or well understood by the decomposition into the
basis function, Eq. (18). The largest coefficients are
shown in Fig. 3. For simplicity, we only show the co-
efficients for a series of momenta Q = (Qx, Qy) in the
triangle, Qx ∈ [0, π], Qy ∈ [0, Qx], labeled by nQ.
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FIG. 2: (Color online) Results for the static model. We plot the nearest neighbor bond values of ∆ih
ij on a real space lattice

initialized by a random field after 5 iterations (left) and spontaneously ordered results after 30 iterations (right).

FIG. 3: (Color online) Plot of the largest an(Q) for different
basis functions (n = 1, . . . , 13). The values ofQ are labeled by
nQ, where nQ = 25 corresponds to Q = Q0(1, 1), with Q0 =
3/8 in units π/a. This value agrees well with the diagonal
distance between hot spots.

There is a clear maximum for a3 for nQ = 25 which
corresponds to Q = Q0(1, 1), with Q0 = 3/8 = 0.375
in units π/a. This value agrees well with the diagonal
distance between the hot spots on the Fermi surface, and
the ordering form factor is of the d-wave form, n = 3,
f3(k) = cos kx− cos ky (see Table I in the appendix). As
mentioned we only show the result for a restricted set of
Q vectors. The order in Fig. 1 is really a superposition
of ±(Qx, Qy), ±(Qx,−Qy) wave vectors. We conclude
that our real space Eliashberg calculations are consistent
with earlier work based on an instability analysis.28 The
k-space resolution for the finite size lattice is sufficient
to resolve these features and the relation to the Fermi
surface. The dominant instability is realized here as an
ordered solution.

FIG. 4: (Color online) Plot of interacting Fermi surface in
the dynamic model with weak coupling, g = 1.0. We plot the
spectral density (ρk(ω = 0)) (left) and renormalized band
structure (log ρk(ω) for clarity) for k along the trajectory
Γ → M → X → Γ (right). The dashed line gives the non-
interacting dispersion. The parameter values are given in the
text.

IV. RESULTS FOR DYNAMIC MODEL

A. Homogeneous situation

As discussed in the last section, in the static limit self-
energy corrections only lead to a renormalization of the
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FIG. 5: (Color online) Plot of interacting Fermi surface (ρk(ω = 0)) at strong coupling g = 5.0 for T = 0.1, 0.05, 0.02 (left to
right.)

hoppings, but do not lead to any damping of quasiparti-
cles. For a dynamic interaction such as in Eq. (6) the
effect is different.52–55 In fact, this is one of the ma-
jor aspects of our work to include those effects on the
single particle level. Scattering is particularly strong at
the hot spots such that quasi-particle excitations can be-
come suppressed. Here, we would like to investigate the
effect of this on the charge order instabilities. The ba-
sic questions are: How much is the diagonal order sup-
pressed by the self-energy effects? Can the axial order
become favorable over the diagonal one? In order to
get some insights about the effects on the Fermi surface,
we first consider the homogeneous situation and solve
the Eliashberg equations self-consistently on the real fre-
quency axis, Eq. (14). For clarity we first show results
for weak interaction g = 1. The other model parameters
are t01 = 1, t02 = −0.32, t03 = 0.11, µ0 = −1.1, ωsf = 0.5,
avs = 1, Γ = 0.5, and T = 0.05. The result for the in-
teracting Fermi surface, ρk(ω = 0), for one part of the
Brillouin zone is shown in Fig. 4 (left).

A broadening value η = 0.08 was used to enhance clar-
ity for the given k-space resolution. Not surprisingly,
the result resembles very much the non-interacting Fermi
surface. On the right in Fig. 4 we also display ρk(ω)
for k = (kx, ky) on the trajectory (0, 0) → (π, π) →
(0, π) → (0, 0) (Γ → M → X → Γ), which gives insights
on the damping and renormalized band structure. We
have added the non-interacting dispersion as a dashed
line. Here again the result is almost identical with the
non-interacting case.

We also show the results for a stronger interacting case
g = 5 in Fig. 5, where µ = −1 and we show the temper-
atures T = 0.1, 0.05, 0.02. Here, η = 0.05 was chosen in
the analytical continuation for the broadening.

As we can see in Fig. 5 the thermal part of the spin
fluctuation spectrum can give considerable effects on
the electronic spectrum and give features resemblant of
Fermi arcs, which have been observed in experiments.56
The effect is more pronounced for larger temperature
as can also be deduced from Eq. (14). Hence, spec-
tral weight is suppressed close to the hot spots where
the scattering with the spin-fluctuations is particularly
strong. Stronger arc-like features can be realized for
larger values of the correlation length ξ, i.e., smaller val-

ues of Γ. It is worth noting that non-selfconsistent cal-
culations also give stronger arc features. However, self-
consistent Eliashberg equations generically do not pro-
duce real pseudogap features.50,54,55

In Fig. 6 we show for T = 0.05 the renormalized band
structure. We find effects of Fermi velocity renormaliza-
tion and redistribution of spectral weight. As we will
discuss below this has consequences for the instability
analysis and realization of ordered phases.

FIG. 6: (Color online) Plot of renormalized band structure
(log ρk(ω) for clarity) at strong coupling g = 5.0. Other model
parameter as described in the text.

B. Spontaneous order

Within a similar procedure as described in Sec. III,
we have done extensive calculations to check for charge
order solution for the model with the dynamic interac-
tion. The calculations were done for a real space lattice
with N1 = 32 and a grid of Matsubara frequency large
enough to capture relevant features. A random field hij
is used for initialization. In the appendix, we describe
some results which were obtained from calculations with
field induced order. For most calculations we used the
hopping parameters t01 = 1, t02 = −0.32, and t03 = 0.11.
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FIG. 7: (Color online) Nearest neighbor bond values of ∆ih
ij on real space lattice initialized by a random field after 5 iterations

(left) and spontaneously ordered results after 45 iterations (right). Model parameter as described in the text.

By varying µ0, we analyzed parameters with filling fac-
tors n ∼ 0.8−0.95 and temperatures down to T = 0.02 in
units of t01. The parameters of the spin fluctuation spec-
trum where varied in a regime ωsf ∼ 0.2−1, and Γ = 1/2
and Γ = 1/4 was analyzed; we usually kept avs = aχ = 1.
We also scanned a range of coupling strengths g.

Generally, we found the appearance of the charge or-
der to be strongly suppressed in a scheme with dynamic
spin fluctuations as compared to the static case. One
reason is the finite extent of the interaction in frequency
space in contrast to the static case. Another reason is the
single-particle renormalization effect of the self-energy.
Charge order enters via an inhomogeneous modulation
of Σij(iωn) in the self-consistent calculation, which ap-
pears on top of generic variation of Σij(iωn) as function
of ri − rj . This ordering tendency should be enhanced
with the coupling g. However, the self-energy also has
an effect to damp and renormalize single particle excita-
tion, which leads to the opposite effect of a suppression of
the order. This is a generic feature, which also appears
for other Fermi surface instabilities, such as supercon-
ductivity. As a consequence for many of the probed pa-
rameters no charge ordered solution could be stabilized,
even though some ordering features appear in intermedi-
ate values of the iterations. For instance, for T = 0.05
we did not find spontaneously ordered solutions for any
of the parameters tested.

In Fig. 7, we present the result of a calculation at
T = 0.02, where spontaneous charge order appears in
the self-consistent Eliashberg equations. The param-
eters are ωsf = 0.5, Γ = 0.5, with a coupling g =
5. Since χ(ri − rj , iωm) is fairly small this coupling
strength is not as large as it might appear; for instance,
the nearest neighbor self-energy reaches maximal values
|ReΣ(ri, ri + x̂, iωn)| ∼ 0.2 for these parameters. We
show a result for µ0 = −1, which correspond to a filling
of n ' 0.92 for the interacting system. The calculations
are again initialized by a random field and the sponta-

neous ordering pattern visible after 45 iterations is seen
on the right in Fig. 7. The corresponding Fourier analysis
is displayed in Fig. 8.

FIG. 8: (Color online) Plot of the largest an(Q) for different
basis functions (n = 1, . . . , 13). The values of Q are label by
nQ, where nQ = 25 corresponds to Q = Q0(1, 1), with Q0 =
3/8 in units π/a. This value agrees well with the diagonal
distance between hot spots.

As in the static case we find a dominant d-form fac-
tor, n = 3 and a diagonal wave vector with magnitude
Q = Q0(1, 1), with Q0 = 3/8. There is also a minor
component for n = 7, where f7(k) = cos(2kx)−cos(2ky).
The wave vector matches the connection of the hot spots
of the interacting Fermi surface well (as seen in Fig. 5).
The diagonal order is dominant even though the spectral
density is substantially suppressed near the hot spots.
For different filling factors, we also find diagonal order,
whenever a hot spot is present in the interacting Fermi
surface, and the length of the wave vector changes ac-
cordingly.

In situations where there are no hot spots visible in the
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interacting Fermi surface, for instance, when the filling
is lowered such the Fermi surface becomes closed around
(0, 0), we found solutions with ordering tendencies with
wave vector along the axis. The dominant form factor is
n = 3, the d-form factor. For filling T = 0.02, n ∼ 0.8 the
wave vector Q = Q0(1, 0), with Q0 = 1/2 can be found,
which is very similar to the experimental wave length
λ ∼ 4. The order is, however, quite small and not well
established. It is possible that lower temperatures and
additional ingredients are needed to stabilize the order
well.

V. DISCUSSION AND CONCLUSIONS

Based on a model of fermions on a square lattice in-
teracting with dynamic antiferromagnetic interactions,
we have analyzed general charge order solutions. We
used self-consistent Eliashberg equations to compute self-
energies and spectral functions. We showed that the
spectral functions can be substantially modified in the
interacting theory. In particular, structures resembling
Fermi arcs can appear due to the strong scattering
around the hot spots. However, no real pseudogap fea-
tures are generated by self-consistent Eliashberg equa-
tions.

The appearance of charge order is studied based on
a real space version of the Eliashberg equations, which
are initialized by a random field. We only found spon-
taneously ordered solutions at low temperature, e.g.,
T = 0.02t1, and for relatively large interaction strengths.
Generically, the charge order possesses a d-form factor
and a diagonal wave vector related to the hot spots of
the interacting Fermi surface. This result is in line with a
number of previous studies,2,28,29,34,37–39 many of which
however did not include dynamic interactions and self-
energy effects, and studied instabilities from the normal
state rather than ordered solutions. One of our main
results is that the suppression of spectral weight at the
hot spots by the dynamic model is not large enough to
alter the behavior of the charge order. For large dopings,
when the interacting Fermi surface has no hot spots, we
found tendencies towards order with wave vector along
the axis. This finding is in line with studies suppress-
ing the hot spots, for instance, by pocket formation or
including a phenomenological pseudogap.40–43,48

In relation to the observation of charge order in the
cuprate superconductors, we find a number of features
consistent with the experiments. These include the dom-
inant d-form factor and the behavior of Q with dop-
ing. The direction of the wave vector is, however, not
correctly reproduced. This is likely related to the fact
that the self-consistent Eliashberg theory does not in-
clude strong enough pseudogap features, and therefore
still supports an instability related to the hot spot. As
such, the present approach does not provide a compre-
hensive explanation for the experimental findings. Never-
theless, with suitable modifications our real space Eliash-

n fn(k)

1 1
2 cos kx + cos ky

3 cos kx − cos ky

4 sin kx + sin ky

5 sin kx − sin ky

6 cos(2kx) + cos(2ky)

7 cos(2kx)− cos(2ky)

8 sin(2kx) + sin(2ky)

9 sin(2kx)− sin(2ky)

10 2 cos kx cos ky

11 2 sin kx sin ky

12 2 sin kx cos ky

13 2 cos kx sin ky

TABLE I: Relevant basis functions

berg approach might useful for future applications, as it
can easily be extended to include superconductivity, mag-
netic field effects, impurity effects, coupling to phonons
and spin order.
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Appendix

1. Basis functions

Here we collect the basis functions which were used for
the charge order analysis. We focused on the 13 basis
functions fn(k) as shown in Table I. The corresponding
function of the real space representation fn(r) can be
easily calculated analytically from Eq. (17). They include
form factors up to next-nearest neighbors. Higher order
functions could be in principle be considered but they do
not play a role in our analysis. These functions fn(r) are
used to compute the coefficients an(Q) in Eq. (18).

2. Field induced order

Here, we briefly summarize some results from a com-
plementary analysis to Sec. IV. We studied charge or-
der when a small finite field is present in the self-
consistent calculations. We focused on the situation with
d-form factor and assumed φ3(Q) = φ3(−Q). We chose



8

φ3(Q) = 0.001 keeping the field finite in (9) during the
self-consistent calculation and scanned over various vec-
tors Q. A response function characteristic of the suscep-
tility to charge order can be defined as χ(n,Q) = δan(Q)

δφn(Q) .
First of all we can consider the situation for g = 0, such

that Σij = 0. Clearly there cannot be spontaneous order
in this situation, however, the susceptibility for different
wave vectors can be analyzed. We find that the field
induced order as measured by χ0(3,Q) is strongest for
Qd = (Q0, Q0), where Q0 approximately connects the
hot spots, and there is also a local maximum along the
Qx axis, for Qa = (Q0, 0). Within the real space calcula-
tions with N1 = 32 one finds χ0(3,Qa)/χ0(3,Qd) ' 0.78.
Hence the diagonal order is favored. These results are
clearly expected from the instability analysis based on
unrenormalized fermions28 where these quantities can be
computed from the corresponding fermionic bubbles and
form factors.

For finite g the self-energy effects play an important
role. As discussed the ordering tendency is induced

form an inhomogeneous contribution of the real part of
Σij(iωn). In contrast to the static case Σij(iωn)→ 0 for
large iωn so this is only a contribution at small ωn. How-
ever, the self-energy also produces other effects, such as
renormalization of the band and suppression and shift
of spectral weight as already discussed in the section
on the homogeneous calculations. These effects mostly
lead to a reduction of the ordering tendency. This is in
fact common for weak coupling instabilities which are
strongest without self-energy corrections. Hence, the
combination of these effects means that the field induced
ordering susceptility is not necessarily enhanced for finite
g. In our analysis for different parameters and interac-
tions we found that typically χ(3,Qd) with the diago-
nal wave-vector is largest and can be enhanced over the
non-interacting value. For the parameters studied diag-
onal response was found to be larger than the χ(3,Qa),
i.e., instabilities along the axial direction, consistent with
what has been discussed in the main text.
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