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Abstract

The compound SmB6 is a Kondo Insulator, where the lowest-energy bulk electronic excitations

are spin-excitons. It also has surface states that are subjected to strong spin-orbit coupling. It has

been suggested that SmB6 is also a topological insulator. Here we show that, despite the absence

of time-reversal symmetry breaking and the presence of strong spin-orbit coupling, the chiral spin

texture of the Weyl cone is not completely protected. In particular, we show that the spin-exciton

mediated scattering produces features in the surface electronic spectrum at energies separated from

the surface Fermi energy by the spin-exciton energy. Despite the features being far removed from

the surface Fermi energy, they are extremely temperature dependent. The temperature variation

occurs over a characteristic scale determined by the dispersion of the spin-exciton. The structures

may be observed by electron spectroscopy at low temperatures.

PACS numbers: 78.47. +p, 75.50. Ee, 71.27. +a
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I. INTRODUCTION

Heavy-fermion semiconductors, also known as Kondo insulators, are a family of semicon-

ductors with extremely narrow gaps that are subjected to strong electron correlations1,2.

The compounds Ce3Bi4Pt3, YbB12 and SmB6 can be considered as archetypal members of

this class of materials. The Ce-based semiconductors have average occupancies of the atomic

4f electronic shell which are close to unity and, therefore, are close to the Kondo limit. The

Ce 4f states are primarily linear superpositions of the non-magnetic 4f0 and the moment

carrying 4f1 states, whereas the Yb-based compounds can be considered as the electron-hole

symmetric partners of Ce involving the 4f14 and 4f13 configurations. The Sm-based com-

pound SmB6 is strongly mixed valent and involves the non-magnetic 4f6 and the magnetic

4f5 configurations that have small term splittings3–5. The properties of the heavy-fermion

semiconducting materials have been described by the Periodic Anderson Model in which the

Fermi level resides within the hybridization gap6. The strong correlations of Ce or Yb have

been incorporated using the slave boson technique appropriate to configurations involving

only one 4f electron or one 4f hole.

Since the materials have strong correlations, like most heavy-fermions systems, they can

be expected to be close to an instability to a magnetic phase7. Therefore, these narrow-

gap semiconductors should show magnetic fluctuations that are precursors of transitions to

magnetic states8–10. This is analogous to the expectation that either paramagnons or an-

tiparamagnons form in paramagnetic metals as precursors to instabilities to ferromagnetic

or antiferromagnetic states, respectively. The spin-exciton excitations were first predicted

for Ce-based compounds, however, they were observed via inelastic neutron scattering ex-

periments on SmB6 by Alekseev et al.11,12 and on YbB12 by Bouvet et al.13,14. Since the

spin-exciton excitations are not seen in the optical conductivity15, the excitations are not

charged and are purely magnetic. The relation of the spin-exciton excitations to quantum

criticality has recently been strengthened by their observation in a heavy-fermion semimetal

CeFe2Al10
16,17, which is intimately related to the antiferromagnetic system CeOs2Al10

18,19.

For SmB6, the hybridization gap is of the order of 20 meV, whereas the spin-exciton dis-

persion relation is in the gap and has a minimum value of about 12 meV at the R point,

2π
a
(1
2
, 1
2
, 1
2
), on the Brillouin zone boundary. Recently, Fuhrman et al.20 performed an exten-
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sive experimental investigation of the spin-excitons of SmB6 and found that their dispersion

relation has the same periodicity as the Brillouin zone, indicating that the spin-excitons are

coherent. Furthermore, they found subsiduary minima in the dispersion relation at the X

point 2π
a
(1
2
, 0, 0). Fuhrman et al. found that the experimentally observed excitations are

in excellent agreement with the spin-excitons of an Anderson Lattice Model that has been

generalized to include direct 4f to 4f hopping processes.
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FIG. 1. (Color on line) A sketch of a Weyl cone (blue) over the surface Brillouin zone (red) of

SmB6. The spin texture is denoted by the arrows. The red circle at ω = 0 depicts the surface

Fermi-surface.

Since the resistivity increases with diminishing temperature but plateaus at low tem-

peratures, it has been suggested that SmB6 has conducting surface states21–28. Like the 4f

electrons of all lanthanide elements, the Sm 4f electrons are subject to strong spin-orbit cou-

pling. The surface states are expected to experience a strong Rashba spin-orbit interaction

that would lead to the direction of the spins locking to the momenta of the Weyl cones, as

sketched in fig.(1). Such spin textures have been observed in non-correlated topological insu-

lators, such as Bi2Se3 or Bi1−xSbx
29–31, and also in SmB6

32. It has been suggested that SmB6

is a topological Kondo insulator33–36. Topological states can result in dissipationless trans-

port and are protected from low-order k̂ → − k̂ scattering by non-magnetic impurities37–39.

However, scattering by magnetic impurities40 may result in spin-flip scattering, which can

result in the reversal of momentum. Apart from the phonons, the spin-exciton excitations
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are expected to be the lowest energy bulk excitations of SmB6. Here, we shall investigate the

effect of the scattering of the surface states from the spin-flip scattering of bulk spin-excitons

and examine their effect on the states of the Weyl cone.

II. THE SURFACE STATES

We shall describe the surface states by the Rashba Hamiltonian41

HS−O = c êz .

(

p ∧ σ

)

, (1)

where c will be the surface Fermi-velocity. Like the spin-orbit coupling for three-dimensional

semiconductors, the Rashba coupling for surface states is inversely proportional to the gap.

Hence, since the gap ∆ in the heavy-fermion semiconductors is extremely small (of the order

of 10’s of meVs), the Rashba interaction may be expected to be quite large. The Rashba

description can be thought of as originating from the Dirac equation in the massless limit,

which reduces to two Weyl equations, each of which, separately, breaks inversion symmetry.

We shall use the terminology Weyl cone and Weyl point instead of the commonly used

terms Dirac cone and Dirac point, since the Dirac cone is gapped except in the massless

limit. Also the Dirac energy-eigenvalues are two-fold degenerate corresponding to the two

possible values of the helicity, whereas the Weyl equation energy-eigenvalues are singly-

degenerate and, therefore, correspond to unique spin textures. The Rashba Hamiltonian

can be considered as the reduction of the Hamiltonian of the Weyl equation
(

i
~

c

∂

∂t
− σ . p

)

ψ = 0 (2)

to two dimensions. This reduction is achieved via the substitution

p → êz ∧ p , (3)

which eliminates pz. The eigenstates of the Rashba Hamiltonian forms a Weyl cone which

has a chiral spin texture. The eigenstates are found as

φτ,k(r) =
1√
2





−τ
ky−ikx

|k|



 exp

[

− i(ωt− k.r)

]

, (4)

where the energy eigenvalues are Eτ (k) = τ ~ c |k| and where τ is the chiral index τ = ±1.

The energy dispersion relations forms a Weyl cone with a vertex at the Weyl point. If
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the Fermi level is at an energy other than the Weyl point, one finds a circular surface

Fermi-surface ring. The spinorial forms of the eigenstates show that the spin directions

reside within the plane of the surface and are locked perpendicular to the directions of the

momenta.

In the presence of an applied magnetic field H , the spin texture is modified. The external

field modifies the dispersion relation is modified to

Eτ (k) = τ
√

µ2
BH

2
z + (c~ky + µBHx)2 + (c~kx + µBHy)2 . (5)

The presence of a magnetic field, aligned with the normal of the surface, gaps the disper-

sion relation at the Weyl point by introducing a mass term. The gapping of the cone is

expected, since the field breaks time-reversal symmetry. For partly-filled bands where the

Fermi energy does not either reside in the gap or at the Weyl point, the components of

the field perpendicular to the normal of the surface may lead to persistent surface currents

circulating round the sample.

Photoemission experiments reveal that there are three Weyl cones in SmB6 which are

centered on the X and the Γ points of the surface Brillouin zone25,42–44. The experiments

show that the surface Fermi-surface rings, respectively, have radii of 0.29 and 0.09 Å−1.

Therefore, the Fermi energy does not coincide with the Weyl points. Since the surface

Fermi-surface velocities are estimated to be of the order of 300 ∼ 220 meV Å42,43, the

extrapolation of the dispersion relations leads to the estimate that the Weyl points reside

between 65 and 23 meV below the Fermi energy. Both ARPES and Quantum Oscillation

experiments45 indicate that the surface Fermi-surface quasiparticles are light, but theories

predict heavy quasiparticles33–36,46. This discrepancy could be caused by the neglect of the

surface orientation dependence, termination and surface reconstruction47 in tight-binding

based quasiparticle theories. This discrepancy could also result from a many-body surface

instability48,49, such as a Kondo breakdown happening at the surface50 where the unbind-

ing of the Kondo singlets gives rise to light quasiparticles. Nevertheless, the tight-binding

theories respect the symmetry and topology of the surface states33,35,46. In what follows, we

shall consider a single Weyl cone and we shall choose c, the surface Fermi-velocity, such that

the surface dispersion relation joins the bands at the surface Brillouin zone boundary, so
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c/a = ∆
4

√
2
. Spin-polarized angle resolved photoemission experiments32 show spin textures

in which there is an polarization asymmetry in intensity between the lobes at the +X and

-X points. The spin texture is a consequence of the Rashba spin-orbit coupling51–53.

III. THE BULK SPIN-EXCITONS

Because the system is both cubic and paramagnetic, the bulk magnetic susceptibility is

isotropic in spin space and is given in the RPA by the expression

χα,α(q, ω) =
χ(0)(q, ω)

1 − J χ(0)(q, ω)
, (6)

where J is the effective antiferromagnetic exchange interaction54, and χ(0)(q, ω) is the f

electron quasiparticle susceptibility, shown in fig.(2) for the electron-hole symmetric case

Ef = 0, hybridization gap of V = 0.5 t and a tight-binding conduction band of width

6 t. Due to time-reversal invariance, the real part of χ(0)(q, ω) is an even function of ω,

and the imaginary part is an odd function. The imaginary part of the zero temperature

susceptibility at Q = 2π
a
(1
2
, 1
2
, 1
2
) is zero within the hybridization gap (∆ > |ω|). For

the parameters chosen here, the gap has a magnitude of ∆ ∼ 2 V 2/ ( 3 t ) ∼ t / 6.

The corresponding real part of the susceptibility has a local minimum at ω = 0, and has

pronounced peaks near the edges of the particle-hole continuum (|ω| ∼ ∆). As q is varied

away from Q, the magnitude of of the real part of the susceptibility near the local minimum

at ω = 0 decreases and the range of ω over which the imaginary part of χ0 is zero increases.

The static, ω = 0, magnetic response function diverges at the wavevector Q when

1 = J χ(0)(Q, 0) , (7)

If χ0(q, 0) is maximum at wave vector Q, then eqn.(7) is the RPA criterion for the minimum

value of J for the paramagnetic state to become unstable to a spin density wave state. That

is, the resulting divergence of the static susceptibility χα,α(Q, 0) signals the instability of

the system to a static spin-density wave state with wavevector Q. Since the real part of

χ0(q, 0) is maximized for wavevectors at the R point (1
2
, 1
2
, 1
2
), the paramagnetic state of the

half-filled Anderson Lattice Model shows a tendency to become unstable to a Neel ordered
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FIG. 2. (Color on line) The dimensionless real (blue lines) and imaginary (red decorated lines)

parts of the dynamic quasiparticle susceptibility χ(0)(q, ω) of the Anderson Lattice Model for

various wavevectors q. Here, t is the conduction band tight-binding hopping matrix element and

the chemical potential µ is within the hybridization gap. The wavevector q is directed along the

body-diagonal and the q values are shown in the legend.

state.

The dynamic magnetic response function diverges at the frequencies ωq given by the

solutions of

1 = J χ(0)(q, ωq) (8)

which, since the imaginary part of χ(0)(q, ωq) is required to vanish, must be outside the

electron-hole continuum. The frequencies ωq which satisfy eqn.(8) can be obtained graph-

ically from fig.(2). At each wavevector, the frequency ωq is given by the ω value at which

the line J−1 intersects with the real part of χ0(q, ω) shown by the blue line and at which the

imaginary part of the susceptibility (red decorated lines) is zero. At these real frequencies,

the system exhibits persistent staggered magnetic fluctuations, even in the absence of an

external time-dependent perturbation. One notes that at a quantum critical point, where

eqn.(7) is satisfied, eqn.(8) is automatically satisfies at ωQ = 0 which signals the formation

of the Goldstone modes of the magnetically ordered state.

The spectrum of magnetic excitations is given by the imaginary part of the susceptibility.

Within the gap, the imaginary part of the susceptibility χα,α(q, ω) has a delta function
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contribution, which is given by

ℑm χα,α(q, ω) =
1

J
sign(ω) π δ

(

1 − J χ(0)(q, ω)

)

(9)

and reduces to

ℑm χα,α(q, ω) =
sign(ω)

Zq

π δ( ω − ωq ) . (10)

The dimensionless factor Zq is defined as a derivative with respect to ω

Zq =

∣

∣

∣

∣

J2

(

∂

∂ω
χ(0)(q, ω)

)∣

∣

∣

∣

ω=ωq

∣

∣

∣

∣

(11)

evaluated at ωq. The spin-exciton is a magnetic mode at the frequency ωq in the gap of the

two-particle excitation spectrum. The spin-exciton is undamped since there is no available

channel for decay into electron-hole pairs.
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FIG. 3. (Color on line) The dimensionless spin-exciton frequency ωq (blue lines) and its intensity

Z−1
q (red lines) for various wavevectors q and two different values of the exchange interaction J .

For the value J = 0.5t, the spin-exciton energy shows a pronounced minimum at the R point of

the Brillouin zone, at which the intensity of the mode approaches unity. For the smaller value of

J (J = 0.36t), the spin-exciton frequencies are spread over a narrower range and the intensity of

the mode shows a weaker dependence on the wavevector.

For the parameters used in fig.(2), the spin-exciton is expected to exist in the paramag-

netic semiconductor for values of J in the range 3.2 ∆ > J > 1.5 ∆, since J is smaller than
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the critical value required for the Neel instability determined by eqn.(7) but large enough to

ensure a solution of eqn.(8). For this range of J values, the spin-exciton has a minimum in

its dispersion relation at the R point, as is the case for SmB6. As q is varied away from the R

point, the spin-exciton excitation energy increases and eventually merges with the particle-

hole continuum, where the mode exists as an overdamped resonance or anti-paramagnon.

Hence, the spin-exciton in SmB6 can be regarded as a precursor excitation for an antiferro-

magnetic instability that occurs at a nearby quantum critical point in parameter phase space.

Near the quantum critical point, the values of ωq are expected to be low. For small

values of ωq, the factor Zq varies linearly with ωq since ℜe χ0(q, ω) varies quadratically near

ω = 0. Thus, as the spin-exciton mode softens when quantum criticality is approached,

its intensity Z−1
q grows. The dependence of Zq on ωq (shown in fig.(3)) is responsible for

the peaking of the intensity of the spin-exciton in SmB6 for momentum transfers q near the

points (1
2
, 1
2
, 1
2
) and (1

2
, 0, 0) where the dispersion relation has minima.

IV. COUPLING OF BULK SPIN-EXCITONS TO SURFACE STATES

The bulk spin-exciton excitations are assumed to couple to the surface states via a Heisen-

berg exchange interaction

Ĥint = − J ′

N

∑

q,k,σ,σ′

S−q . sσ,σ′ c
†
k+q,σ′ ck,σ (12)

where s is the vector spin operator for the surface electronic states and S is the spin-operator

which describes the spin excitations of the bulk material. The coupling of the bulk magnetic

excitations with the surface electrons has the strength J ′. The ratio of the surface to bulk

interaction strengths, J ′/J , can be quite sizeable, since the characteristic penetration depth

of surface states into the bulk is predicted to be of the order of a lattice constant36,55. Using

the dispersion relation deduced from photoemission experiments, one estimates that the

ratio as
J ′

J
∼ exp

[

− 2
∆ a

c

]

∼ 0.576 . (13)

Recent photoemission experiments provide independent evidence that the surface states

may penetrate several lattice spacings into the bulk56.
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The transformation between the decoupled spin and momentum eigenstates and the

Rashba energy eigenstates is given by

φ↑,k(r) =
1√
2

(

φ−,k(r) − φ+,k(r)

)

φ↓,k(r) =
1√
2

(

φ−,k(r) + φ+,k(r)

)

exp[iϕk] (14)

where the phase factor is given by

exp[iϕk] =

(

ky + ikx
|k|

)

. (15)

The phase ϕk is simply related to the spin orientation of an electron with momentum k.

When expressed in terms of the Rashba states, the interaction takes the form

Ĥint = +
J ′

4 N

∑

q,k,τ,τ ′

[

τ ′ exp[−iϕk+q] S
+
−q + τ S−

−q exp[+iϕk]

−
(

τ τ ′ − exp[−i(ϕk+q − ϕk)]

)

Sz
−q

]

c†k+q,τ ck,τ ′ . (16)

The interaction includes a coupling between the states of the upper and lower parts of the

Weyl cone. The coherence factor in front of the Sz
−q term depends on the relative orientation

of the initial and final spin state.

An electron in a surface state with momentum k has a self energy due to the emission

and absorption of the spin-exciton excitations, which is determined to be

Στ (k, ω) =
J ′2

24 N

∑

q,α,τ ′

[

3− ττ ′ cos

(

ϕk−q − ϕk

)] ∫ ∞

0

dω′
(ℑm χα,α(q, ω′)

π

)

×
[ 1− fτ ′,k−q

‖
+N(ω′)

ω + µ− Eτ ′(k − q‖)− ω′ + iη
+

fτ ′,k−q
‖
+N(ω′)

ω + µ− Eτ ′(k − q‖) + ω′ − iη

]

, (17)

where we have assumed that the component of q perpendicular to the surface is not con-

served. The above expression is related to the self energy due to spin fluctuations in para-

magnetic materials close to quantum critical points. The contribution of the in-gap spin-

exciton can be simply evaluated by using eqn.(10) and integrating over ω′. This results in

the expression

Στ (k, ω) =
J ′2

8 N

∑

q,τ ′

1

Zq

[

3− ττ ′ cos

(

ϕk−q − ϕk

)]

×
[ 1− fτ ′,k−q

‖
+N(ωq)

ω + µ− Eτ ′(k − q‖)− ωq + iη
+

fτ ′,k−q
‖
+N(ωq)

ω + µ− Eτ ′(k − q‖) + ωq − iη

]

.(18)
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Hence, the self energy has an explicit dependence on the square of the ratios of the surface

to bulk exchange interactions.
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FIG. 4. (Color on line) The frequency dependence of the real (Left Panel) and imaginary parts

(Right Panel) of the self energy (in units of meV) for a system close to a bulk Quantum Critical

Point, for various wavevectors. The wavevectors k are along the diagonal of the surface Brillouin

zone and the values of the components are given in the legend in units of π
a
.

We have evaluated the surface one-electron self energy for a system in which the bulk is

close to a quantum critical point. The results are shown in fig.(4) for a spin-exciton with a

minimum excitation energy of ω0 = 2.5 meV, µ = 2.0 meV, ∆ = 20 meV, (J ′/J)2 = π
600

,

and for wavevectors along the diagonal of the surface Brillouin zone. It is seen that the real

part of the self energy has a kink near ω = − ω0 at which point the imaginary part rapidly

increases with decreasing frequency. The self energy has a mild k dependence, reflecting a

nearly nesting condition, and results in hot patches in the near Fermi energy portions of the

Weyl cone.

In the case of a larger value of the minimum spin-exciton energy ω0 = 5.0 meV, the

surface one-electron self energy is almost independent of q. The results are shown in fig.(5)

for µ = 2.0 meV, ∆ = 20 meV, (J ′/J)2 = π
600

, and for wavevectors along the diagonal of

the surface Brillouin zone. It is seen that the real part of the self energy has a kink near

ω = − ω0 at which point the imaginary part abruptly increases with decreasing frequency.

One can find an approximate analytic expression for the self energy of the surface states

in the limit of a completely dispersionless spin-exciton by using a continuum model for the
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FIG. 6. (Color on line) The real (Left Panel) and imaginary parts (Right Panel) of the self energy

at various temperatures (in units of meV) calculated for a flat spin-exciton dispersion relation of

ω0 = 5 meV, and the chemical potential is given by µ = 2 meV. The imaginary parts are denoted

by the red lines. The imaginary part of the self energy is zero in the frequency between +ω0 and

−ω0. The large features in the real part of the self energy at the edges of the frequency range are

due to the proximity of the band edges of the cone states. The cusps in the real part of the self

energy at ω = ±ω0 are seen to rapidly wash out as T increases.

density of states per surface atom for the Weyl cone. The density of surface states ρ0(ǫ), is

given by

ρ0(ǫ) =
ǫ a2

2 π c2

[

2 Θ(ǫ) − Θ(ǫ− ∆

2
) − Θ(ǫ+

∆

2
)

]

. (19)

One finds that the real and imaginary parts of the self energies are independent of k and,
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taking x± = ω + µ± ω0, can be evaluated at T = 0 as

ℜe Στ (ω) =

(

3 J ′2 a2

16 π c2 Z

) [

x− ln

∣

∣

∣

∣

ω − ω0

x− − ∆
2

∣

∣

∣

∣

− x+ ln

∣

∣

∣

∣

ω + ω0

x+

∣

∣

∣

∣

+ x+ ln

∣

∣

∣

∣

x+

x+ + ∆
2

∣

∣

∣

∣

]

and

ℑm Στ (ω) =

(

3 π J ′2 a2

16 π c2 Z

) [

− x−

(

Θ(
∆

2
− x−) − Θ(ω0 − ω)

)

+ x+

(

Θ(x+) − Θ(ω + ω0)

)

−x+
(

Θ(
∆

2
+ x+) − Θ(x+)

) ]

. (20)

It should be noted that the self-energy is proportional to the inverse square of the surface

Fermi-surface velocity. As seen in fig.(6), the resulting quasiparticle scattering rate jumps

abruptly at the excitation energy ω = −ω0. The magnitude of the jump is determined by

the surface density of states at the Fermi energy. The abruptness of the jump is due to our

neglect of the dispersion ωd in the spin-exciton spectrum, and, as seen in fig.(5), for finite

ωd the rapid increase will take place over an energy range given by by ωd. The real part of

the self energy shows a sharp cusp in the vicinity of −ω0.

The electronic spectrum of the surface states is given in terms of the self energy by

Aτ (k, ω) = ±1

π

ℑm Στ (k, ω)

[ω + µ− Eτ (k)− ℜe Στ (k, ω) ]2 + [ℑm Στ (k, ω)]2
. (21)

The resulting surface quasiparticle density of states is shown in fig.(7), which shows a V-

like variation characteristic of the Weyl cone where the density of states goes to zero at

the energy of the vertex. However, at the spin-exciton energy, the V-like variation abruptly

ceases. The abrupt drop in the spectral density at - 5 meV is primarily due to the divergence

in the quasiparticle wave function renormalization

Z(ω) = 1 − ∂Σ(ω)

∂ω
(22)

that occurs at the cusp and is caused by resonant scattering with the spin-excitons. The

temperature variation of this feature is not characterized by ~ω0 but is due to the surface

electrons in the vicinity of the Fermi energy. The temperature scale is actually set by the

dispersion ωd of the spin-exciton mode.
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FIG. 7. (Color on line) The calculated angle integrated surface photoemission spectra at various

temperatures. The spectrum was calculated for the same parameters as used in fig.(6). The

density of states is calculated by assuming that, in addition to the self energy from the emission

and absorption of spin-exciton excitations, there is an infinitesimal concentration of magnetic

impurities. It is seen that distinct features near ω = ±ω0 rapidly disappear as T is increased.

V. DISCUSSION AND SUMMARY

The above theory predicts a temperature-dependent resonance in the one-electron spec-

trum at an energy of ~ ω0 below the Fermi energy. This temperature-dependent resonance

is easily distinguished from the predicted temperature-independent resonance produced by

strong elastic scattering from non-magnetic impurities39,57. The energy of the resonance

may be markedly reduced from the bulk value since, as has been noted by Alexandrov et

al.50, the characteristic Kondo temperature is expected to be reduced at the surface. In our

case, this corresponds to a reduction of the renormalized hybridization gap which pushes

the system towards a quantum critical point. This is very similar to the picture envisioned

by Doniach7 for three-dimensional heavy-fermion metals where, for a sufficiently large mag-

netic degeneracy, a reduction in the Kondo temperature may result in an antiferromagnetic

instability. For systems with the right symmetry, the antiferromagnetic phase may also

be topologically protected despite the breaking of time-reversal invariance58. Within our

picture, the instability would occur via a condensation of spin-excitons forming an antifer-

romagnetic surface state. Our picture is to be contrasted with the picture of Alexandrov

et al.50 in which the surface Kondo singlets would unbind at the quantum critical point.

14



Here, we examined the effect of the precritical antiferromagnetic fluctuations of the bulk

insulating state on the metallic surface states. Our analysis is predicated on the value of

J ′/J being sizeable, which implies that the surface states penetrate several unit cells into

the bulk. As argued in ref.36, a sizeable penetration depth requires that the ratio of c to

∆ be of the order of a. The required ratio is consistent with the large velocities inferred

from ARPES measurements42,43. However, the value of the ratio c/∆ is incompatible with

the surface-bulk correspondence which requires a smaller value of c and, therefore, produces

a smaller J ′/J ratio. However, the decrease in the ratio of J ′/J is partially offset by the

decrease in surface Fermi-velocity, since the self energy is explicitly proportional to a factor

of

(

J ′

J c

)2

. This trend is in accord with the observation of Triola et al.49 that heavy surface

quasiparticle masses promote many-body effects and instabilities.

In summary, the Weyl cones in a strongly correlated Kondo insulator, in which there are

low-energy spin-exciton excitations, are neither protected by symmetry nor by the spin-orbit

coupling despite the absence of broken time-reversal symmetry. We have found that at zero

temperature, the imaginary part of the self energy exhibits a non-analytic behavior at the

spin-exciton energy. The non-analytic behavior is a reflection of the non-analytic behavior

of the unrenormalized density of states of the Weyl cone. The non-analytic behavior of

the imaginary part of the self energy leads to an anomaly in the dispersion relation of the

surface quasiparticles states that is responsible for structure in the electronic spectrum.

Although this feature is at ω0 and is far removed from the surface Fermi energy, it is ex-

tremely temperature dependent and washes out rapidly as the temperature is increased.

The rapid temperature dependence originates from a virtual process that involves states

right at the surface Fermi energy, and the temperature scale is set by the dispersion in the

spin-exciton energy. The spin-exciton induced structure in the surface electronic spectrum

may be measured by high-resolution ARPES measurements or by tunneling experiments at

low temperatures.
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