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Abstract

Optical-pump terahertz-probe spectroscopy is used to investigate ultrafast far-infrared conduc-

tivity dynamics during the insulator-to-metal transition (IMT) in vanadium sesquioxide (V2O3).

The resultant conductivity increase occurs on a tens of ps timescale, exhibiting a strong dependence

on the initial temperature and fluence. We have identified a scaling of the conductivity dynamics

upon renormalizing the time axis with a simple power law (α ' 1/2) that depends solely on the

initial, final, and conductivity onset temperatures. Qualitative and quantitative considerations

indicate that the dynamics arise from nucleation and growth of the metallic phase which can be

described by the Avrami model. We show that the temporal scaling arises from spatial scaling of

the growth of the metallic volume fraction, highlighting the self-similar nature of the dynamics.

Our results illustrate the important role played by mesoscopic effects in phase transition dynamics.
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The variety of electronic, magnetic and structural phases exhibited by transition metal

oxides arise from a delicate balance between competing degrees-of-freedom whose contribu-

tion to the macroscopic properties is challenging to ascertain [1]. An increasingly successful

approach to this problem is that of time resolved experiments, where ultrafast excitation

and probing enables the determination of fundamental material timescales down to fem-

tosecond resolution [2–4]. Access to specific energy scales is made possible by ultrafast

sources ranging from terahertz (THz) to x-ray frequencies. Initial all-optical measurements

of electron-phonon relaxation in metals [5, 6] have paved the way to time resolved investiga-

tions of complex systems, from spins in magnetic materials [7–11] to superconducting gaps

[12, 13] or to surface charges in topological insulators [14].

To date, most time-resolved experiments in transition metal oxides, and in particular

vanadates, have focused on microscopic dynamics [15–22]. For example, fast sub-ps elec-

tronic and structural responses have been reported for vanadium dioxide [15–17, 19, 21, 22].

However, static measurements increasingly demonstrate that nano-to-meso scale phase co-

existence is crucial in determining the properties of complex materials, including cuprates,

manganites, and vanadates [23–27]. This naturally extends to dynamic investigations of the

phase coexistence stage, as done in VO2 [19, 22, 28, 29]. At a minimum, neglecting mesoscale

effects can lead to a misinterpretation of the dynamics. More importantly, as shown in this

work, mesoscale dynamics are of intrinsic interest from fundamental and applied perspec-

tives.

V2O3 is a paramagnetic metal with rhombohedral crystal symmetry [30–35] which under-

goes a first order phase transition to an antiferromagnetic insulating state at TIMT = 175K,

accompanied by a change to a monoclinic crystal structure [36]. In this work, we present

mesoscopic conductivity dynamics of V2O3 across the insulator-to-metal transition following

an optically initiated picosecond thermal quench into the metallic state. Importantly, we

identify scaling of the conductivity dynamics upon renormalizing the time axis with a simple

power law (α ' 1/2), dependent solely on experimentally determined temperatures. These

are the initial temperature Ti, final temperature, Tf (determined by Ti and the incident

fluence, Finc), and conductivity onset temperature, T0.5 = 160K (marking the onset of a

macroscopic THz conductivity which, in 2d, occurs at a volume fraction of f = 0.5). Fur-

ther, the temporal evolution of the conductivity is well fit by the Avrami model, consistent

with nucleation and growth of the metallic phase. This enables us to conclude that the
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temporal rescaling arises from spatial scaling of the metallic volume fraction. IMT conduc-

tivity dynamics are therefore dictated by a mesoscopic length scale, R(t), associated with

metallic phase domain coarsening. Our analysis further indicates that the metallic phase

grows ballistically, at the sound velocity.

95nm thick V2O3 films were grown in an ultrahigh purity Ar environment by rf magnetron

sputtering of a V2O3 target onto an r-plane (101̄2) sapphire substrate [34]. X-ray diffraction

characterization indicates near single crystal growth following the substrate orientation.

Transient conductivity measurements are performed using 1.5eV, 50fs pulses from a 3mJ

Ti:Sapph amplifier. Incident pump fluences, 0.5 to 4mJ/cm2, remain below the V2O3 damage

threshold [20]. THz pulses are nonlinearly generated in ZnTe, yielding a 0.1 − 2.5THz

bandwidth [37, 38].

We first present the V2O3 static conductivity characterization from THz time-domain

spectroscopy (i.e. the photoexcitation is blocked). The temperature dependent real part of

the Drude conductivity, σ(T ), is shown in Fig. 1(a). The IMT occurs at TIMT ' 175K, with

a narrow hysteresis associated with its first order nature [39]. As indicated in Fig. 1(a),

T0.5 = 160K corresponds to the temperature above which a finite THz conductivity arises.

Optical-pump THz-probe experiments were performed for several Ti (< T0.5) and Finc

values. Photoexcitation at 1.5eV initiates an ultrafast heat quench in the film, and excited

electrons relax via phonon emission in ∼ 1ps (from the two temperature model [5, 40–43]).

In other words, heating of the system occurs in ∼ 1ps, setting up a nonequilibrium situation

where the insulating phase is unstable, leading to metallic phase growth. Changes in the

transient THz conductivity ∆σ(t) thus reflect nucleation and growth dynamics. One of

the hallmarks of a photoinduced phase transition is the observation of a fluence threshold,

F th
inc, for the IMT onset, as shown in Fig. 1(b) as a function of Ti. F th

inc decreases with

increasing Ti, in line with what is observed in VO2 [19, 28]. F th
inc is derived from detailed

measurements of the conductivity dynamics, which are considered in greater detail in Fig. 2.

Figure 2(a) shows ∆σ(t) (for various Ti) for Finc = 3mJ/cm2, corresponding to an absorbed

energy density of ∼ 170J/cm3. σ(t) increases over 10s of ps following photoexcitation, and

saturates at a value corresponding to σ(Tf ). In fact, comparison of σ(t = 400ps, Tf ) with

Fig. 1(a) provides a means to estimate Tf , consistent with two temperature model estimates

(Fig. S2 [37]). Varying Finc at fixed Ti leads to variations in Tf and consequently in ∆σ, as
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shown in Fig. 2(b). Clearly, the dynamics depend on both Ti and Tf .

Further insight into the ∆σ(t) dynamics can be obtained by normalizing the data, as

illustrated in Figs. 2(c) and 2(d). Fig. 2(c) shows that the ∆σ(t) rise time is faster for

increasing Ti. For instance, for Ti = 80K the maximum in ∆σ(t) is reached in ∼ 120ps,

while for Ti = 140K it takes ∼ 60ps. The ∆σ rise time is also faster for increasing Finc, as

shown in Fig. 2(d). A detailed analysis of these rise time dynamics is presented below and

constitutes the main result of this work.

A partial recovery of ∆σ(t) is observable with decreasing Ti (cf. Figs. 2(a) and 2(c)). Re-

covery on this timescale is unlikely due to heat escape from the sample which typically takes

several nanoseconds [44–46], though our data does not unequivocally rule out cooling as the

cause for the 100ps-scale ∆σ(t) decrease. The recovery may be related to decreased stability

of the metallic volume fraction distribution at low Tf , associated with a larger fraction of

metallic regions whose characteristic dimensions are too small to undergo stable growth [47].

The qualitative discussion of conductivity dynamics presented above suggests the primary

role of nucleation and growth, with a clear dependence on Ti and Tf . In the following, we

investigate these dynamics in greater detail, first demonstrating their temperature dependent

scaling. The temperature above which a macroscopic conductivity can be measured, T0.5,

is the critical temperature for the nucleation and growth process that underlies the IMT.

It is therefore reasonable to expect a dependence of IMT dynamic properties on |T − T0.5|

[48]. As shown in Fig. 3, the ∆σ(t) curves collapse by scaling the time axis. In Fig. 3(a)

Finc is fixed at 3mJ/cm2 and Ti is varied between 80K and 140K (cf. Figs. 2(a) and 2(c)).

Scaling of the time axis by the dimensionless factor, t → t/
(
T0.5−Ti
T0.5

)α
, with α ' 1/2, leads

to a collapse of all the curves with different Ti values (Fig. 3(a)). The same scaling leads to

the collapse of ∆σ dynamics for Finc = 2mJ/cm2 (Fig. S3 [37]), which is close to F th
inc at low

temperatures (Fig. 1(b)). However, varying Ti corresponds to a variation not only of Ti but

also of Tf . A variation of Tf alone can be achieved by fixing Ti and varying Finc. Fig. 3(b)

shows results for fixed Ti = 120K and for Finc between 1.73 and 4mJ/cm2 (cf. Figs. 2(b)

and 2(d)). A collapse of the normalized ∆σ(t) curves arises if the time axis is rescaled by

t → t/
(
Tf−T0.5
T0.5

)−α
(Fig. 3(b)). Notably, the scaling behavior relies on the experimentally

determined Ti, Tf and T0.5 values. The only parameter varied to achieve the scaling in Fig.

3 is the exponent α.
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To determine the value of α that provides the best scaling of the data a scaling error

was calculated [37]. Optimal values of α are seen to lie close to 1/2, and are used to scale

the data in Figs. 3(a) and 3(b). This temporal scaling is quite remarkable, indicating that

the processes underlying the conductivity dynamics must also exhibit scaling. Further, the

mean-field-like exponent of 1/2 suggests that fluctuations are not dominant, and that a

simple model can provide additional insights [49, 50]. In the following, we consider these

results in terms of nucleation and growth of the metallic volume fraction, f(t).

The IMT in V2O3 arises from nucleation and growth of metallic domains in an insulating

background [51–53]. The metallic volume fraction, f(T ), can be calculated from σ(T ) using

the Bruggeman effective medium approximation:

f
σm − σ

σm + (d− 1)σ
+ (1− f)

σi − σ
σi + (d− 1)σ

= 0, (1)

where σm and σi correspond to metallic and insulating state conductivities, respectively,

and the dimensionality d = 2 for thin films [28, 54]. In the temperature range where

σ(T ) >> σi, taking σi = 0 is a valid approximation, and Eq. 1 yields a linear dependence

of σ(t) on f(t), σ(t) =
(
2f(t) − 1

)
σm. The right axis of Fig. 1(a) shows f(T ) across the

IMT. The correspondence between σ(T ) and f(T ) values derived from THz time-domain

spectroscopy is strictly valid only in the ∼ 160− 200K range (unshaded region of the σ(T )

curve). For T > 200K, f(T ) = 1 and the decrease in σ(T ), consistent with previous reports,

arises from correlation effects, beyond a simple thermally induced increase in the scattering

rate [20, 33–35]. For T < 160K, the σi = 0 approximation in Eq. 1 breaks down. DC

resistivity measurements yield a thermally activated σi(T ), which we use to estimate f(T )

below T0.5 = 160K from Eq. 1. It is clear that a non-zero σi(T ) for T < T0.5 implies a non-

zero f(T ) well below T0.5. This is an important consideration for time-resolved experiments,

where the initial condition is a mixed phase with metallic volume fraction f(Ti).

Classical models of nucleation and growth predict a dynamic evolution of the volume

fraction f(t), which can be described by the Avrami equation [55],

f(t) = 1− e−K tn , (2)

where K is the rate at which f(t) increases, and n is an exponent that depends on the

dimensionality and nature of the nucleation and growth. As mentioned above, for σ >> σi,
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a linear relationship exists between σ(t) and f(t). The photoinduced conductivity variations

we measure, ∆σ(t), are therefore proportional to f(t), and Eq. 2 can be used to fit the

normalized ∆σ(t) data. A good fit is obtained for n = 2 [37], as illustrated by the grey

crosses in Figs. 3(a) and 3(b). Rescaling the time axis effectively corresponds to a rescaling

of K. This is highlighted by the rescaled fitting curves, shown as black crosses in Figs.

3(a) and 3(b), which are obtained by replacing K by K/
(
T0.5−Ti
T0.5

)nα
(Fig. 3(a)) and by

K/
(
Tf−T0.5
T0.5

)−nα
(Fig. 3(b)) in Eq. 2, while keeping the time axis unchanged. Such a

behavior implies a temperature dependence of K, K ∝ 1/(T0.5 − Ti) and K ∝ (Tf − T0.5),

i.e. the IMT is faster for increasing Ti and Tf .

Both nucleation and growth contribute to K. In the current experiments, prior to the

optically induced temperature quench, the sample is at Ti with a volume fraction of metallic

nuclei fi = f(Ti). The ultrafast quench modifies the free energy landscape by shifting the

minimum from the insulating to the metallic phase, characterized by Tf . Therefore, the

energy gain associated with the IMT following photoexcitation drives the growth of metallic

domains leading to an increasing volume fraction. A model that is consistent with n = 2

describes two-dimensional interfacial growth with quasi-instantaneous nucleation [37, 55].

This yields

K = πρv2, (3)

where ρ is the domain density and v is the growth velocity. A schematic of this process (in

2d) is shown in Fig. 4(a), with the metallic regions, shown in blue, growing at velocity v,

as indicated by the white arrows. Eq. 3 contains independent contributions from growth,

through v, and nucleation, through ρ, allowing for additional insight into the experimental

conductivity dynamics. We note that in thin film samples excited homogeneously across

the entire thickness (the penetration depth of the optical pump is on the order of the film

thickness) the growth is essentially 2d (in-plane growth) [54].

We first consider the growth of the metallic regions, where the interface (domain wall)

separating the metallic and insulating phases propagates at v, defining a characteristic size

given by the local radius of curvature R(t) = v × t. It is worth noting that the structural

transition which accompanies the IMT in V2O3 implies that v cannot exceed the propaga-

tion velocity for structural distortions, i.e. the sound velocity, vsound. Growth of the metallic

phase at vsound would be ballistic rather than diffusive, in line with previous descriptions of
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thermally driven IMT in vanadates as martensitic, i.e. diffusionless [56, 57]. An estimate

of K using vsound for V2O3 strongly suggests that growth is indeed in the ballistic limit.

Assuming that ρ is given by the effective nuclei density ρ = 5 × 1012m−2 [57] and taking

vsound = 5 × 103m/s [58] yields K = 3.9 × 10−4ps−2, consistent with the 30 ∼ 70ps rise

times we observe (corresponding to K−1/2, from Eq. 2). Of course the assumption that

ρ corresponds to the equilibrium defect density is rather crude, but nonetheless confirms

the applicability of the Avrami model and suggests interfacial ballistic growth of the metal-

lic phase as the underlying dynamics of the macroscopic conductivity increase following

photoexcitation.

Given that the sound velocity in V2O3 varies little with temperature [58], the temperature

dependence (and hence the scaling) of K arises from the nucleation processes that give rise

to ρ. That is, in the Ti and Tf range we are exploring in these experiments, the metallic

domain density ρ must exhibit ρ ∝ 1/(T0.5−Ti) and ρ ∝ (Tf−T0.5). Also, since the growth is

ballistic (i.e. it proceeds at the maximum allowed velocity), it is changes in ρ that determine

the conductivity rise time dynamics. This means that, for increasing Ti, the initial domain

density available for growth increases. Additionally, with increasing Tf , ρ increases meaning

that the photoinduced thermal quench increases the domain density available for subsequent

growth. Thus, the evolution of ρ is fairly complicated and strongly dependent on the details

of the nucleation process.

Nucleation has been reported to occur preferentially at defect sites on VO2 and V2O3

[35]. Such defect pinning effects can influence the IMT dynamics, leading to two limiting

situations. For samples with a large defect density the nucleation is entirely heterogeneous

and expected to occur instantaneously, so that all nuclei are immediately available for growth

[55, 57]. In clean samples, on the other hand, nucleation is essentially homogeneous and

new nuclei formed during a finite period after the quench constitute a sizable fraction of

the overall nuclei density from which the growth proceeds [55, 59]. Neither of these limits

appear to be completely verified in our experiments.

Importantly, the time delay, ∆t, for the onset of ∆σ(t) (when f(t) = 0.5) following pho-

toexcitation is quite long, on the order of a few picoseconds (Figs. 2 and 4(b)). ∆t is longer

for lower Ti, as detailed in Fig. 4(b), where for Ti = 80K, ∆t > 10ps, while for Ti = 140K,

∆t ∼ 5ps. The longer ∆t for lower Ti is consistent with a smaller f(Ti). We have observed

that ∆t is sample dependent (cf. Fig. 2) hinting at the possibility of variations of the nucle-
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ation process with defect density, such that films with a lower extrinsic defect density have

a larger homogeneous nucleation contribution. However, homogeneous nucleation models

predict an exponential increase of the nucleation rate (not to be confused with K) with su-

perheating, i.e. with Tf − T0.5 [37, 55, 59], while in the heterogeneous limit the dependence

on Tf − T0.5 becomes a power law [37, 57]. Thus, the experimentally observed power law

scaling attests to a significant heterogeneous contribution to the nucleation. Our analysis

indicates that the dynamics can, to a certain extent, be controlled by the defect density.

The higher the defect density, the faster the mesoscopic conductivity will be established

after photoexcitation. This comes at the expense of a reduced metallic state conductivity

because of increased defect scattering.

More detail will be achievable once samples with controllable defect densities become

available [60], since our data suggests that a change in the Tf dependence of K is to be

expected as nucleation becomes more homogeneous (i.e. decreased defect density). A change

in the initial time delay, ∆t (Fig. 4(b)), would also be expected with variations in defect

density. That is, with heterogeneous dominated nucleation, ∆t would be shorter since growth

could proceed immediately, whereas for increasingly homogeneous nucleation, ∆t would

increase since nuclei would need to be formed prior to growth. There is some evidence

of this in our studies of different samples (cf. Fig. 2). Details of the scaling exponent

α should be accessible by Monte Carlo simulations. Further insight into α can also be

gained from considering different system dimensionalities [37]. As discussed in Ref. [37],

the geometry of domain growth is sensitive to the dimensionality of the system, and so

is n in Eq. 2. The dynamic scaling we identified provides a simple yet robust means to

analyze nucleation and growth dynamics during first order transitions. In general, from an

experimental perspective, an interesting follow-up to the present work would be to analyze

samples with different morphologies and a controlled defect density, and using time resolved

techniques that reveal the spatial distribution of the metallic domains at the mesoscale.

In summary, our investigation of the IMT conductivity dynamics in V2O3 thin films

reveal the temperature dependence of domain growth through dynamic scaling of the ∆σ(t)

rise time. These results highlight the importance of the mesoscale in shaping the dynamic

evolution of first order IMTs. Such a temperature dependence of the dynamics provides

additional control over the properties of transition metal oxides. Also, it is crucial to take

this dependence into account when investigating materials where phase coexistence plays a
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significant role in the IMT.
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FIG. 1. a) σ vs. T from THz time-domain spectroscopy. The arrow marks the conductivity onset

temperature, T0.5 = 160K. f(T ), calculated from Eq. 1 for the unshaded region of the plot, is

labeled on the right. b) Fluence threshold for a finite ∆σ(t), with Ti < T0.5.
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FIG. 2. Conductivity dynamics of V2O3 films following a) 3mJ/cm2 optical excitation, for Ti < T0.5,

and b) 1.73 − 4mJ/cm2 optical excitation, for Ti = 120K. c) and d): normalization of a) and b),

respectively, revealing the Ti and Finc dependence of the ∆σ(t) rise time. (Fig. 4(b) magnifies the

region within the dashed box of c).) a) and c) were obtained from a different sample than b) and

d), highlighting a slight sample-to-sample variation of the ∆σ(t) rise time.
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FIG. 3. Normalized conductivity dynamics for a) Finc = 3mJ/cm2, with varying Ti, and for b)

Ti = 120K, with varying Finc. The bottom (top) time axis corresponds to the scaled (unscaled)

data, shown by full (dashed) lines. Note that t = 0 for the top and bottom axes is offset for

clarity. Grey (black) crosses correspond to fits (scaled fits) to the a) 80K and 140K data, and the

b) 1.73mJ/cm2 and 4mJ/cm2 data, using Eq. 2 with n = 2.
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onset of ∆σ(t) for lower Ti, detailed from Fig. 2(c). No finite ∆σ(t) is visible during the first few

picoseconds after the optical pump.
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