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We show that the local in-gap Greens function of a band insulator G0(ε,k‖, r⊥ = 0), with r⊥ the
position perpendicular to a codimension-1 or -2 impurity, reveals the topological nature of the phase.
For a topological insulator, the eigenvalues of this Greens function attain zeros in the gap, whereas
for a trivial insulator the eigenvalues remain nonzero. This topological classification is related to
the existence of in-gap bound states along codimension-1 and -2 impurities. Whereas codimension-1
impurities can be viewed as ’soft edges’, the result for codimension-2 impurities is nontrivial and
allows for a direct experimental measurement of the topological nature of 2d insulators.
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The topological characterization of condensed states
of matter has emerged as a prominent research inter-
est over the last few decades. The flourishing of the
Quantum Hall effect (QHE) [1] in particular elucidated
many connections between physical signatures and topo-
logical invariants [2], which supplement the order param-
eters of the usual symmetry-breaking Landau-Ginzburg
paradigm. More recently, however, it became apparent
that topological order can also arise by virtue of symme-
try, and in particular the very common and robust Time
Reversal (TR) symmetry is sufficient to establish the ex-
istence and stability of topological insulators[3–5]. This
is quantified via a Z2 invariant, and results in gapless he-
lical edge states or chiral Dirac fermions localized at the
perimeter of the sample, in two and three dimensions,
respectively. The topological insulator has proven ex-
tremely rich both experimentally and theoretically[9, 10].
The concept has been generalized to a “periodic table”
describing various discrete symmetries and dimensions
[6–8]. Lattice symmetries can similarly lead to further
topological distinctions, result in “crystalline topological
insulators”[11], for which a general classification has been
provided [12].

One may ask whether the topology of band insula-
tors has some local signature? In fact, in this Letter,
we will show that even the fully local in-gap Greens
function contains information about the band topology,
which is then directly accessible by experiments. The
natural way this insight arises is through the study of
impurities[13–15], similar to how the space group classi-
fication can be probed using lattice defects[16–23]. Con-
sider a codimension-1 impurity line or surface in an insu-
lator. In the limit where the impurity strength diverges,
V → ∞, such an impurity acts like a real edge which,
following the bulk-boundary correspondence, should host
zero gap metallic bound states in the topological phase.
For finite V the codimension-1 impurity surface can thus
be viewed as a ”soft edge”. The codimension-2 impurity
lines or points do not host gapless states in the strong V
limit, so a priori there is no reason to expect they probe

FIG. 1: The eigenvalues of the local Greens function
G0(ε, k‖ = 0, r⊥ = 0) in the M/B model, relevant for
codimension-1 (left) and codimension-2 (right) impurities. In
the trivial system (dashed lines, M/B = −1) the eigenval-
ues λ± are nonzero. In the topological system (solid line,
M/B = 1) the eigenvalues are zero for some in-gap energy
and hence in-gap bound states always exist.

topology. However, we will see that they in fact inherit
the topological structure of the ”soft edges”. This non-
trivial result implies that by probing bound states around
a point impurity in a two-dimensional insulator, one can
experimentally distinguish between the topological and
trivial phase.

Mathematically, the theory for impurity bound states
shows that the existence of bound states in the topolog-
ical phase is directly related to zero eigenvalues of the
local in-gap Greens function, see Fig. 1. Consequently,
we propose that the presence or absence of zero eigenval-
ues in the local in-gap Greens function is a signature of
the band topology.

The remainder of this Letter is organized as follows.
We first introduce the model and the theory of impurity
bound states. Then we show that the local in-gap Greens
function, relevant for codimension-1 and -2 impurities,
has zero eigenvalues if and only if the phase is topologi-
cal. We then propose an experiment that directly probes
the Greens function zeroes for a point impurity in a 2d
insulator. Finally, we relate our results to the known Z2

classification and the bulk-boundary correspondence.

Theory of impurity bound states- We begin with a
translationally invariant system, described by a mini-
mal time-reversal invariant two-band model. The generic
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Hamiltonian assumes the form

H0 =
∑
kαβ

c†kαdµ(k)γµαβckβ (1)

where γµ are the 4× 4 Dirac gamma matrices satisfying
a Clifford algebra. We choose γ0 = σ0 ⊗ τ3 and γi =
σi ⊗ τ1. Here, the σ and τ Pauli matrices act in the
spin and orbital space, respectively. Time reversal (TR)
symmetry then implies that d0(k) must be even and di(k)
must be an odd function. In particular, we focus on the
representative cases that d0(k) = M − 2B

∑
i(1− cos ki)

and di(k) = sin ki [24–26]. This is the familiar class
of models displaying topological nontrivial regimes for
parameter range 0 < M/B < 4d. This specific choice
is not expected to restrict our results, as a topological
insulator generically has by adiabatic continuity the form
of a lattice regularized massive Dirac Hamiltonian. The
following results also apply to other lattice symmetries,
as long as there are two orbitals per unit cell, such as the
original Kane-Mele model on the honeycomb lattice.[3]
Moreover, extra terms that respect TR symmetry will
not change the results described below.

The real frequency Greens function in the gap reads

G0(ω,k) =
1

ω − dµ(k)γµ
=
ω14 + dµ(k)γµ

ω2 − |d(k)|2
. (2)

Subsequently, we introduce an impurity into the system,
which in general can be described by the Hamiltonian

HV =
∑
rαβ

c†rαVαβ(r)crβ . (3)

To find the corresponding spectrum in the presence of the
impurity, one needs to solve the (differential) Schrödinger
equation

(H0 +HV )ψε(r) = εψε(r) (4)

where ε is the energy of the state. This can be trans-
formed into an integral equation, [27]

ψε(r) =
∑
r′

G0(ε, r− r′)V (r′)ψε(r
′). (5)

For an insulator, the real-frequency Greens function is
well-behaved inside the gap and displays exponential de-
cay as a function of r. This implies that an in-gap so-
lution of Eqn. (5) will yield a bound state around the
impurity.

The existence of an in-gap bound state depends on H0

and the shape of the impurity potential V (r). However,
the qualitative difference between topological and trivial
band insulators is found in Greens function features, and
is therefore largely independent of the choice of impurity
potential. Let us therefore consider the simplest possible
choice: a constant V (r) along a n-dimensional plane in

a d-dimensional system (hence codimension d− n). The
d-dimensional position vector r can be split into the per-
pendicular coordinates r⊥ and the parallel coordinates
r‖, so that the impurity potential is given by

V (r) = V0δ
n
r⊥=0 (6)

where we have used a Kronecker delta to signify our use
of lattice models and introduced the 4×4 Hermitian ma-
trix V0. We note that even if the potential V (r) just
couples directly to the electron density, V0 is not nec-
essarily diagonal when expressed in terms of the second
quantized operators.

The shape of V0 can be restricted, though, using sym-
metry principles. For example, when we consider non-
magnetic impurities, TR invariance applies to the impu-
rity potential as well [34]. As a result, the matrix V0 has
only six degrees of freedom,

V0 = V 1 + V0σ
0 ⊗ τ3 + Viσ

i ⊗ τ2 + V4σ
0 ⊗ τ1. (7)

Recall that in this notation, time reversal is T = iσ2K
where K is complex conjugation. Parity, on the other
hand, is given by γ0 = σ0⊗ τ3. If we require both parity
and TR the form of V0 is even further constrained to

V0 = V 1 + V0γ
0. (8)

Since the translational symmetry is not broken along
directions parallel to the impurity, the impurity bound
states have a well-defined parallel momenta k‖. Thus

ψε(r) ∝ eik‖·r‖ and the integral equation Eqn. (5) re-
duces to an eigenvalue equation for each k‖,

det
[
G0(ε,k‖, r⊥ = 0)V0 − 1

]
= 0. (9)

We immediately notice that for the case V0 = V 1, the
existence of bound states is directly related to the eigen-
values of the local (r⊥ = 0) in-gap Greens function
G0(ε,k‖, r⊥ = 0).

Codimension-1 impurities- Let us now consider
codimension-1 impurities, that is a surface in d = 3 and
a line in d = 2, having only one perpendicular direction
r⊥ = 0, see Eqn. (9). The corresponding Greens function
in the gap, integrated over the perpendicular momentum,
can be decomposed in terms of

gµ(ε,k‖) =

∫
dk⊥
2π

dµ(k‖, k⊥)

ε2 − |d(k‖, k⊥)|2
, (10)

g(ε,k‖) =

∫
dk⊥
2π

ε

ε2 − |d(k‖, k⊥)|2
, (11)

so that G0(ε,k‖, r⊥ = 0) = g(ε,k‖)1 + gµ(ε,k‖)γ
µ.

At any TR-symmetric point for the parallel momen-
tum, for example k‖ = 0 or π, the g‖ are vanishing.
Additionally, g⊥ vanishes since the integrand is an odd
function of k⊥. At TR-symmetric points we thus only
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need to consider g0 and g. We note that this still holds
if we add e.g. Rashba spin orbit coupling terms, that are
odd functions of the momentum, to the bare Hamilto-
nian. As a Rashba term removes the particle hole sym-
metry of the original Hamiltonian and similar terms can
be introduced to eliminate the inversion symmetry, the
following results can thus also be verified in the absence
of any other symmetry but TR symmetry

We will now show that the eigenvalues of the local in-
gap Greens function G0(ε,kS‖ , r⊥ = 0),

λ±(ε) = g(ε)± g0(ε), (12)

have the shape displayed in the left panel of Fig. 1. The
difference between a topological insulator and a trivial
insulator, is whether the in-gap Greens function has a
zero eigenvalue or not.

Note that the denominator in the integrand, ε2 − |d|2,
is always negative. In the trivial phase d0(k) does not
change sign throughout the Brillouin zone. This implies
that g0(ε) does not change sign. Additionally, because
ε < |d0(k)|, we have g(ε)+ |g0(ε)| > 0 and g(ε)−|g0(ε)| <
0. Therefore, in the trivial phase, the Greens function
G0(ε,k‖, r⊥ = 0) never has an eigenvalue equal to zero
for all momenta k‖ and energies ε.

On the other hand, in the topological phase, when k‖
is chosen as a TR-symmetric point kS associated with
the projection describing the topological phase [12], the
Greens function for ε = 0 satisfies G0(ε = 0,k‖ =
kS , r⊥ = 0) = 0. To prove this, we evaluate

g0(0,kS) = −
∫ π

−π

dk

2π

d0(k,kS)

|d2(k,kS)|

= −
∫ π

−π

dk

2π

M̂(kS)− 2B(1− cos k)

sin2 k + (M̂(kS)− 2B(1− cos k))2
,

where M̂(kS) = M − 2B
∑d−1
i=1 (1 − cos(ki)) in terms of

the coordinates kS . Substituting x = eik, the integral
becomes a contour integral over the unit circle for which
the solution depends on the poles inside the unit circle.
We find that only in the topological regime 0 < M̂ < 4B,
two poles with opposite residue reside in the unit circle
rendering zero eigenvalues of the Greens function g0(ε =
0). Together with the universal robust divergence of both
g(ε) and g0(ε) at the band edges, which is of relevance
in absence of particle hole symmetry, we arrive at the
generic description as shown in Fig. 1.

Consequently, for any impurity strength a topolog-
ical insulator will always have in-gap states along a
codimension-1 impurity, whereas for a trivial insulator it
depends on specific details of the impurity and the insula-
tor. The codimension-1 impurity can thus be understood
as a ’soft edge’.

Codimension-2 impurities- The above results on the
structure of the eigenvalues of G0(ε,k‖, r⊥ = 0) in the

codimension-1 case can be extended to codimension-2 im-
purities. In this case, there are two perpendicular direc-
tions k⊥ = (kx⊥, k

y
⊥),

Gµ(ε,k‖) =

∫
dkx⊥dk

y
⊥

(2π)2

dµ(k‖,k⊥)

ε2 − |d(k‖,k⊥)|2
, (13)

G(ε,k‖) =

∫
dkx⊥dk

y
⊥

(2π)2

ε

ε2 − |d(k‖,k⊥)|2
, (14)

for µ = 0, 1, 2, 3. It is clear that for any of the perpen-
dicular directions G⊥ = 0, as the integrand is odd.

For the trivial phase, we can show that the eigenvalues
of G0(ε,k‖, r⊥ = 0) are nonzero throughout the gap,
since the two-dimensional integral can be done by first
integrating in one direction, which yields the results from
the codimension-2 impurities, and then integrating along
the second direction. Therefore, G0(ε,k‖, r⊥ = 0) is
never zero in the gap.

Of more interest is the question of existence of zero en-
ergy eigenvalues in the topological regime. Let us focus
on the 2-dimensional case, so that there are no parallel di-
rections: we are directly probing the local, on-site Greens
function. We expect that the terms G(ε) and G0(ε) will
diverge close to the band-edge. In fact, these divergences
are captured by expanding around the point where the
gap is minimal, kG,

|d(kx, ky)|2 = ∆2 +a(kx−kxG)2 + b(ky−kyG)2 + . . . (15)

The diverging part of the integral is then captured by the
integral ∫

−dk
xdky

(2π)2

1

2∆δε+ a(kx)2 + b(ky)2
(16)

∼ −
∫ 0+

0

dq

2π
√
ab

q

2∆δε+ q2
∼ log δε

4π
√
ab
.

Hence, G(ε) ∼ −|∆| log δε

4π
√
ab

and G0(ε) ∼ d0(kG) log δε

4π
√
ab

in prox-

imity of the valence band. The dependence of the gap
∆ on d0(k) proves that both eigenvalues in the topo-
logical phase diverge to positive infinity at the valence
band edge, and to minus infinity at the conduction band
edge. Consequently, as this functional dependence is ro-
bust against small perturbations, in the topological phase
the Greens function eigenvalues must be zero somewhere
in the gap. Details are provided in the Online Supple-
mentary Information. This proves that in d = 2, the
completely local in-gap Greens function G0(ε, r = 0) has
zero eigenvalues if and only if the system is in the topo-
logical phase, see Fig. 1, right.

This result carries over to the case of line impurities
in d = 3 topological insulators, if the remaining parallel
momentum is chosen at one of the TR-symmetric points.

Experiment- The existence of these zero eigenvalues
can be probed directly in experiments, using impurity
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FIG. 2: Typical energy of impurity bound states in a two-
dimensional insulator as a function of impurity strength V .
Here, we discern between the topological regime (solid lines,
M/B = 1) and the trivial regime (dashed line, M/B = −1).
For strong V , bound state in the trivial phase has disappeared
in the conduction band, whereas the bound states in the topo-
logical phase remain.

bound states as solutions to Eqn. (9). Imagine a two-
dimensional insulator, where at one isolated point a tun-
able gate voltage is applied, serving as the impurity po-
tential V . Then using tunneling spectroscopy, the pos-
sible bound states around this impurity can be found.
Upon increasing the impurity potential V , the energies
of the bound states shift: for a trivial insulator, one can
make a bound state disappear into one of the bands by a
sufficiently strong potential. However, our results show
that for a topological insulator, for all strong V there will
always be two bound states. Explicitly, the energy of the
bound state as a function of V is shown in Fig. 2.

Classification and the bulk-boundary correspondence-
The odd number of crossings per spin branch of
G0(ε,k‖, r⊥ = 0) with the zero eigenvalue axis is a topo-
logical property, similar to invariants based on the mo-
mentum space Greens function[28–31]. It reflects that in
the nontrivial regime the system has an odd number of
Kramers degenerate edge states on either side of the sur-
face and hence may be regarded as a consequence of the
bulk-boundary correspondence [9, 10]. In particular, the
bulk TR Z2 invariant is in this case simply the product∏

Γi
ξi of the parity γ0 eigenvalues ξi over the TR points

in the Brillouin zone [32]. Moreover, the two relevant
poles have the same residues but multiplied by sign of the
mass, i.e. the parity γ0 eigenvalues. Hence, only if the
choice kS in the projected plane is associated with two
masses of opposite sign, meaning that this cut features
a band inversion, the poles cancel in the above integral
rendering a zero eigenvalue. This is in accordance with
the space group classification [12].

For example, for d = 2 the model Eqn. (1) exhibits
a Γ (T − p4mm) phase for 0 < M/B < 4 and a M
(T − p4) phase for 4 < M/B < 8. From the above con-
siderations we find that M̂ has to satisfy 0 < M̂ < 4

for G0(ε,k‖, r⊥ = 0) to develop zero eigenvalues. Tak-
ing subsequently projections onto kx and ky and using

that M̂(ks) = M −2B
∑
i(1− cos(ki)), we thus conclude

that in the Γ phase these kS choices correspond to an
inversion at k = (0, 0), whereas in the M phase the in-
version is at k = (π, π). We stress that this analysis still
holds if we add Rashba terms, that are odd functions
of momentum. Similarly, we may add a next nearest
neighbor term d̃0(k) = −B̃[1 − cos(kx) cos(ky)], dx(k) =
cos(kx) sin(ky), dy(k) = − sin(kx) cos(ky) to the Hamilto-
nian [12], allowing for an additional X −Y (p4) topolog-
ical crystalline phase [11]. This phase is associated with
the inversion momenta k = (π, 0) and k = (0, π). An
identical calculation then shows that indeed projections
alongs kx and ky yield zero eigenvalues of G0(ε,k‖, r⊥ =
0) for both kS = 0 and π. These ideas carry over di-
rectly to three dimensions. Consider for example a Γ
(T − pm3̄m) phase with an inversion at k = (0, 0, 0) for
0 < M/B < 4, in the projected plane one should now
choose kS = (0, 0) or on a line kS = 0.

Our method allows to distinguish between a d = 3
weak and strong topological insulators (TIs).[5] Since a
weak TI can be viewed as a stacking of d = 2 TI, it
follows that the codimension-1 local Greens function with
r‖ parallel to the 2d layers will not have zero eigenvalues.

Conclusions and Outlook- We have shown that topo-
logical band insulators can be characterized by the ex-
istence of zero eigenvalues in the local in-gap Greens
function G0(ε,k‖, r⊥ = 0), where r⊥ is the position
vector perpendicular to a codimension-1 or -2 impurity.
Whereas the codimension-1 impurities can be viewed as
soft edges, the nontrivial result for codimension-2 impuri-
ties suggests one can experimentally probe the difference
between a topological insulator and a trivial insulator
using a tunable localized impurity.

We made some simplifying assumptions in the proof
presented above, but the results are robust. For example,
adding more bands to the system, further away from the
Fermi level, might introduce extra impurity bound states
whose energies depend strongly on the impurity strength,
but one can show that these do not generally remove the
states arising from the low energy bands. Furthermore,
we showed (e.g. Fig. 2) the persistence of bound states
for strong potential V but neglected V0; however, while
the shape of bound state energy versus potential strength
changes if V0 is included, the conclusion that they per-
sist is independent of the ratio V0/V . Additionally, as
long as weak electron-electron interactions do not close
the gap or spontaneously break a symmetry, the principle
of adiabatic continuation suggests our proposed classifi-
cation applies equally well to gapped weakly interacting
systems with a quasiparticle description[33] or topologi-
cal superconductors[10].
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