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University of Illinois at Urbana-Champaign, IL 61801, USA

Topological semimetals are gapless states of matter which have robust and unique electromagnetic
responses and surface states. In this paper, we consider semimetals which have point like Fermi
surfaces in various spatial dimensions D = 1, 2, 3 which naturally occur in the transition between a
weak topological insulator and a trivial insulating phase. These semimetals include those of Dirac
and Weyl type. We construct these phases by layering strong topological insulator phases in one
dimension lower. This perspective helps us understand their effective response field theory that is
generally characterized by a 1-form b which represents a source of Lorentz violation and can be read
off from the location of the nodes in momentum space and the helicities/chiralities of the nodes. We
derive effective response actions for the 2D and 3D Dirac semi-metals, and extensively discuss the
response of the Weyl semimetal. We also show how our work can be used to describe semi-metals
with Fermi-surfaces with lower co-dimension as well as to describe the topological response of 3D
topological crystalline insulators.

The discovery of topological band insulators (TIs)
and their novel electronic properties has led to a re-
examination and search for robust topological features
of the electronic structure of many different material
types1. Some notable properties of topological insula-
tors include a gapped, insulating bulk interior, protected
boundary modes that are robust even in the presence of
disorder, and quantized electromagnetic transport. A full
(periodic) classification table of non-interacting fermionic
states of matter that are protected by time-reversal (T),
chiral, and/or particle-hole (C) symmetries has been
established2–4. Recent work has further augmented the
initial periodic table by including the classification of
states protected by spatial symmetries such as transla-
tion, reflection, and rotation5–20. While these symmetry
protected topological phases are theoretically interesting
in their own right, this field would not have attracted so
much attention if it were not for the prediction and con-
firmation of candidate materials for many different topo-
logical classes. A few examples are the 2D quantum spin
Hall insulator (e.g., CdTe/HgTe quantum wells21–23), the
3D T-invariant strong topological insulator (e.g., BiSb24,
Bi2Se3

25–27), the 2D quantum anomalous Hall (Chern)
insulator (e.g., Cr-doped (Bi,Sb)2Te3

28,29), and the 3D
T-invariant topological superfluid state (e.g., the B-phase
of He-32,4,30).

All of above work pertains to gapped systems, how-
ever, recent theoretical predictions have shown that even
materials that are not bulk insulators can harbor robust
topological electronic responses,transport properties, and
conducting surface/boundary states31–40. This class of
materials falls under the name topological semi-metals,
and represents another type of non-interacting electronic
structure with a topological imprint. The most well-
studied examples of topological semi-metals (TSMs) are
the 2D Dirac semi-metal (e.g., graphene41), the 3D Weyl
semi-metal (possibly in pyrochlore irridates32, inversion-
breaking super-lattices42, or optical lattices43), and the
3D Dirac semi-metal44–49. While there are yet to be any
confirmed experimental candidates for 3D Weyl semi-

metals, their unique phenomenology, including incom-
plete Fermi-arc surface modes, an anomalous Hall effect,
and a chiral magnetic effect has drawn theoretical and
experimental attention to these materials. Two types of
3D Dirac semimetals, i.e. a Dirac semimetal type with
nodes at the time-reversal invariant momenta44,47,48, and
one with nodes away from those special momenta45,46 has
been reported to be found. In addition to these TSMs
there is a large set of symmetry-protected TSMs which
rely on additional symmetries for their stability35. Fi-
nally, we also note that there are superconducting rela-
tives of these semi-metal phases called topological nodal
superconductors, or Weyl superconductor phases, that
await experimental discovery35,50,51, though we will not
consider them further.

In this article we explore the quasi-topological response
properties of TSMs in the presence of external electro-
magnetic fields. We present a generic construction of
TSMs that can be adapted to model almost any type
of TSM. This construction allows us to manifestly de-
termine the electromagnetic response properties of the
TSMs in question. It also enables us to uncover clear pat-
terns in the quasi-topological electromagnetic response
terms exhibited by the various semi-metal types and
in different spatial dimensions. In addition, our work
nicely complements the extensive recent work study-
ing the topological response properties of Weyl semi-
metals32–35,40,52.

The previous field-theoretic calculations of the re-
sponse of Weyl semi-metals have predicted a novel
electro-magnetic response for the 3D TSMs, but not
without some subtlety34,53–58. Thus, another goal of
this article is to address the electro-magnetic (EM) re-
sponse for various topological semi-metals, and to show
the validity and limitations of the field-theory results. To
this end, we provide explicit numerical simulations using
simple lattice models to complement our transparent an-
alytic discussion. In addition to the discussion of the
3D Weyl semi-metals, we carefully illustrate the pattern
of TSM response actions that exist in 1D metallic wires
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and 2D Dirac semi-metals to establish a unified frame-
work of the EM response of TSMs. We discuss the influ-
ence of and, in some cases, the necessity of, anti-unitary
and/or spatial symmetries for the stability of the semi-
metal phase, and the resultant implications for the EM
response. Furthermore, we provide an analytic solution
for the boundary modes of the TSMs in our simple lattice
models, derive a topological effective response action for
the 2D and 3D Dirac semi-metals, calculate the EM re-
sponse at interfaces between different TSMs, and, where
possible, emphasize the important physical quantities of
TSMs that can be observed.

The article is organized as follows: in Section I we dis-
cuss the preliminaries and motivation for the work. This
section provides our approach to the characterization of
TSMs and further reviews previous work on the response
of Weyl semi-metals. After this we begin by discussing
one-dimensional semi-metals in Section II as a warm-up
problem for the rest of the article. From this, we move
on to 2D Dirac semi-metals in Section III. We discuss
the connection between 1D topological insulators and 2D
Dirac semi-metals, and discuss the low-energy boundary
states of the Dirac semi-metal. We calculate the “topo-
logical” contribution to the electromagnetic response for
a TSM with two Dirac points using a field-theoretical
calculation, and then go on to generalize the picture to
a generic number of Dirac points. We also discuss the
microscopic origin and subtleties of the response using
lattice model realizations. For the 2D Dirac semi-metal
some parts of the quasi-topological electromagnetic re-
sponse have been discussed quite extensively for graphene
in Refs. 59 and 60. Additionally, the time-reversal break-
ing quantum anomalous Hall (Chern insulator) response
in a gapped Dirac semimetal has been studied quite care-
fully as well28. We generalize these results to the case of
an arbitrary number of nodes, including fewer nodes than
the four in graphene, and consider subtleties which arise
from the Z2 nature of the edge modes which arise in these
models. Based on the work of Ref. 61, we are also able
to give a valid definition of the electric charge polariza-
tion for Dirac semi-metals, a quantity usually reserved
for bulk insulators, which we use to define the quasi-
topological electromagnetic response of the semi-metal.

After this we proceed to 3D where we study both Weyl
semi-metals and 3D Dirac semi-metals (we also comment
on the possible response of 3D topological crystalline in-
sulators in the Discussion/Conclusion). First, in Sec-
tion IV A we discuss the response properties of a Weyl
semi-metal. While some of the results in this section
are already known, we present the material from a differ-
ent perspective, and include lattice-regularized numerical
calculations of the response, which show precisely under
what conditions there is a non-zero current due to the
Chiral Magnetic Effect (CME). We also connect the nu-
merical result with our earlier discussion on 1D systems
since, when placed in a uniform magnetic field, one can
map the 3D Weyl semi-metal to identical copies of the
1D model. This may help resolve some of the controversy

surrounding questions raised over whether the CME ex-
ists in a lattice model. We also provide many new results
including an analytic description of the boundary modes
for a lattice model of the Weyl semi-metal, the response
behavior of a hetero-junction between two different Weyl
semi-metals, and a discussion of the anomaly cancella-
tion which connects the bulk and surface response. We
finish our discussion of 3D materials with Section IV B on
3D Dirac semi-metals. The interesting quasi-topological
response of 3D Dirac semi-metals is present when the
Dirac nodes are located at generic points in momentum
space away from the zone boundaries45,46 . This type
of a DSM was shown to be stable in Ref. 49, and has
been experimentally observed in Na3Bi46. We find a new
type of electromagnetic response which appears when the
surface of the 3D DSM is in contact with a magnetic
layer, and is related to the response predicted for the
2D quantum spin Hall insulator3,62. Finally, in Section
V we summarize our results, briefly discuss an applica-
tion of our work to the topological response properties
of 3D topological crystalline insulators, and also how to
consider semi-metals with Fermi-surfaces with different
co-dimensions, both of which will be discussed more in
future work.

I. PRELIMINARIES AND MOTIVATION

A. Electromagnetic Response

One of the primary goals of this work is to produce
valuable intuition for understanding the response prop-
erties of generic topological semi-metals with point-nodes
(line-like nodes will be considered in future work). In this
section we will begin with a simple physical construction
that is applicable to different types of topological semi-
metals and provides a basis for understanding the EM
response of a wide-class of TSMs in a unified manner. In
this context we will discuss some of the previous work
on the EM response of Weyl semi-metals as an explicit
example. Finally, before we move on to more technical
calculations, we will illustrate the pattern followed by
the electromagnetic response of TSMs in various spatial
dimensions.

An insightful way to view a topological semi-metal is
as a stable gapless phase that separates a trivial insu-
lator phase from a weak topological insulator phase. A
trivial insulator is essentially a band insulator that is
adiabatically connected to the decoupled atomic limit.
The electronic structure of trivial insulators does not
exhibit any non-vanishing topological properties. On
the other hand, weak topological insulators (WTIs) are
anisotropic, gapped topological phases that are protected
by translation symmetry, and characterized by a vector
topological invariant ~ν. The fact that the topological in-
variant is a vector, and not a scalar, is an indication that
they are essentially anisotropic. This anisotropy can be
made more apparent because each WTI phase in d spatial
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dimensions can be adiabatically connected to a limit of
decoupled d−1-dimensional systems that are layered per-
pendicular to ~ν. The (d− 1)-dimensional building blocks
that make up the d-dimensional WTI must each be in a
(d− 1)-dimensional topological insulator phase to gener-
ate the higher dimensional WTI phase. Of course, one
can also construct a d-dimensional WTI from (d − q)-
dimensional (1 < q < d) topological phases, which will
lead to Fermi-surfaces with lower co-dimension although
we save their consideration to future work.

The most well-known example of a WTI is a stack of
planes of 2D integer quantum Hall states (or 2D Chern
insulators) that create the so-called 3D quantum Hall
effect63–66. If the 2D planes are parallel to the xy-plane
then the vector invariant ~ν ∝ ẑ. If the coupling between
the planes is weak, then the bulk gap, arising from the
initial bulk gaps of the 2D planes, will not be closed by
the dispersion in the stacking direction. However, when
the inter-layer tunneling becomes strong enough, the sys-
tem will become gapless and exhibit the so-called Weyl
semi-metal phase. Eventually, as the tunneling strength
increases, the system will transition to another gapped
phase that will either be a different WTI phase or a triv-
ial insulator. Thus, in the simplest case, the Weyl semi-
metal is an intermediate gapless phase separating a WTI
from a trivial insulator. As we will discuss later, a simi-
lar picture can be developed for the 2D Dirac semi-metal
which can be adiabatically connected to an array of 1D
TI wires that are stacked into 2D. Ultimately, this type
of description of TSMs will be very useful since the rel-
evant EM response properties of the lower dimensional
TI building blocks are known3, and the problem of the
TSM response is transformed into understanding how the
inter-layer coupling affects the EM responses of the TI
constituents.

While it is well-known that TIs and WTIs exhibit
topological electromagnetic response properties, at the
transition between trivial and topological phases the rel-
evant topological response coefficients are no longer well-
defined, i.e. not sharply quantized. In fact, there is
usually a jump from a quantized non-zero value in the
topological phase to a vanishing value of the response
coefficient in the trivial phase. Therefore, it is a bit sur-
prising that the semi-metal phases intermediate between
trivial and topological insulators retain an imprint of the
topological response.

This is illustrated beautifully in the case of the Weyl
semi-metal as we will now discuss. A trivial insulator has
no topological component to its EM response, it obeys
Maxwell’s equations with the conventional insulator con-
stituent relations for polarization and magnetization. On
the other hand, the non-trivial WTI represented by the
3D quantum Hall insulator produces a topological re-
sponse term in the effective action

Seff [Aµ] = − e2

2πh

∫
d3xdt νµε

µσρτAσ∂ρAτ (1)

Increasing m

FIG. 1. Schematic Illustration of the motion of point-nodes
in the kz = 0 plane of a cubic, 3D Brillouin zone as a pa-
rameter m is adjusted. As m increases two Weyl nodes with
opposite chirality (as represented by the color shading) are
created in the 2D subspace (i.e., kz = 0) of a full 3D Brillouin
zone. As m increases further, the nodes move throughout
the Brillouin zone, meet at the boundary, and then finally
annihilate to create a gapped phase with a weak topological
invariant proportional to the reciprocal lattice vector separa-
tion ~G = 2~ν of the Weyl nodes before annihilation. The far
left Brillouin zone represents a trivial insulator, the far right
represents a weak topological insulator, and the intermediate
slices represent the Weyl semi-metal phase.

where ν0 = 0, νi = n
2Gi are the components of a half-

integer multiple n/2 of a reciprocal lattice vector ~G, and
Aµ are external EM fields. This action implies that spa-
tial planes perpendicular to ~ν will have a Hall effect, and
the 3D Hall conductance is σxy = −ne2/haG where aG
is the lattice spacing along ~G (aG = 2π/|~G|). Note that
we have chosen the global negative sign to match the
convention of Ref. 54. The trivial insulator phase can
be thought of as the case when ~ν = ~0. It is clear that
the topological response is anisotropic, as the particular

~ν =
~G
2 breaks rotation invariance (and as a consequence

Lorentz invariance if we are considering relativistic the-
ories which are a common low-energy description of a
TSM, see Footnote67).

Now that we understand the topological response of
the two phases that straddle the Weyl semi-metal phase,
we can try to understand the response of the simplest
type of Weyl semi-metal, i.e., the kind with only two
Weyl nodes (the minimal number). Let us imagine the
following process where we begin with a trivial insula-
tor and nucleate two Weyl nodes at the Γ-point in the
3D Brillouin zone (BZ) by tuning a parameter m (see
Fig. 1). The low-energy k · P Hamiltonian near each
Weyl-node is of the form HWeyl(p) = p1σ

1 +p2σ
2 +p3σ

3

where σa are Pauli matrices and we have set the veloc-
ity to unity. As m is further changed, the Weyl nodes
will move through the BZ but cannot be gapped (assum-
ing translation invariance) unless they meet each other
again, or another node with opposite chirality. The rea-
son is that if the Weyl-nodes are separated, then there
is no matrix which anti-commutes with HWeyl(p), and
thus no perturbation can be added that will open a gap.
If the two Weyl nodes (with opposite chirality) meet and
become degenerate, then the resulting 4×4 Hamiltonian

HWeyl ⊕ H̃Weyl has the Dirac form. In this case one
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can find an anti-commuting matrix to add that will per-
turbatively open a gap and annihilate the nodes. If the
Weyl nodes meet at the boundary of the BZ, at points

which differ by a reciprocal lattice vector ~G, then upon
annihilation the system will undergo a change of its weak-

invariant, i.e., ∆~ν =
~G
2 . Thus if the system starts with

~ν = 0 then it will have a transition to a non-trivial WTI
during this process.

During the process of tuning m we see that before we
nucleate the Weyl nodes, there is no topological response,
and after they annihilate at the BZ boundary there will
be a non-trivial Hall response. We now can ask, what is
the response in the gapless semi-metal phase? The an-
swer turns out to be simple, we just have the response of

Eq. 1 with ~ν = ~b where 2~b is the difference in momen-
tum between the two Weyl nodes54. Interestingly, the
response coefficient smoothly interpolates between the
two insulating end-points. This remarkable result can
be extended even further because we also have a notion
of a relative energy between the Weyl nodes. Because
of this, we can generate a coefficient ν0 = b0 in Eq. 1
where 2b0 is the energy difference between the two Weyl
nodes. This enhances the response as now we can have a
Lorentz-invariance violating 4-vector response coefficient
νµ (again see Footnote 67 for what is meant by “Lorentz
violating”).

The addition of a response proportional to ν0 is a new
feature of the semi-metal since one cannot define a no-
tion of ν0 in the pure WTI because the low-energy theory
is gapped. The reason one can have a spatial vector in
the gapped WTI is because of the translation symme-
try (and continuous rotation symmetry) breaking lattice
structure which gives rise to the reciprocal lattice vec-

tor(s) ~G. On the other hand, if we had a periodically
driven system, i.e., a system evolving according to Flo-
quet dynamics, then, even in the insulating case, we could
have a non-zero ν0 which would be proportional to the
driving frequency of the time-dependent field, i.e., the re-
ciprocal lattice vector for time. In the Weyl semi-metal
phase, the existence of non-degenerate Weyl nodes imme-
diately gives rise to a Lorentz-breaking 4-vector similar
to the kind anticipated by Refs. 68 and 69 for Lorentz-
violations in high-energy physics.

The resulting response from Eq. 1 generates an
anomalous Hall effect along with a chiral magnetic effect
(CME). The chiral magnetic effect occurs when b0 6= 0,
and is anticipated to give rise to a current when a mag-
netic field is applied to the system, but in the absence of
any electric field. For a translation-invariant 3D material
with an even number of Weyl nodes, we can determine

~b =
1

2

∑
a

χa ~Ka, b0 =
1

2

∑
a

χaεa (2)

where the sum runs over all of the Weyl nodes, and

χa, ~Ka, and εa are the chirality, momentum location,
and energy of the a-th node respectively. Additionally,
from the Nielsen-Ninomiya no-go/fermion-doubling the-

orem we know there is also the constraint that the total
chirality

∑
a χa = 0 must vanish31. With these defi-

nitions, the resulting charge density and current in the
semi-metal are given in terms of bµ and the applied EM
fields as

j0 =
e2

2πh
(2~b) · ~B (3)

~j =
e2

2πh
((2~b)× ~E − (2b0) ~B). (4)

As an aside, we note that while the origin and detec-
tion of the anomalous Hall current is well understood,
there has been some disagreements in the recent litera-
ture about the possibility of a non-vanishing CME. To
summarize the results so far, the field theoretical results
are somewhat ambiguous because of the dependence on a
regularization53,70: a tight-binding lattice calculation has
shown a vanishing result55, while a more recent calcula-
tion has indicated the need for a slowly varying magnetic
field that eventually tends toward a uniform/constant
field56. In Section IV A we comment on these results
and note that having an explicit source of Lorentz viola-
tion is a necessity for a non-vanishing CME effect. We
also discuss the interpretation of the CME effect from a
quasi-1D perspective generated from applying a uniform
magnetic field to a Weyl semi-metal. This allows us to
map the 3D problem onto degenerate copies of the 1D
system, which can be more easily analyzed.

1. General Pattern of Quasi-Topological Electromagnetic
Response in Topological Semi-Metals

While we have seen it is the case for the Weyl semi-
metal, it is generically true that the general pattern of
EM response for TSMs with point-nodes in any spa-
tial dimension stems from the existence of the Lorentz-
violating vector response coefficient bµ. In systems with
translation symmetry, the vector is connected to the mo-
mentum and energy difference between non-degenerate
point-nodes (e.g., Dirac nodes in 2D and Weyl nodes in
3D). In general, the vector represents a source of Lorentz-
violation in the system because it chooses a preferred di-
rection or frame in the system, and its time and space
components can both be non-vanishing67. For example,
the spatial part of bµ represents an anisotropic “stacking-
direction” similar to the case of the weak TI. Now, let us
denote the external electromagnetic gauge field by Aa
and its field strength by Fab = ∂aAb − ∂bAa. In odd
dimensional space-time (D+ 1 is odd), the effective elec-
tromagnetic response action for point-node semi-metals
is

S[A] = AD
∫

dD+1x εa1a2...aD+1ba1Fa2a3 . . . FaDaD+1

(5)
where the ellipses in the above equation represent further
factors of the field strength, and AD is a dimension de-
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pendent normalization coefficient. We see from this equa-
tion that if one calculates the current jµ = δS[A]/δAµ
then the result always depends on derivatives of bµ. This
is important because it immediately implies that the re-
sponse of semi-metals in odd dimensional space-time de-
pends crucially on the properties of boundaries or inter-
faces where bµ is changing.

In contrast, in even space-time dimensions (D + 1 is
even), the effective action for the quasi-topological elec-
tromagnetic response of point-node semi-metals is

S[A] = AD
∫

dD+1x εa1a2...aD+1ba1Aa2Fa3a4 . . . FaDaD+1

(6)
where the ellipses in the above equation represent fur-
ther factors of the field strength. For example in 1 + 1-d,
we have just S[A] = A1

∫
d2x εµνbµAν . Now if one cal-

culates the current the result depends depends on the
value of bµ itself (as well as possible derivatives in some
cases). This hints that at least part of the response is de-
termined by bulk effects alone and does not involve the
properties of surfaces and boundaries. In even dimen-
sional space-times the literature differs on the convention
for the choice of the action and some sources use

S[A] =
AD
2

∫
dD+1x εa1a2...aD+1θFa1a2Fa3a4 . . . FaDaD+1

where θ ≡ 2bµx
µ. However this second form, while it

looks somewhat nicer as far as gauge invariance is con-
cerned, has an implicit breaking of translation symmetry.
This comes from the freedom of the choice of origin in
the definition of θ as we could have alternatively defined
θ to be θ ≡ 2bµ(xµ + xµ0 ) with some constant 4-vector
xµ0 . Because of this, we will always choose the form Eq.
6 to avoid the translation symmetry ambiguity. In fact,
using the θ-term version of the action leads to spurious
effects when the system is not homogeneous, e.g., in the
presence of boundaries.

In general, the pattern of response actions for TSMs
with nodal (point-like) Fermi-surfaces is attached to an
intrinsic 1-form b = bµdx

µ, which is determined from the
electronic structure. This type of 1-form indicates some
inherent anisotropy in the electronic structure, and can
appear in any dimension. We also note that because of

the lattice periodicity, the vector 2~b is only determined
up to a reciprocal lattice vector. Thus, the response of
a TSM is only determined up to a quantum determined
by the addition of a filled band. For Weyl semi-metals
this indeterminacy is due to the possibility of a contri-
bution of an integer Hall conductance (per layer) from
filled bands; the low-energy Fermi-surface physics does
not contain information about the Hall conductance of
the filled bands71. For cases where the response coeffi-
cients are connected to Z2 invariants instead of integers,
the ambiguity of contributions from filled bands must be
carefully considered, as we do below for the 2D Dirac
semi-metal. We also note that, more generally, we can
have terms in the effective action which involve an n-

form in space-time dimensions greater than or equal to
n when a d-dimensional system has a Fermi-surface with
co-dimension less than d; some cases of which will be
discussed elsewhere72.

The most important feature of the quasi-topological
response coefficients of TSMs is that the response coeffi-
cients continuously change throughout the gapless TSM
phase from the quantized values in the insulating phases
on either side of the gapless phase. One might expect
that when the gap closes there might be some compli-
cated singular behavior in the response coefficients, how-
ever, what is special about the TSM phases is that we
can continuously track the coefficient through the weak
TI-TSM-Trivial Insulator phase diagram. We note that
there could be other transport coefficients that do have
more complicated singular behavior during the insulator
to TSM transitions, but the restricted set on which we
focus has this important property.

B. Boundary Degrees of Freedom

The other generic feature of TSM phases is the exis-
tence of low-energy boundary modes. It is well-known
that topological insulators have robust, gapless bound-
ary modes that exist in the bulk energy gap. A (strong)
TI will contain topological boundary states on any sur-
face, while a WTI only harbors topologically protected
boundary states on surfaces where ~ν does not project
to zero in the surface Brillouin zone73. This is another
clear signature of the anisotropy, and it gets passed on to
the TSMs that interpolate between the WTI and trivial
insulator phases.

TSMs themselves will have low-energy boundary
modes, but again, only on surfaces where bi does not
project to zero in the surface Brillouin zone. That is,
there will be surface states on surfaces where the normal
vectors are not parallel to the node separation vector ~b.
We note that even in cases where bi = 0 (or bi projects to
zero on a surface) there can still be surface states because
bi is only well-defined modulo a reciprocal lattice vector.
We note that surface states that exist when bi = 0 come
from fully filled bands and will exist over the entire Bril-
louin zone (if the ground state does not carry a strong
topological invariant). These surface states are not re-
lated to the properties of the semi-metal, and will not
crucially depend on the locations of the nodes as they
are continuously deformed.

The existence of boundary modes in TSMs is most
easily illustrated with a simple example. Let us again
resort to the picture of a Weyl semi-metal arising out
of a stack of identical 2D Chern (quantum anomalous
Hall) insulators and, for simplicity, assume that the layers
are stacked in the z-direction. Then, for the WTI phase
in the completely decoupled limit, each Chern insulator
layer contributes one set of chiral edge modes on sur-
faces with normal vectors in the x̂ and/or ŷ directions65.
This is the simple picture of a WTI, and if each layer
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has a first Chern number C1 = 1, then the vector in-
variant ~ν = (0, 0, π/a), where a is the spacing between
the Chern insulator layers. If the system has length
Lz = Na in the z-direction, then the total Hall con-

ductance is σij = −εijk e
2

πhν
kLz = −N e2

h , i.e., an amount

e2/h per stacked layer. When the coupling between layers
is turned on, then the bulk and edge states will disperse
in the z-direction, but as long as the inter-layer coupling
does not close the bulk gap, then the system will remain
in the WTI phase with the same Hall conductance.

To further discuss the boundary modes of the topo-
logical semi-metal it useful to illustrate with an explicit
lattice model. We can represent this system as a tight-
binding model on a cubic lattice where each site contains
a single electronic orbital with spin-up and spin-down
degrees of freedom. A representative Bloch Hamiltonian
is

H(~k)= A sin kxσ
x +A sin kyσ

y

+ (2B −m−B cos kx −B cos ky − C cos kz)σ
z (7)

where A,B,C,m are parameters, σa represents spin, and
we have set the lattice constant a = 1. If we choose the
parameters A = B = 2m = 1 and C = 0, this will
represent a WTI phase built from decoupled layers of
Chern insulator states as discussed above. We can see
this from the fact that when C = 0 there is no disper-
sion in the z-direction, and thus we have many copies
of a two-dimensional system, one for each allowed kz,
i.e., one for each layer. The important point is that
when A,B,m are tuned as above, then, ignoring the z-
direction, the resulting two dimensional system is in a
Chern insulator phase with C1 = 13, and thus we have
decoupled copies of a non-trivial Chern insulator. When
the tunneling between the layers is activated, the parame-
ter C will be non-vanishing. With A,B,m fixed as above
then for −1/2 < C < 1/2 the model will remain in the
WTI phase. At C = 1/2 the bulk energy gap closes at
~k = (0, 0, π). If C is further increased then there will be
two points where the gap vanishes, i.e., two Weyl-nodes,

and they will occur at ~k =
(
0, 0, cos−1

(
−mC

))
where we

added the dependence for a variable m parameter back
in. Accordingly, when |m/C| < 1 the system will exhibit
a Weyl semi-metal phase if A = B = 1.

As was shown in Ref. 74, we can use a model like Eq. 7
to create a nice description of the Weyl semi-metal phase.
For this picture, it is useful to think about the system as
a family of 2D insulators Hkz (kx, ky) ≡ H(kx, ky, kz), pa-
rameterized by kz. For parameters representing the fully
gapped WTI phase (e.g. A = B = 2m = 1, C = 0), then
for each value of kz the 2D insulator Hkz (kx, ky) is in the
Chern insulator phase.

Now, when we tune the C parameter into the Weyl
semi-metal phase then the model will contain gapless

Weyl-nodes at ~k = (0, 0,±kc), and a separation vector
~b = (0, 0, kc). To understand the existence of surface
states in the semi-metal phase it is again helpful to think
of each 2D insulator at fixed kz being in a trivial C1 = 0

phase when |kz| > |kc| and a Chern insulator phase with
C1 = 1 when |kz| < |kc|. Exactly at kz = ±kc there is
a gapless “transition” as a function of kz between the
trivial 2D insulator with C1 = 0 and the non-trivial 2D
insulator with C1 = 1.

This illustration shows that in the Weyl semi-metal
phase we should only expect boundary states to exist
over a finite range of kz, i.e., |kz| < |kc| for this par-
ticular example. For each kz in the topological range,
the 2D insulator Hkz (kx, ky) contributes one propagat-
ing chiral fermion mode to the boundary degrees of free-
dom. These chiral boundary states manifest as incom-
plete surface Fermi-arcs that connect Weyl points in the
surface Brillouin zone for surfaces with normal vectors
which are not parallel with ~b. The picture of a TSM
as a momentum-space transition in a family of lower-
dimensional gapped insulators is helpful because similar
concepts can be applied to understand the properties of
all topological semi-metals.

This completes the basic review and motivation. To
summarize, we have introduced some important physi-
cal intuition and concepts pertaining to 3D Weyl semi-
metals, and during this process reviewed some of the
previous work describing the EM response and bound-
ary states of these systems. Now we will begin a more
in-depth discussion of the response and boundary states
of semi-metals in 1D, 2D, and 3D following the outline
presented above.

II. SEMIMETAL IN 1 + 1-DIMENSIONS

We will begin with a careful study of the properties
of a 1D TSM, which in this case is just an ordinary 1D
metal, as noted in Ref. 33. As a representative model we
can choose a spinless 1-band tight-binding model of the
form

H1D = −α
∑
n

[
c†n+1cn + c†ncn+1

]
(8)

where the sum over n runs over all of the lattice sites,
and we will let the lattice constant be a. This familiar
model is easy to diagonalize and the energy spectrum is:

E(k) = −2α cos ka (9)

were k ∈ [−π/a, π/a). In the momentum basis the Hamil-

tonian is just H1D =
∑
k E(k)c†kck.

Establishing a chemical potential µ that lies within the
band will fill the system with a finite density of electrons.
If we keep translation symmetry we can calculate the
number of particles by counting the number of occupied
momentum states

N =
∑
k∈occ.

1 =
L

2π

∫ kF

−kF
dk =

LkF
π

(10)
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which implies a charge density ρ = ekFπ where kF is the
Fermi wavevector and e is the electron charge. In the lan-
guage of the previous section we note that this density
breaks Lorentz invariance because it establishes a pre-
ferred frame, i.e., the rest-frame of the fermion density.
Thus, we should expect a Lorentz-violating contribution
to the effective action. In fact, we can easily write down
this contribution since a background charge density just
couples to the scalar EM potential A0 to give a potential
energy term

S[A0] = −
∫
dxdtρA0. (11)

In addition to the density, there is the possibility of in-
troducing an electric current that will also break Lorentz
invariance. For a moment, let us consider a generic one-
dimensional lattice model with translation invariance,
and in the momentum basis. When minimally coupled to
an EM field (e.g., through Peierls substitution) we find

H =
∑
k

c†kH(k − e
~A1)ck (12)

where H(k) is a Bloch Hamiltonian. The current for this
system in the limit A1 → 0 is given by

j = lim
A→0

∂H

∂A1
= − e

~
∑
k

[
∂H(k)

∂k
nF

]
(13)

where nF is the Fermi-Dirac distribution, which will be
a step function at T = 0. This can be rewritten at zero
temperature as

j = −e
∑
n∈occ

∫
BZ

dk

2π~
∂En(k)

∂k
(14)

where n runs over the occupied bands. Specializing to
the case of our single-band model, the current is equal
to j = − e

2π~ (E(kF )−E(−kF )) which is non-zero only if
E(kF ) 6= E(−kF ). We will discuss two different mecha-
nisms for generating a current in Sections II A and II B.

A. 1D model in an electric field

One way to generate a non-zero electric current is to
apply an external electric field. We will apply an electric
field is by adiabatically threading magnetic flux through
the hole of the periodic lattice ring via Faraday’s law.
This is equivalent to introducing twisted boundary con-
ditions on the wave functions

Ψ(x+ L) = eiΦ(t)LΨ(x) (15)

where

Φ(t) =
eEt

~
(16)

for an electric field E at time t. Using Eq. 14 we can
easily calculate the electric current to be

j =
2αe

π~
sin(kFa) sin(Φ(t)a). (17)

For comparison, we numerically calculate the charge
density and current for the case when the single band
is half-filled. At half-filling kF = π/2a, and thus the
density should be uniform, time-independent and equal
to ρ = e

2a , i.e., half an electron per site. At half filling,

the current reduces to j = 2αe
π~ sin(Φ(t)a). The numerical

calculations are shown in Fig. 2, and they agree with the
analytic results.

We note in passing that for finite-size lattice models
some care must be taken to correctly calculate a smooth
electric current response. We have intended to calcu-
late the current of a metallic/gapless system, but there
are finite-size gaps in the energy spectrum between each
state separated by ∆k = 2π/L. Thus, if we want the
system to behave as a gapless system should, we must
apply a minimum threshold electric field. If too small
of an electric field is applied at a given system size, the
model will behave like a gapped insulator instead. To
avoid this we can simply enforce the canonical momen-
tum Πx = px−eA1 to be a multiple of 2π~/L so that the
system remains gapless at each time step. If this is not
done, then the system will behave as gapped insulator
and we will see steps in the current response. Ensuring
that e

~A1 = 2πm
L at every time step saves us this trouble,

and in our simulations for this section we have always
taken Φ(t) = eEt/~ to be a multiple of 2π/L and never
smaller than this value. Physically we understand that,
for a system with these finite-size gaps, an infinitesimal
adiabatic current-generation will not work. Instead we
must turn on a large enough electric field so that there
is some non-adiabaticity so that the finite-size gaps can
be overcome.

Although we do not present the results here, we have
carried out numerical calculations for various filling fac-
tors and electric field strengths, and the analytic re-
sults match the numerical simulations. If we change
the boundary conditions from periodic to open then the
charge density remains the same (possibly up to some
damped density oscillations near the ends of the wire),
but the current vanishes as expected. Hence, we see that
in the presence of an electric field with periodic boundary
conditions the response action of the 1D (semi-)metal is

S[Aµ] =

∫
dxdt [−ρA0 + jA1] =

∫
dxdtjµAµ (18)

where jµ = (ρ, j), which in our convention already has
the electric charge factored in. Other than the presenta-
tion, most of what we have done here is elementary, we
are just using these results to set the stage for the later
sections.

Now, we can re-write the action in a few suggestive
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FIG. 2. The current and charge density of the 1D (semi-
)metal are plotted vs time for half filling and for nearest neigh-
bor hopping α = 1. The current has a periodic response as
expected with a period of 200 time slices for an electric field
of strength E = h

eT (200a)
for some time-scale T that is long.

The charge density is given by ρ = e kF
π

= e/2a as expected
and shows no time dependent behavior.

ways. First we can define a new 2-vector

bµ =
π

e
(j, ρ) (19)

such that the action can be re-written

S[Aµ] =
e

π

∫
dxdtεµνbµAν . (20)

This is to be compared with Eq. 6. Alternatively we can
define an axion-like field

θ(x, t) ≡ 2bµx
µ =

2π

e
(ρx− jt)

= 2kFx−
4α

~
sin(kFa) sin(Φ(t)a)t, (21)

and if the system is homogeneous with no boundaries, we
can use θ(x, t) to rewrite Eq. 18 as

S[Aµ, θ] = − e

4π

∫
dxdt θ(x, t)εµνFµν . (22)

As mentioned in Section I, using θ(x, t) breaks space-
time translation symmetry due to the arbitrary choice of
origin, and thus we must be careful to specify that the
system is translation invariant when writing down Eq.
22, otherwise spurious response terms will be generated
at boundaries and interfaces. Physically we can interpret
eθ
2π as the charge polarization since its space and time
derivatives are proportional to the charge density and
current respectively.

While this method of generating an electric current
came from an external effect, i.e. an externally applied

0
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k
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FIG. 3. (upper) Energy spectrum of the Hamiltonian H1Dv

where each curve represents a different value of β. The solid
blue line is β = 0, the magenta dashed line is β = 0.1 and
the dash-dotted tan line is β = 0.25. All curves have α = 1.
(lower) This is a zoomed in region of the upper figure slightly
below half-filling, which is the regime for our calculation. Ex-
actly at half-filling β has no effect, and the stronger β is, the
more the Fermi wave vectors and velocities are modified at a
fixed µ.

electric field, we now move on to a discussion of an in-
trinsic effect that can produce a current in the absence
of an external electric field.

B. 1D Model with Next-Nearest-Neighbor
Hopping

In this subsection we illustrate another way to generate
a non-vanishing current. For energies near the Fermi-
points, the dispersion of our model is linear, and the
modes near each Fermi-point are 1+1-d chiral fermions.
In fact, it is well-known that there is a close connection
between the physical electric current for a 1D metallic
band in an electric field, and the compensating chiral
anomalies of the fermion modes near each Fermi-point.
The previous subsection explicitly dealt with these issues,
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albeit using a less elegant perspective, and in that case
an electric current was generated by an external source
of Lorentz breaking, i.e. the applied electric field. Here
we would like to consider an intrinsic source of Lorentz
breaking that will lead to a current as well. By consider-
ing this effect, we are trying to make an analogy to the
3D chiral magnetic effect in Weyl semi-metals, where it
has been predicted that a current can appear in the pres-
ence of an applied magnetic field, but in the absence of
an electric field.

The basic idea is that, for the 1D model we have cho-
sen, the chiral fermions near the Fermi-points both have
the same velocity, except for the sign, and we want to de-
form the velocities so that each chiral fermion has a dif-
ferent “speed of light.” This is an obvious way to break
Lorentz invariance. If the velocities are different (and
the spectra were linear for all energies) then it is clear
that we should have E(−kF ) = vLkF 6= vRkF = E(kF )
which suggests the presence of a current. Physically, this
just means that if we have 1+1-d chiral fermions with the
same non-zero density, but different velocities, then there
will be a non-vanishing current. Since we are in 1D, the
analog of the 3D chiral magnetic effect predicts that we
should find an intrinsic current without the application
of a magnetic field or an electric field, and it should be
proportional to the intrinsic quantity b0. In the 3D Weyl
semimetal, the number b0 represents the energy differ-
ence between Weyl nodes and has units of frequency. A
simple interpretation of the effect seen here in 1D is that
a non-vanishing frequency scale b0 will be generated by
the combination of ∆vF , i.e. the velocity difference at
the two Fermi points, and a length scale. In our system
we have two important length scales: the lattice constant
a, and the inverse of the Fermi wave vector kF . To see
which one enters the result we will perform an explicit
calculation.

To generate the velocity modification effect we deform
the tight binding model in Eq. 8 above to include imag-
inary next-nearest neighbor hopping terms

H1Dv = H1D + iβ
∑
n

[
c†n+2cn − c†ncn+2

]
. (23)

The Fourier transform of the Hamiltonian is given by

H1Dv = −2
∑
k

(α cos(ka)− β sin(2ka))c†kck. (24)

For β 6= 0, inversion symmetry is broken in the model and
subsequently we should consider two Fermi-wavevectors
kFL and kFR where kFL ≤ kFR by definition. Exactly
at half-filling kFL = −kFR = π/2a for all β (as shown
in Fig. 3). Thus the electric current is vanishing at
half-filling (since β sin(2a(π/2a)) = 0), and the charge
density will be ρ = e

2a , i.e. the same as was found when
no electric field was applied to the model H1D at half-
filling.

Half-filling is just a special point of this model where β
has no effect because of our choice of next-nearest neigh-

bor hopping. Instead, let us consider the case where µ is
tuned slightly away from half-filling, i.e. µ = 0− δµ with
|δµ| � α, and we will also take |β| � α as we want to
consider the perturbative effect of turning on this term.
We can define kFL = − π

2a + εL and kFR = π
2a + εR. By

expanding Eq. 24 around the Fermi-points we find that
consistency requires

εL/R = ± δµ

2a(α± 2β)
≈ ± 1

2a

δµ

α

[
1∓ 2β

α

]
. (25)

Thus we can determine that

kFL/R ≈
π

2a

[
∓1± δµ

πα

(
1∓ 2β

α

)]
(26)

and can subsequently define κF ≡ π
2a (1− δµ/πα), which

would be the Fermi wavevector if β = 0. Note that the
signs in the previous two equations are correlated. From
Fig. 3 we can see that as β is increased the Fermi-wave
vector at a fixed µ (different than half-filling) changes,
as well as the velocity of the low-energy fermions. From
Eq. 14, the response should be

ρ = e
kFR − kFL

2π
=
eκF
π

=
e

2a

(
1− δµ

πα

)
(27)

j =
2eβ

π~
sin(2κFa). (28)

This result shows that we find a non-zero electric cur-
rent even in the absence of an applied electric field, and
its magnitude is proportional to the inversion breaking
parameter β. This effect, while simple in origin, is the
1D analog of the 3D chiral magnetic effect. It represents
a current proportional to an intrinsic frequency scale, but
does not require the application of any external electric
or magnetic fields. We do note that the definition of the
frequency scale does require a non-vanishing Fermi wave-
vector, i.e. a non-vanishing background density which
cannot arise from a completely empty or filled band. As
shown in Fig. 4, the numerical calculation of the electric
current matches the analytic formula. The response is
linear in β as expected from Eq. 28 and, although we
do not show the charge density, it matches as well. The
numerical calculations were done for slightly less than
half-filling at κF = π/2a− π/100a.

Let us take a closer look at the generation of the elec-
tric current. The velocity of the chiral fermions at ±κF
is given by ~v± = ±(2αa sin(κFa)∓ 4βa cos(2κFa)), and
thus,

∆vF =
8βa

~
cos(2κFa). (29)

For our choice of the chemical potential, κF = π/2a +
δκF , and the current from Eq. 28 is approximately

j ≈ − 8eβ

2π~
δκFa = − e

2π

8βa

~
δκF =

e

2π
∆vF δκF . (30)
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FIG. 4. The current of H1Dv is plotted vs next-nearest neigh-
bor hopping strength β near half filling. κF = π/2a−π/100a
was chosen and the nearest-neighbor hopping α = 1 with pe-
riodic boundary conditions. The current increases linearly as
a function of β as expected from Eq. 28. Note we have let
a = ~ = 1.

where we used that near κF = π/2a we have ∆vF ≈
− 8βa

~ . Thus ∆vF δκF gives a Lorentz-breaking frequency
scale that will give rise to a non-vanishing b0-term in the
effective response. In fact, the density and current give
us the 2-vector bµ = ( 1

2∆vF δκF , κF ) which determines
the response action

S[Aµ] =
e

π

∫
dxdtεµνbµAν . (31)

To draw an analogy with the previous literature on the
Weyl semi-metal response we could also define a θ(x, t)
by

θ(x, t) =
2π

e
(ρx− jt) = 2κFx−

4β

~
sin(2κFa)t

≈ 2κFx−∆vF δκF t (32)

which couples into the action

S[Aµ, θ] = − e

4π

∫
dxdtθ(x, t)εµνFµν . (33)

C. Derivation of the effective response

After our explicit discussion of the different EM re-
sponses of the 1D metallic wire, let us elevate our dis-
cussion to a field-theoretic calculation. In this section,
we use the Fujikawa method to derive the effective re-
sponse of the low-energy continuum field theory descrip-
tion of the 1D metal in the presence of intrinsic sources
of Lorentz invariance violation, e.g. external electromag-
netic fields, momentum and velocity shifts of the nodes,

and non-zero chemical potential. The derivation is simi-
lar to that for 3D Weyl semi-metals found in Ref. 54.

To carry out the calculation let us expand the lat-
tice Bloch Hamiltonian given by H(k) = −2α cos ka +
2β sin 2ka around the chemical potential µ = 0 − δµ for
|δµ| � α and |β| � α as in the previous subsection.
If we expand the right and left-handed chiral branches
around ±κF respectively we find the approximate con-
tinuum Hamiltonian

Hcont =
(
−δµ+ 1

2~∆vF q
)
I +

(
~vF q + 1

2~∆vF δκF
)
σz

(34)
where the upper component represents the fermions near
kFR, the lower component represents the fermions near
kFL, q represents a small wavevector deviation from
kFL/R, ~vF ≡ 2aα, ∆vF ≡ − 8βa

~ , and δκF = − δµ
2aα .

The definitions of the parameters are easy to understand
by looking at the lattice model in the previous subsection
when expanded around κF .

Since we know the behavior of the full lattice model,
i.e. the high-energy regularization of the continuum
model, we can see that our expansion effectively nor-
mal orders the current and density with respect to
half-filling. Since the current vanishes exactly at half-
filling, the total current is simply j = δj. The cur-
rent change away from half-filling is simply given by
δj = e

2π~ (ER(q = 0)− EL(q = 0)) = e
2π∆vF δκF , which

matches the previous subsection, which does not include
the effective normal-ordering. On the other hand, the
charge density does not vanish at half-filling. The den-
sity change away from half filling is given by δρ =
e −δµ2παa = e δκF

π , and the full density includes the addi-
tional amount ρ0 = e

2a that arises from all the occupied
states up to half filling. This makes the total density
ρ = ρ0 + δρ = ekFR−kFL

π as expected. However, if we
are just given the continuum model, without reference to
an initial lattice model, it only has information about δρ
and δj. We note that neither the current, nor the density,
depend on the dispersion term 1

2~∆vF qI and so we will
drop it from further discussion as it is also higher order
in the expansion around the Fermi-points.

From this Hamiltonian it is simple to construct the
Lagrangian now using the Dirac matrices γ0 = iσx, γ1 =
σy and the chirality matrix γ3 = σz. We find

L = ψ
(
i/∂ − /bγ3

)
ψ (35)

where /b = bµγ
µ for bµ =

(
1
2∆vF δκF , δκF

)
. If we

included the EM gauge field, this Lagrangian would
be analogous to the Lagrangian derived for the Weyl
semimetal in Ref. 54, except this is in 1 + 1 dimen-
sions. We can now get rid of the bµ-dependent term by
doing a chiral gauge transformation. As is well-known,
this transformation can change the measure of the path
integral and lead to anomalous terms in the effective ac-
tion.

We will use the Fujikawa method to derive the effective
response due to this change of measure. Performing a se-
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ries of infinitesimal chiral transformations parametrized
by the infinitesimal ds, we can get rid of the bµ dependent
term:

ψ → e−idsθ(x)γ3/2ψ (36)

ψ → ψe−idsθ(x)γ3/2 (37)

where θ(x) ≡ 2bµx
µ. Note that using this choice of θ(x)

we have made an arbitrary choice of origin which is folded
into the calculation. To avoid spurious response terms we
need to constrain the system to be homogeneous in space-
time so that each choice of space-time origin is equivalent.
The Dirac operator /D acts as follows

/D = i/∂ − /A− /bγ3(1− s) (38)

/Dφn(x) = εnφn(x) (39)

where Aµ is the EM gauge field, and φn are a complete
set of eigenstates of the Dirac operator. Let us write out

ψ(x) =
∑
n

cnφn(x) , ψ(x) =
∑
n

cnφ
∗
n(x) (40)

where cn are Grassman variables, and we can expand ψ
in terms of φn because they are complete. Considering
what the infinitesimal chiral transformation does to the
cn’s, from Eq. 36, we see that

c′n =
∑
m

Unmcm , c′n =
∑
m

Unmcm (41)

Unm = δnm −
ids

2

∫
d2xφ∗n(x)θ(x)γ3φm(x). (42)

The Jacobian of this transformation is J = det(U−2).
Using the identity that det(U) = eTr log(U), we see that

J = eids
∑

n

∫
d2xφ∗n(x)θ(x)γ3φn(x). (43)

The Jacobian due to the chiral rotation thus induces a
term in the effective action given by

Seff =

∫ 1

0

ds

∫
dxdt θ(x)I(x) (44)

I(x) =
∑
n

φ∗n(x)γ3φn(x). (45)

To evaluate I(x), we can use the heat kernel regulariza-
tion:

I(x) = lim
M→∞

∑
n

φ∗n(x)γ3e− /D
2/M2

φn(x) (46)

to arrive at the well-known result that

I(x) = − e

4π
εµνFµν . (47)

So, the effective action is given by

Seff [Aµ] = − e

4π

∫
d2x θ(x)εµνFµν . (48)

To remove the dependence on the arbitrary origin we can
rewrite the action as

Seff [Aµ] =
e

π

∫
εµνbµAν . (49)

This expression matches the result we determined from
simpler calculations of the lattice model in Sections
II A,II B if we replace ρ with δρ and j with δj.

D. Interfaces

Now that we have derived the EM response via two sep-
arate methods, we will put it to use in this section where
we calculate the properties of interfaces across which bµ
varies. We will show that the response action in Eq. 49
predicts results that match numerical simulations, while
the θ-term version in Eq. 48 gives spurious results due
to boundary terms that depend on the arbitrary choice
of origin embedded in θ(x). We want to emphasize that
this also happens in the case of the 3D Weyl semimetal
and is a generic feature. One might think that one could
remove these spurious terms by adding boundary degrees
of freedom, however the spurious results to which we re-
fer do not seem to be connected to any anomalies as
they can appear on surfaces which do not exhibit gapless
boundary modes.

The form of the action to use when studying inhomoge-
neous systems (i.e., with relaxed translation invariance)
is

S[A] =
e

π

∫
d2x εµνbµAν .

One might complain that this action appears gauge-
variant, however, it is not. We note that we can define
a current jµ(b) = e

π ε
µνbν . Therefore, the action itself can

be written S =
∫
d2x jµ(b)Aµ. If the current is conserved

then the action is gauge invariant due to the continuity
equation. For the 1D metal, the current jµ(b) is exactly

the EM charge current and thus is conserved yielding a
gauge-invariant response functional.

Now, for the first example of an interface, suppose our
1D metal lies in the spatial region x > x0, and there
is only vacuum for x < x0. We model this by choosing
bµ(x) = bµΘ(x − x0) where Θ(x) is the step-function,
and for simplicity we only turn on a non-vanishing b1. If
we look at the charge density the response action would
predict, we find

ρ(x) =
e

π
b1Θ(x− x0) (50)

which is physically correct since the metallic region will
have a density equal to this value, and the vacuum will
have no density. If we had used the axion-action with
θ(x, t) = 2b1(x − x1) for some arbitrary constant value
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FIG. 5. Charge density in units of e/a as a function of po-
sition for an inhomogeneous system with N = 1000 lattice
sites where each segment has Ls = 500 sites. The chemi-
cal potential is µ = 0, and if ε0 was tuned to zero the den-
sity would be ρ = e/2a. For our choice of ε0 = 0.5t we have
b1(`) = (π/a)0.46, b1(r) = (π/a)0.54. Away from the interfaces
the values match the calculation from the effective response
action. Near the interfaces there are damped oscillations due
to finite size effects that are not captured by the analytic
calculation. Note that the finite-size boundary effects have
nothing to do with the spurious “interface”-terms in Eq. 51.

x1 we would have obtained the density

ρ̄(x) =
e

2π
∂xθ(x, t) =

e

π
b1∂x((x− x1)Θ(x− x0))

=
eb1
π

[(x0 − x1)δ(x− x0) + Θ(x− x0)] . (51)

This predicts a spurious boundary charge located at the
interface x0 and proportional to the distance between the
boundary point and our arbitrary choice of x1. This term
is clearly unphysical, and simulations show that there is
nothing special happening at the interface. Thus, the
first action reproduces the correct response and matches
numerics for the 1-band lattice metal.

For a more complicated illustration, consider an inter-
face between two different systems such that b1 is non-
vanishing in both, and varies in the x-direction. This
will give an x-dependent charge density. A simple way to
implement an x-dependent b1 is to introduce an on-site
energy term which is x-dependent. If we had a trans-
lationally invariant 1D lattice model with a fixed chem-
ical potential µ, then shifting the onsite energy up or
down will decrease or increase the electron density re-
spectively. Let us consider two 1D segments which have
a common boundary. Suppose the onsite energies are
constant within each region, but are offset between the
two regions by ε0. To simplify the description we assume
that they are glued periodically so, in fact, there are two
interfaces.

For an analytically tractable limit, let us study the

case when the offset is not too big when compared to the
bandwidth of the system, and with the chemical potential
fixed at µ = 0. The Hamiltonian is given by

H = −t
∑
n

[
c†n+1cn + c†ncn+1

]
+
∑
n

ε(n)c†ncn (52)

where ε(n) = ±ε0/2 when n ≤ N/2 or n > N/2 respec-
tively for a system with an even number of sites N. We
want to understand what happens to the charge density
in the system, and compare it to what is predicted by the
EM response action. With this Hamiltonian the system
consists of two segments (labelled by ` and r), each of
length Ls = Na/2 where a is the lattice constant.

We can now compute what b1(`) and b1(r) are for each
segment since there is a simple relation between charge
density and b1. As the length of the segments approaches
the thermodynamic limit, the average charge density will
not depend on whether we calculate it with open or pe-
riodic boundary conditions, so for simplicity we can cal-
culate the density with periodic boundary conditions for
each segment separately. With µ = 0 fixed, the Fermi
momentum for the segment ` with the offset +ε0/2 is
given by

0 = ε0/2−2t cos(kF,`a) =⇒ kF,` =
1

a
cos−1

( ε0
4t

)
. (53)

The Fermi momentum for system r is given by

0 = −ε0/2− 2t cos(kF,ra) =⇒ kF,r =
1

a
cos−1

(−ε0
4t

)
.

(54)

So, we have ρr = e
kF,r

π and ρ` = e
kF,`

π which by definition
implies that b1(r/`) = (π/e)ρr/` = kFr/`. Explicitly we
have

b1(`) =
1

a
cos−1

( ε0
4t

)
(55)

b1(r) =
1

a
cos−1

(−ε0
4t

)
. (56)

In our geometry we have interfaces at x = Ls and x =
2Ls ≡ 0 and b1 varies across the interfaces. The EM
response action predicts

ρ =
e

π

[
b1(`)(θ(x)− θ(x− Ls))

+ b1(r)(θ(x− Ls)− θ(x− 2Ls))
]
. (57)

This result matches what is found numerically as shown
in Fig. 5.

E. General Comments

Before we move on to discuss the more interesting
higher dimensional semi-metals, we will pause to make
a few important comments.

(i) Response Action Without Translation Invariance:
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Initially we parameterized the EM response of the 1D
metal through quantities such as the Fermi-wave vector,
and the velocity at the Fermi-points, which can only be
clearly defined when there is translation symmetry. That
is, when the system is homogeneous we can precisely de-
fine momentum space and these two quantities. What
we have found is that the response is actually more gen-
eral because we can define it in terms of the sources of
Lorentz violation67, i.e. an intrinsic charge density and
charge current. These two physical quantities can be
defined, and measured, without reference to momentum
space and thus we can drop all reference to a Fermi wave
vector and a Fermi velocity by using the density and cur-
rent respectively. The fact that the EM response is accu-
rate even without translation invariance is clearly shown
when we have an interface as shown in the previous sub-
section.

This physical definition of the response is special to
1D because the semi-metal EM response action is just∫
d2xjµAµ. This type of term will appear in every dimen-

sion, but in higher dimensions there are more interesting
anisotropic response terms that appear and which we will
discuss later. For d-dimensional space-time we can in-
troduce a (d − 1)-form bµ1µ2...µd−1

representing a source
of Lorentz breaking. We can furthermore take the dual
to generate a current jµ(b) = εµµ1...µd−1bµ1µ2...µd−1

which

represents an intrinsic charge density or charge current
which couples to Aµ minimally. This term yields the
higher dimensional analog of the 1D semi-metal EM re-
sponse. We comment later on the possibility to represent
higher dimensional response actions without reference to
momentum space.

(ii) Response of Filled bands: As is well-known from
elementary solid-state physics, a filled band of electrons
in a crystal carries no current. Each filled band also con-
tributes a charge density ρband = e

a or e/Ω where Ω is the
size of a unit cell in higher dimensions. The EM response
actions of topological semi-metals do not capture density
or current contributions from filled bands and thus the
response coefficients are ambiguous by a finite quantized
amount, i.e., bµ is ambiguous by the addition of half of a
reciprocal lattice vector.

(iii) Symmetries of bµ in 1D: Let us discuss the
transformation properties of bµ under time-reversal (T),
charge-conjugation (C), and inversion symmetry (P).
Since in 1D we know that b0 is proportional to a cur-
rent and b1 is proportional to a density we can easily
determine their symmetry properties:

T : b0 → −b0
C : b0 → b0

P : b0 → −b0 (58)

and

T : b1 → b1

C : b1 → b1

P : b1 → b1. (59)

Note that they are both even under C which is due to
the fact that our convention for bµ defined in terms of the
density and current has the electric charge factored out.
Subsequently, the response actions will have factors of
electric charge in their normalization coefficients. Note
that these symmetry properties only hold in 1D because
the transformation properties of bµ under these discrete
symmetries are dimension dependent.

(iv) Connection between 1D and 3D Semi-metals: As
mentioned in Section I, the effective response for a 3D
Weyl-semi-metal is

S[Aµ] = − e2

2πh

∫
d4xεµνρσbµAν∂ρAσ.

To be explicit, consider a system where bµ = (b0, 0, 0, bz)
in the presence of a uniform magnetic field Fxy = −B0.
In this case the action reduces to

e2Φ

πh

∫
dtdzεabbaAb = NΦ

e

π

∫
dtdzεabbaAb (60)

where Φ = −B0LxLy is the magnetic flux and a, b = 0, z.
From this we see that the 3D action, for this arrangement
of bµ and Fµν , reduces to NΦ = |Φ/(h/e)| copies of the
1D action. This connection hints that it could be pos-
sible to define the response of the 3D Weyl semi-metal
without reference to momentum space, and instead only
using physical quantities, e.g., the charge density and
current in a uniform magnetic field. It also shows why
the symmetry transformation properties of bµ in 1D are
different than those of bµ in 3D because of the additional
factor of Φ in 3D which is odd under time-reversal. We
will discuss this more in the section on 3D semi-metals.

III. DIRAC SEMIMETAL IN 2 + 1-DIMENSIONS

After our discussion of the simple 1-band metal, we will
now move on to a discussion of the 2D Dirac semi-metal
that has become widely recognized with the experimental
discovery of graphene41. Graphene is a honeycomb lat-
tice of carbon atoms with a low-energy electronic struc-
ture consisting of four Dirac points. These four Dirac
points are located in spin-degenerate pairs at the special
points K and K ′ in the hexagonal Brillouin zone. For
models like graphene, with both time-reversal and in-
version symmetry, the minimum number of Dirac points
that can appear in a 2D lattice model is two. Graphene
has twice this amount because of the spin-1/2 degeneracy
of the electrons due to the time-reversal symmetry with
T 2 = −1. For our purposes, we will focus on a reduced
case of spinless (or spin-polarized) electrons for which
(effectively) T 2 = +1. To recover results for graphene
one could trivially add in the degenerate spin degree of
freedom. Later in this section we will discuss a general
(even) number of Dirac nodes, but we will always assume
they are non-degenerate, for simplicity.

This section is organized as follows: (i) we first dis-
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cuss the construction of weak topological insulators, and
subsequently, Dirac semi-metals from wire-arrays of 1D
topological insulators; (ii) using the connection to the
weak TI state we conjecture a form for the electromag-
netic response of a Dirac semi-metal with two nodes,
discuss the required symmetries for the robustness of
this response, and show that a simple model yields the
predicted physical properties; (iii) we derive the conjec-
tured quasi-topological response effective action in the
continuum limit using two Dirac nodes; (iv) we provide
a physical interpretation of the response action in terms
of known electromagnetic quantities, and we discuss the
general measurable properties; (v) we discuss the gener-
alization of the continuum calculation to lattice models
and an arbitrary (even) number of Dirac nodes; (vi) fi-
nally we make some general comments on the nature of
the quasi-topological response, the similarities and dif-
ferences between responses in even and odd space-time
dimensions, and connect the results to the properties of
Chern insulator with non-zero charge polarization.

A. Dirac Semi-metal From Layered Topological
Insulators

1. Topological Insulator in 1D Protected by C or P
Symmetry

As discussed in Section I, each TSM can be constructed
from a collection of lower dimensional TIs which are
stacked and then coupled; the Dirac semi-metal (DSM)
is no different. To generate a DSM this way we must
begin with 1D TI wires. From the classification of 1D
TIs we know that to have a robust, non-trivial 1D topo-
logical phase we must require the presence of a symme-
try to protect the state2,3,75. This is inherently differ-
ent than the 3D Weyl semi-metal, which is constructed
from stacks of 2D Chern insulators that require no sym-
metry to have a protected topological phase76. There
are two possibilities for an appropriate 1D TI symme-
try: (i) charge-conjugation symmetry (C) or (ii) inver-
sion/reflection symmetry (P ). For C-symmetry the 1D
topological wire lies in class D of the Altland-Zirnbauer
classification2,3,77, and there is a Z2 topological invari-
ant that controls the EM response. While, in principle
there is no problem with considering insulators with C-
symmetry, in practice such a symmetry is approximate
and/or fine-tuned. For P -symmetry the wire belongs to
the set of inversion-symmetric insulators, and also has a
Z2 topological invariant8,9,78,79. In both cases we will call
the invariant Z1D. If Z1D takes its trivial (non-trivial)
value Z1D = +1(Z1D = −1) then the insulator will
have a bulk charge polarization of P1 = ne mod Ze(P1 =
(n+ 1/2)e mod Ze), and will exhibit an even (odd) num-
ber of low-energy fermion bound-states on each boundary
point. Let us note that we will use P to label reflection
symmetries (inverting a single coordinate) and I to rep-
resent inversion symmetry (reflection in all coordinates).

Of course in 1D they are the same, so we will simply use
P for 1D systems.

Since it will become important, let us review the EM
response of the 1D TI. The response is captured by the
effective action

Seff [Aµ] =
1

2

∫
d2xP1ε

µνFµν (61)

where P1 depends on the insulating phase as given above.
The requirement of either C or P symmetry enforces a
quantization of the polarization in units of half an elec-
tron charge3,8,9,78. Naively these symmetries should for-
bid a non-zero P1 since P1 → −P1 under C or under
P. However, since the polarization in 1D crystalline in-
sulators is only well-defined modulo integer charge, the
allowed values of P1 are 0 and e/2, which both satisfy
P1 = −P1 modulo integer electron charges3,80. Another
way to say this is that 1D insulators with polarizations
that differ by an integer electron charge are topologically
equivalent (or stable topologically equivalent).

It will be very useful to have an explicit system in
mind when discussing the features of the 1D TI, and the
subsequent weak TI and 2D Dirac semi-metal generated
by stacking the 1D TIs. Thus, let us choose a simple
model which exhibits a 1D TI phase: the 1D lattice Dirac
model. For translationally invariant systems, this model
has a Bloch Hamiltonian

H1DTI(k) = (A sin ka)σy + (B −m−B cos ka)σz (62)

where A,B,m are model parameters (we set A = B = 1
from now on), a is the lattice constant, and σα are
the Pauli matrices representing some degrees of freedom
within the unit cell. The phases of this model are con-
trolled by the parameter m, and for m < 0, or m > 2,
the system is a trivial insulator with Z1D = +1. For
0 < m < 2 the system is in a TI phase with Z1D = −1.
A benefit of this model is that we can judiciously choose
a C operator and a P operator such that the Hamiltonian
has that symmetry. For example, if we pick C = σy, then
CH1DTI(k)C−1 = −H∗1DTI(−k), and if we pick P = σz

then PH1DTI(k)P−1 = H1DTI(−k). So, as written, this
model is simple enough to have both C and P symmetry,
and thus can exhibit a protected topological phase. If
we add perturbations to the model that break one of the
symmetries, but preserve the other, then the topologi-
cal phase will remain stable. It is only if we break both
symmetries that we can destabilize the 1D TI phase.

Usually, for insulators, a C-symmetry only exists when
the model is fine-tuned, but inversion/reflection symme-
try can be approximately preserved in real materials. In
what follows we will emphasize the inversion or reflection
symmetric cases as it is more relevant when considering
semi-metal phases that might be realized in materials.
We note that this model also has time-reversal symme-
try with T = K (T 2 = +1). Although this symmetry
is not important for the 1D classification, it will become
important when we discuss the 2D semi-metal phase.
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2. Weak Topological Insulator in 2D Protected by C, P, or
I Symmetry

Before we approach the DSM let us consider the 2D
WTI phase generated by stacking a weakly-coupled set
of 1D TI wires. To be explicit, suppose that the wires
are oriented parallel to the x-axis and stacked perpen-
dicularly to spread into the y-direction. In the limit
of decoupled wires, we can determine that the system
will have a charge polarization in the x-direction, and
will have low-energy boundary states on boundaries with
a normal vector in the x-direction (or, in general, on
boundaries not parallel to the y-axis). In this limit, a
2D Hamiltonian representing this phase is just multiple
copies of H1DTI with a fixed value of 0 < m < 2 for each
wire. These distinguishing topological characteristics re-
main as long as the coupling between the wires does not
close the bulk gap, and as long as the relevant symmetries
of the 1D TI are preserved.

We can model this using a square-lattice Bloch Hamil-
tonian

H2DWTI(~k) = sin(kxa)σy+(1−m−cos(kxa)−ty cos(kya))σz

(63)
for a lattice constant a, and a new tunneling parameter
ty. Again, this model has both C and Px symmetry (re-
flection with x→ −x), with the same operators as above,
since the inter-wire tunneling term −ty cos(kya)σz pre-
serves both. It also has time-reversal symmetry T = K,
reflection symmetry in the y-direction with Py = I, and
inversion symmetry with I = σz. If we pick 0 < m < 2
then the model remains in the WTI phase as long as no
solutions for at least one of

cos(kya) = −m
ty

cos(kya) =
2−m
ty

(64)

can be found. We immediately see that as long as |ty| <
|m| and |ty| < |(2−m)|, then the system will be gapped,
and if additionally 0 < m < 2, the model will be in the
WTI phase.

This WTI is characterized by a 2D topological vector
invariant ~ν =

(
0, πa

)
, which is a half-reciprocal lattice

vector. The EM response of the 2D WTI depends on
this vector and is given by

Seff [Aµ] =
e

4π

∫
d3x νµε

µνρFνρ (65)

where ν0 = 0. This response represents the contribu-

tion of a charge polarization ~P1 to the action where
P i1 = e

2π ε
ijνj = ( e

2a , 0). The magnitude of the polar-
ization is due to a contribution of a 1D polarization of
e/2 (and e/2 boundary charge) per wire, as expected,
and the total charge on a boundary with normal vector
x̂ will be Ny

e
2 where Ny is the number of wire layers.

As discussed in Section I, the WTI phase does not give

rise to ν0 because there is no effective Lorentz-breaking
in the time-direction for a filled band. One could gen-
erate a ν0 in an insulator by applying a time-dependent
periodic field to generate Floquet dynamics, or perhaps
by coupling the system to a varying adiabatic parameter
that will drive cyclic adiabatic charge pumping81. For
the latter, this will drive a constant, quantized current
along the wires which will result in a non-vanishing ν0

proportional to the charge pumping frequency. We will
prove below that, just like νi is connected to the intrinsic
charge polarization, ν0 is related to the intrinsic magne-
tization, which is why producing currents will generate
such a term.

3. From 2D Weak Topological Insulator To Dirac
Semi-metal

We will now give an explicit example of a Dirac semi-
metal, and in Section III B we will discuss its physical re-
sponse properties and characteristics. We will then move
on to deriving the results for a generic Dirac semi-metal
in the subsequent sections.

It is easy to construct an explicit example of a DSM
phase from the WTI model we have been using by choos-
ing m and ty such that at least one of Eq. 64 has a solu-
tion. To be concrete, let m = 1/2, ty = −1, and a = 1, for
which cos ky = −m/ty has two solutions: ±kyc = ±π/3,
which implies there are Dirac points at ~k = (0,±kyc).
If we expand the Hamiltonian in Eq. 63 around these
points, we find the continuum Hamiltonians

H2Dcon = δkxσ
x ±
√

3

2
δkyσ

z (66)

which are anisotropic Dirac points with δkx the devia-
tion from kx = 0, and δky the deviation from ky = ±kyc.
If we tuned the velocity parameter A in Eq. 62 to be√

3/2 we would find isotropic Dirac points. In Fig. 6
we show the energy spectrum of this model, at the pa-
rameter values given above, in a strip/cylinder geometry
with open boundary conditions in the x-direction, and
periodic boundary conditions in the y-direction. We see
the Dirac points at the predicted values, and also a flat-
band of mid-gap states which are exponentially localized
on the edges of the strip.

Despite some superficial differences, the square-lattice
model for the DSM captures the same physics as the
honeycomb-lattice graphene model. In fact, in Appendix
A we show that our square lattice model for the DSM can
be continuously deformed to the honeycomb graphene
model, and thus we can easily consider graphene to be
constructed from layers of 1D TIs if we trivially add spin
degeneracy. This matches the well-known result that
graphene has anisotropic boundary states that appear
only on zig-zag edges and not arm-chair edges, which
is a consequence of this layered structure, and the close
connection to the WTI model of stacked 1D TIs41.
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B. Motivation of Quasi-Topological Response of 2D
Dirac Semi-metals

Following the general discussion in Section I, when the
DSM is formed, we expect the quasi-topological electro-
magnetic response to be dependent on the momentum
and energy differences between the Dirac nodes. In this
sub-section we will present a form of the quasi-topological
response that is analogous to Eq. 65 for the weak TI, and
we will provide physical evidence that our conjecture is
correct. In Section III C we will derive the result more
systematically.

For our explicit choice of parameters we should have
a separation vector bµ = (0, 0, π/3). As we will prove in
Section III C, one contribution to the EM response is the
analog of Eq. 65 for the WTI phase, that is:

Seff [Aµ] =
e

4π

∫
d3x bµε

µνρFνρ. (67)

From the interpretation of the 2D WTI response above,
this implies a non-zero charge polarization

P i1 = − e

2π
εijbj . (68)

We warn that when there are multiple pairs of nodes,
one must be careful when constructing the value of bi
that enters the response due to the Z2 nature of the po-
larization. We will discuss this in detail in Section III E,
but for now we will continue analyzing the simplest case
with only two nodes.

1. Charge Polarization in a 2D Dirac Semi-metal

Let us now try to understand the origin of the polar-
ization. To illustrate this, we should heuristically view
the DSM model Hamiltonian as representing a family of
1D insulators, parameterized by the values of ky. That
is, each value of ky (except ky = ±kyc) represents a 1D
insulating wire; in the model we have picked the wires are
effectively oriented in the x-direction. From our model
we see that the 1D wires with ky values on opposite sides
of a Dirac point have opposite values of Z1D, and thus
their contributions to the overall charge polarization dif-
fer by a quantized amount. We already know that for the
completely gapped WTI phase, each wire contributes e/2
boundary charge (modulo ne) to an edge normal to the x-
axis. In comparison, it is clear that for the DSM only the
fraction of the wires between the Dirac nodes contribute
e/2, while the remainder contribute charge 0( mod e).

We can also see that, physically, the bulk polarization
manifests as an observable bound charge on the sam-
ple edges. In Fig. 7 we show the charge density as a
function of position along the open boundary direction
for the cylinder geometry mentioned above (see Fig. 6).
We have subtracted off the average background charge,
and two peaks in the charge density can be seen; one on
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FIG. 6. The energy spectrum for the Hamiltonian in Eq.
63 tuned into the 2D Dirac semi-metal. The figure shows
exact diagonalization of this model in a strip geometry (x-
direction with open boundaries, and y-direction with periodic
boundaries) with ±kyc = ±π/3 and by = π/3. The flat band
of states stretched between the Dirac nodes are edge modes.

each end of the sample. The amount of charge localized
on each end matches the charge density calculated from
Eq. 67 at an interface where the polarization changes
from P x1 = − e

2π
π
3a = − e

6a to zero (we have temporar-
ily restored the lattice constant). More convincingly,
in Fig. 8 we show the numerically calculated boundary
charge values versus the analytically predicted value of
the polarization/boundary-charge over a range of values
of m in our square lattice model. The numerical and an-
alytic results match almost exactly except near m = 1
where the analytic result predicts a cusp-like shape that
is cut-off in the numerical calculations from finite-size ef-
fects. Interestingly we see that even though the system is
gapless, the charge polarization calculation gives reason-
able, physical results, e.g., it gives a physically meaning-
ful prediction for the boundary charge. This is unusual,
but not unprecedented, as Ref. 61 has shown that one
can have a well-defined polarization in a Chern insulator
despite the fact it has gapless boundary modes. We will
comment more about this point later.

Already for just two nodes there are some important
subtleties to consider when calculating the polarization.
The first subtlety has to do with which direction the
polarization should point, for example, what determines
which boundary has the positive charge in Fig. 7, and
which end has a negative charge? The answer to this
question is well-known: to uniquely specify the polariza-
tion we must apply an inversion-breaking (or C-breaking)
field that picks the direction of the polarization, and
then take the limit as the system size goes to infinity be-
fore setting the symmetry-breaking perturbation to zero.
This is the conventional paradigm for spontaneous sym-
metry breaking. Thus, in order to uniquely specify the
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FIG. 7. We have plotted the deviation of the charge density
from the average for Lx = Ly = 120 at half-filling in a 2D
Dirac semi-metal with by = π/3 (i.e., same parameters as in
the previous figure). The average background charge per site
is Q0 = 120e. We notice peaks at the boundaries of the system
due to the charge carried by localized mid-gap modes. The
charge density exponentially decays to the value of Q0 = 120e
within a few lattice sites. The total charge at the boundary
calculated from summing the boundary charge near the right
edge is Qb = −19.6e which matches the expected result Qb =
P x1 Ly = − e

6a
120a = −20e. The deviation from −20 is a finite-

size effect and the result will converge to the analytic value
as the system size increases.

sign of the polarization, and hence effectively the sign of
bi, we must turn on a small symmetry breaking pertur-
bation before we calculate, and take the limit in which
this perturbation vanishes. This issue will arise in Sec-
tion III C when we try to calculate Eq. 67 using field-
theoretical methods. To be consistent with the notation
in the next section, we will call the inversion symmetry
breaking parameter mA.

The second subtlety is similar in nature, and has to
do with determining the value of the polarization in a
bulk crystalline sample. In fact, in a bulk sample with-
out boundary, since the Brillouin zone is periodic and
we have no edge states to reference, we cannot deter-
mine a unique value for the polarization of a 2D Dirac
semi-metal. For example, in the simplest case of two
nodes, how do we determine the magnitude of the po-
larization if we do not have a preferred way to take the
momentum difference between the Dirac nodes? This
is a problem because there are multiple ways to sub-
tract the two momenta in a periodic BZ. For our con-

crete example, our nodes lie at ~k = (0,±π/3), and so

we could let ~b = 1
2 (0, 2π/3) or, e.g., we could subtract

the nodes across the Brillouin zone boundary to find
~b′ = 1

2 (0, 4π/3). The measurable property of the charge
polarization is a boundary charge, which is determined by
the occupation of the edge states. For two nodes there
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FIG. 8. The boundary charge is plotted vs. the mass parame-

ter m. The solid blue curve represents
eby
2π

where by calculated
from the solutions to cos ky = −m/ty for a range of m and
with ty = −1. The open circles are the numerically calculated
boundary charge (per layer) for a system with open bound-
aries in the x-direction (Lx = 120), and periodic boundary
conditions in the y-direction. They match except near m = 1
where the cusp-like analytic result is cut-off in the numerics
due to finite-size effects.

are two possible cases for how the edge states traverse
the edge BZ. If they go through the origin, we should

use ~b = 1
2 (0, 2π/3), or if they instead go through k = π,

then we should use ~b = 1
2 (0, 4π/3) = (0, π)− 1

2 (0, 2π/3).
These two configurations can be interchanged by first
adding a weak topological state, whose edge states will
traverse the entire edge BZ, and then coupling it to the
DSM which will have the ultimate effect of switching the
DSM edge states from one configuration to the other. In
Section III E we will see for the general case that, similar
to the case of a polarized Chern insulator, the connec-
tion between the bulk value of the polarization and the
boundary charge can have a more complicated relation-
ship when more than two nodes are present and there are
overlapping regions of edge states in the edge Brillouin
zone.

2. Symmetry Protection of the Response of 2D Dirac
Semi-metals

Before we move on to discuss the electro-magnetic re-
sponse due to the time-component b0, we will address
the important issue of symmetry-protection. For the 1D
TI, and the 2D WTI constructed from stacks of these 1D
TI wires, we have only required inversion symmetry to
have a well-defined electromagnetic response. This sym-
metry quantizes the 1D polarization to be 0 or e/2 on
each wire, and as shown in Refs. 8 and 9, this symmetry
is also enough to quantize the polarization (per wire) for
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the 2D WTI. However, it is well-known82 that for local
stability of the Dirac nodes in a DSM, one needs at least
the composite TI-symmetry (for T 2 = +1). We would
like to understand the importance of this seemingly dif-
ferent requirement for the polarization response and the
Dirac-node stability. This issue does not arise, for ex-
ample, in the 3D Weyl semi-metal since the Weyl nodes
are locally stable without adding any additional symme-
tries, and hence, it is important to carefully discuss in
the present context.

First, for 1D wires, TI also quantizes the polarization
since P1 is odd under this symmetry. Thus, we could
have already constructed a 1D TI and a 2D WTI using
this symmetry instead. In fact, the explicit model we
have been considering has TI symmetry as written, and
thus we were able to avoid discussing this issue until now.

Importantly, in dimensions greater than one, TI sym-
metry has a crucial effect: it constrains the Berry curva-
ture to satisfy F (kx, ky) = −F (kx, ky). Since the Berry
curvature flux is only defined modulo 2π on a lattice, this
requires that for gapped systems either (i) F (kx, ky) = 0
or (ii) F (kx, ky) = π, and is constant throughout the
Brillouin zone (we will only consider the former case83).
Hence, with this symmetry we expect a vanishing Berry
curvature. However, if F (kx, ky) is not required to be
smooth, we can have singular points in momentum space
where F (kxc, kyc) = π; these are exactly the set of Dirac
node locations. Since the Berry flux that passes through
a closed manifold, e.g., the BZ, must be a multiple of 2π,
this implies that there are an even number of singular
points, i.e., fermion doubling. This conclusion immedi-
ately implies local stability of the Dirac nodes, because
if TI is preserved and one of the Dirac nodes disappears
locally by itself, then there will not be an integer amount
of Berry flux in the BZ which is a contradiction.

This constraint, and thus the TI symmetry itself, is
also essential for the 2D charge polarization response of
the DSM. Let us illustrate the idea. Suppose we wish to
calculate the charge polarization of a crystalline DSM.
The physical consequence of a non-vanishing polariza-
tion is a boundary charge, so let us specify a particular
boundary with a normal vector GN in the reciprocal lat-
tice. Let GF be the dual vector to GN , i.e., GiF = εijGjN .
Then GF is the normal vector to a set of lattice lines
whose ends terminate on the surface normal to GN . For
example, pick GN = 2πx̂ and GF = 2πŷ. In this case
our choice picks out a family of 1D wires parallel to the
x-direction and stacked in the y-direction. Consequently,
this gives rise to a family of 1D Bloch Hamiltonians pa-
rameterized by the momentum along GF . In this exam-
ple we have the family Hky (kx) which is parameterized
by ky.

To calculate the charge polarization of the DSM with
our choice of GN (i.e., the polarization parallel to GN ),
we can start by asking an important question: how much
does the charge polarization of the family of 1D systems

Hky (kx) vary as ky is varied? We find

P x1 (ky2)− P x1 (ky1)

=
e

2π

∫ π

−π
dkxax(kx, ky2)− e

2π

∫ π

−π
dkxax(kx, ky1)

=
e

2π

∫ π

−π
dkx

∫ ky2

ky1

dkyF(kx, ky)

=
e

2

Nenc∑
a=1

χa (69)

where we have used Stokes theorem to replace the line
integrals over the Berry connection a(k) by an area in-
tegral over F(kx, ky) = ∂kxay − ∂kyax, i.e., the Berry
curvature, and we have assumed only one occupied band
for simplicity. In the last equality we used the fact that
for systems with TI-symmetry the Berry curvature only
contains contributions from the singular Dirac points,
and the sum runs over all enclosed Dirac nodes. The
quantity χa = ±1, which we will call the helicity of a
Dirac node, indicates whether the flux carried by the
node is ±π. Thus, two 1D Hamiltonians that are mem-
bers of the parameterized Hamiltonian family specify cy-
cles in the Brillouin zone, and from this result we see
that the polarization can only change if the area of the
Brillouin zone enclosed between those two 1D cycles con-
tains Dirac nodes. This restriction is the key feature of
a TI-symmetric system that determines the polarization
response. As an aside we note that, since the BZ is a
closed manifold, there are two possible ways to choose
the region “enclosed” by the closed cycles and this is
related to one source of ambiguity in the value of the
polarization discussed earlier.

This result in Eq. 69 is generically true given a general
family of Bloch Hamiltonians (with TI-symmetry) with
some orientation specified by GN , and parameterized by
momentum along GF . In fact, given two 1D cycles that
are members of a parameterized Hamiltonian family in
the Brillouin zone, then any deformation/rotation of the
orientation of the lines, i.e., variation of the choice of the
direction vector GN will not change the difference in po-
larization between the two parallel lines unless the lines
cross Dirac points during the deformation process. This
implies that the changes in polarization are always quan-
tized in the presence of TI-symmetry, which is crucial for
being able to determine the polarization from the nodal
data.

Since the changes in polarization between different cy-
cles are quantized, we might now ask about the proper-
ties of the total polarization. Since each 1D subspace is
mapped onto itself by TI, and the polarization of that
1D system is odd under TI, we see that the polarization
of each of the wires/cycles is quantized to be 0 or e/2.
The other wires in the family of Hamiltonians either have
exactly the same polarization, or they differ by a quan-
tized amount. For the case with only two nodes, this
argument shows that the (fractional part of the) bound-
ary charge, up to an integer per unit cell, is completely
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determined by the length of bi that projects onto the edge
BZ, which confirms what is predicted in Eq. 67 (more
subtleties will arise when we have to consider cases with
nodes arising from multiple bands that give rise to over-
lapping boundary states). The sign of the polarization
for two nodes, however, is still ambiguous and can only
be determined after a symmetry-breaking parameter is
added, and after knowing whether we should project the
difference between the nodes through the edge BZ origin
or the edge BZ boundary. As we will discuss more care-
fully below, for two nodes the overall sign and value of
the polarization can also be modified by the addition of
non-trivial, occupied weak TI bands to the system. As
far as the boundary theory is concerned, this is equiv-
alent to adding an additional flat band of edge states
which traverse the entire Brillouin zone, and because of
the Z2 nature of the polarization this has to be carefully
handled.

3. Magnetization Response of a 2D Dirac Semi-metal

After finishing our discussion of the symmetry protec-
tion, and the importance of TI symmetry for the charge
polarization, let us now move on to a discussion of the
response due to a non-vanishing b0. We have seen that
the spatial part of bµ can be interpreted as a charge po-
larization, and, as will be shown below, the component b0
represents an orbital magnetization. Before we provide
the explicit proof, let us assume that this is the case and
support the conjecture with some physical arguments and
numerical calculations.

The physical manifestation of a non-vanishing magne-
tization is a circulating current bound at the edges of
the sample. From our conjecture, we should be able to
induce such a magnetization by turning on a b0. We can
generate a b0 by adding the term γ sin kyI to the Dirac
semi-metal lattice Hamiltonian in Eq. 63. The value of
b0 generated would be b0 = (γ/~) sin kyc, where ky = kyc
is the location of the Dirac node (and consequently −kyc
is the location of the other node). On topological edges
we can immediately see that the addition of this term
will cause the flat edge modes to disperse (see Appendix
B 2 for a proof). This is also seen the numerical calcula-
tions in Fig. 9a. Thus, the dispersion of the edge modes
attached to the Dirac points is exactly what generates
the bound current; at least on the edges which actually
harbor topological bound states.

Let us try to confirm this result numerically by cal-
culating the current in the lattice model. Just as for
the polarization, to properly calculate the response nu-
merically, there is a subtlety about how to fill the edge
states. To do this properly we again need to choose a
small, non-zero inversion-breaking mass before filling the
edge modes. In the language of Ref. 61, to properly fill
the edge modes in the presence of a non-vanishing mA

we need to use the adiabatic filling, not the thermal fill-
ing, if we want to calculate the magnetization. One can
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FIG. 9. The Energy spectrum is shown for the DSM with
b0 6= 0 and different masses turned on. (a) With mA 6= 0, we
see that the edge modes split and don’t cross as they move
between the Dirac nodes. (b) With mB 6= 0, it looks like the
edge mode dispersion of a Chern insulator and they cross at
k = 0.

see the energy spectrum for b0 6= 0 in Fig. 9a with a
finite mA parameter. Adiabatic filling implies filling all
of the states, including the edge modes, in the lower half
of the spectrum below the energy gap induced by mA.
In Fig. 10 we plot the boundary current localized near
a single edge vs. b0. The bound edge current is exactly
eb0
2π , which corroborates our conjecture that the magne-
tization is proportional to b0.

It is interesting to note that in the model in Eq. 63 the
x and y directions are very different since we have topo-
logical wires oriented along x that are stacked in y. This
should be contrasted with the fact that an orbital mag-
netization in 2D implies the existence of a bound current
on any edge (i.e., any interfaces where the magnetization
jumps from a finite value to zero). For the topological
edges, with normal vectors parallel to the x-direction, a
non-zero b0 gives the edge modes a non-zero dispersion as
shown in Fig. 9a. The dispersing edge states produce an
exponentially localized current jybound that corresponds



20

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b0

2
π
J
y

 

 

Simulation

Theory

FIG. 10. The bound current Jy localized near a single edge
vs. b0 is plotted for the model in Eq. 63 with by = π

3
,mA =

10−3, Lx,y = 120, and periodic boundary conditions in the
y-direction. The current matches the field theory prediction.

to the change in magnetization at the edge. However, in
the y-direction there are no topological edge modes, and
it is interesting to consider what happens to jx on these
edges.

We show the result of a numerical calculation in Figs.
11 and 12. In the former, we compare the current pro-
files of the different edge types in two different cylinder
geometries corresponding to the two different edge types.
In Fig. 11a we show the current on a non-topological edge
(Jx on an edge normal to ŷ), which is still localized on
the boundary, but has an oscillatory decay. The wave-
length of the oscillation in fact matches the wavelength of
the Dirac node wave-vectors in momentum space. In Fig.
11b we show the current localized on topological edges
(Jy on an edge normal to x̂) and we can see that each
edge carries exponentially localized current with opposite
currents on opposite edges.

In Fig. 12 we show the current density on a fully open
sample, where we see that all of the current is localized
near the edges. The colors are associated to the mag-
nitude of the current parallel to a given edge. Essen-
tially this is just a different presentation of the data in
Figs. 11a,b that shows that on both sets of edges there
is a bound current, as expected from the orbital magne-
tization. Interestingly, on the edges without topological
bound states the current oscillates as it decays. However,
the magnitude of the current localized near edges of ei-
ther type is identical, so indeed, even though the model
is highly anisotropic, the bulk orbital magnetization gen-
erates bound currents on all edges, not just topological
ones.

Further, we note that in the case with just two nodes
the magnetization has no dependence on whether the

edge states go through the origin of the edge BZ or
through the boundary of the edge BZ (i.e., at ky = π)
assuming that the sign of the inversion breaking param-
eter and the helicities of the nodes remain the same, and
only the edge state locations are flipped. This is ex-
plicitly demonstrated in Fig. 11 where the total currents
passing through each edge match exactly for these two
cases. To generate the second case, where the edge states
pass through π in the edge BZ we can choose our square
lattice model with the same parameters as before except
letting A = −1, ty = −1. Below we will introduce quanti-
ties Θi where i = x, y that track whether the edge states
pass through the origin of the edge BZ (Θi = +1) or the
boundary of the edge BZ (Θi = −1) for different direc-
tions (e.g., i = x or y). As we will see, these signs will
enter the expressions for the charge polarizations, but not
the magnetization. When there are more than just two
nodes the magnetization is affected by the different edge
state configuration possibilities, but not the same way as
the polarization.

Now that we have motivated the electromagnetic re-
sponse of the DSM using some analytic and numeric
results on an example model, we will now prove these
claims using a Dirac semi-metal model with two nodes,
and then go on to generalize to a generic even number of
nodes.

C. Derivation of Response for Continuum Dirac
Semi-metal in 2D

In the previous subsection we posited a form for the
EM response action of the DSM, and gave some concrete
examples in which the numerical simulations in lattice
models matched the response derived from the effective
action in Eq. 67. In this subsection we will derive the
EM response from a continuum model of the DSM using
standard linear response techniques. We derived an ex-
ample of a continuum Hamiltonian for the DSM in Eq.
66, and we will use this as our starting point. After tun-
ing the velocity coefficients to be isotropic, we can write
the Hamiltonian for two Dirac cones that exist at the
same point in the Brillouin zone as

H = kxI⊗ σx + kyτ
z ⊗ σz (70)

where τa are Pauli-matrices representing the two nodes.
To this Hamiltonian we will add two perturbations, the
first of which is a splitting vector bµ = (b0, bx, by) that

shifts the two cones apart in momentum (by 2~b) and en-
ergy (by 2b0). With the inclusion of this vector, which, if
needed, we will allow to be slowly varying in space-time,
the Hamiltonian becomes

H = kxI⊗σx−bxτz⊗σx+kyτ
z⊗σz−byI⊗σz+b0τ

z⊗I.
(71)

The second type of perturbation we will allow for is the
coupling to external EM fields, which enter the Hamilto-
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FIG. 11. Plots of (a) Jx vs. y which is the current on the
non-topological edge and (b) Jy vs x which is the current on
the topological edge. This is for the Dirac semi-metal con-
sidered in previous figures but with a non-zero b0. For this
system by = π

3
, γ = 0.1,mA = 0.1, and Lx,y = 96. There

are open boundary conditions in both directions. We note
that jy is exponentially localized whereas jx is less-sharply
localized and oscillates as it decays into the bulk. The oscil-
lation wavelength coincides with the wave-vector location of
the Dirac nodes in k-space. With open boundary conditions,
we must be careful to properly fill the edge states by using a
non-zero inversion breaking mass term mA. The currents with
Θy = ±1 are plotted in black and red. The total current near
the boundaries is identical in both cases and thus the magne-
tization does not depend on how the edge states traverse on
the edge BZ. The slight difference between the current profiles
in (b) is due to the fact that the wavefunctions of the occu-
pied edge modes that determine those boundary currents are
different in the two cases with Θy = ±1, however the total
current is the same.

nian via minimal coupling k→ k− (e/~)A.

To calculate the linear response we need the current
operators that will enter the Kubo-formula calculation.
For the EM field the current operators are

JxA =
δH

δAx
=
e

~
I⊗ σx ≡ e

~
Γx (72)

JyA =
δH

δAy
=
e

~
τz ⊗ σz ≡ e

~
Γy (73)

J0
A =

δH

δA0
=
e

~
I⊗ I. (74)

For the splitting vector bµ, the associated currents are

JxB =
δH

δbx
= −τz ⊗ σx ≡ Λx (75)

JyB =
δH

δby
= −I⊗ σz ≡ Λy (76)

J0
B =

δH

δb0
= τz ⊗ I ≡ Λ0. (77)

FIG. 12. With a similar set up to the previous figure, we
use a density plot for the current vs x, y position for the 2D
Dirac semi-metal with by = π

3
, γ = mA = 0.1, Lx,y = 96, and

we have open boundary conditions in both directions. We
calculated the current-density in the x-direction and summed
it with the current density in the y-direction to produce this
pseudo-color plot. We see that the currents are spatially lo-
calized at the edges, strongly for the one moving along the
edges parallel to the y-axis and less-strongly and oscillatory
for the one moving along the edges parallel to the x-direction.
The total magnitude of the current in the neighborhood of
each edge is the same, and the current circulates around the
boundaries of the sample.

We want to calculate the “topological” response terms
for the DSM and, in 2+1-d, we will see that such re-
sponse terms will break either time-reversal or inversion
symmetry. It is well known that Dirac fermions in 2+1-
d exhibit a parity anomaly that gives rise to a Chern-
Simons contribution to the effective action that encodes a
non-vanishing Hall conductivity28,84. There is a subtlety:
to calculate the non-vanishing coefficient one must in-
troduce a finite, (time-reversal) symmetry-breaking mass
parameter that is taken to vanish at the end of the cal-
culation. Since the resulting response coefficient ends
up being proportional only to the sign of the symmetry
breaking parameter, it remains non-zero even in the limit
where the symmetry breaking is removed. This effect is
a manifestation of a quantum breaking of symmetry, i.e.,
an anomaly. One of the main results of this paper is that
we will show the same is true for an inversion-breaking
mass term, not just the time-reversal breaking mass term.

To calculate the responses due to Aµ or bν perturba-
tions, we will need to introduce two different types of
symmetry-breaking mass terms

ΣA = I⊗ σy (78)

ΣB = τz ⊗ σy. (79)

These two different mass matrices commute, and
thus they are competing mass terms. They both
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separately anti-commute with the kinetic part of
the Dirac Hamiltonian (including the constant mo-

mentum shift ~b), and thus the spectrum will be
gapped as long as the coefficients (mA,mB) of
(ΣA,ΣB) are not equal in magnitude. Explicitly, if
both mass terms are activated, the energy spectrum
is ±E± = ±

√
(kx − bx)2 + (ky − by)2 + (mA ±mB)2

which is gapped unless |mA| = |mB |. These mass terms
are very familiar in the literature: ΣA is essentially the
inversion-breaking Semenoff mass term85, and ΣB is the
continuum version of the time-reversal breaking Haldane
mass term28.

Generically, in linear response, we will find contribu-
tions to the effective action of the form

Seff [Aµ, bν ] =

∫
d3p1

(2π)3
Aaµ(p1)Πµν

ab (p1)Abν(−p1), (80)

which has been written in the Fourier-transformed basis,
and where a, b = A,B, AAµ = Aµ and ABµ = bµ. The lin-
ear response calculation (or equivalently the calculation
of the quadratic term in the effective action) amounts to
the calculation of the long-wavelength, DC limit of the
generalized polarization tensor

Πµν
ab (ν,q) =

~
2

∫
dωd2p

(2π)3
tr [JµaG(ω + ν,p + q)Jνb G(ω,p)]

(81)
where µ, ν = 0, x, y; a, b = A,B, and G(ω,p) is the space
and time Fourier transform of the single-particle Green
function of the unperturbed (bµ = 0, Aµ = 0) Dirac
model.

The calculation of Πµν
ab is sensitive to the choice of sym-

metry breaking masses ma. Since we are only interested
in extracting the topological terms in the semi-metallic
limit, we can consider two cases (i) |mA| > |mB | = 0 and
(ii) |mB | > |mA| = 0. We will briefly consider the case
when both mass terms are non-zero in Section III F.

The Fourier transform of the unperturbed Green func-
tion in either of these limits will be

G(ω, p) =
1

ω − pxΓx − pyΓy −mcΣc

=
ω + pxΓx + pyΓy +mcΣ

c

ω2 − |p|2 −m2
c

(82)

where the label c = A or B, and is not summed over.
The topological terms in the polarization tensor can be
calculated by extracting the terms proportional to odd
powers of the symmetry breaking mass:

Πµν
ab (ν,q) =

~
2

∫
dωd2p

(2π)3
f(ω + ν,p + q)f(ω,p)

× tr [JµamcΣcJ
ν
b (ω + pxΓx + pyΓy)

+ Jµa (ω + ν + (px + qx)Γx

+ (py + qy)Γy)JνbmcΣ
c] (83)

f(ω,p) =
1

ω2 − |p|2 −m2
c

. (84)

Now, to be explicit, let us consider case (i) where mA is
the non-vanishing mass term. We can extract the leading
term in the external frequency/momentum which we find
to be

Πµν
ab (ν,q) = 4

e

2
mAε

µρν(iqρ)σab

∫
dωd2p

(2π)3
[f(ω,p)]

2

=
4π2

(2π)3

e

2

mA

|mA|
εµρν(iqρ)σab

=
e

4π
(sgn mA)εµρν(iqρ)σab (85)

where qρ = (ν,q) is the external 3-momentum, σAB =
σBA = 1, and σAA = σBB = 0. This leads to a term in
the effective action

S
(A)
eff [Aµ, bν ] =

e

2π
(sgn mA)

∫
dtd2xεµνρAµ∂νbρ. (86)

This result exactly matches Eq. 67 except for the factor
of sgn mA which we already motivated as being necessary
to pick the sign of the charge polarization.

From this continuum calculation for two nodes we can
extract the polarization and magnetization in a nice way
as

(M, εijΘiPi) =
e

4π
(sgnmA)

2∑
a=1

χaKa,µ (87)

where Ka,µ are the momentum and energy locations of
the nodes, and the χa are the helicities of the nodes. Even
for just two nodes the polarization calculated in the con-
tinuum approximation is ambiguous since the edge states
connecting the nodes could pass through the origin or
boundary of the edge BZ. We have corrected for this in
Eq. 87 by adding the extra signs Θi = ±1, (i = x, y)
which indicate exactly if the edge states run through the
origin on the edge BZ (Θi = +1) or through π (Θi = −1)
as motivated before. In general, when not on the square
lattice, there is one value of Θ for each independent spa-
tial direction. These extra signs only enter the formula
for the polarization, not the magnetization as mentioned
above.

A precise definition of Θi can be determined purely
from the bulk properties of the system by calculating the
Wilson line of the Berry connection along the 1D Bloch
Hamiltonian subspace that projects onto k = π in the
respective edge BZs (it is analogous to calculating the
weak invariant νi). This Wilson line can only take two
values because of the TI symmetry, and its trivial (non-
trivial) value corresponds to Θi = +1(−1). It is impor-
tant to note that a knowledge of Θi is not contained in
the manifold of band touchings alone, and requires some
knowledge of the occupied bands. For the two node case,
this implies that the (fractional part of the) polarization
can only be determined up to an overall sign if we only
have knowledge of the continuum band touching points
and their locations in the BZ. However, the magnetiza-
tion does not share this particular ambiguity due to Θi.
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This might be attributed to its more isotropic nature.

In this continuum picture we could also imagine having
more flavors of fermions with different nodal locations,
but with Hamiltonians of essentially the same form as in
Eq. 70. Since we want to eventually consider lattice mod-
els with multiple pairs of nodes we know there must be an
even number of total nodes, say 2N, and an equal number
N of them have opposite helicity. From our calculation,
the polarization/magnetization for such a system might
be trivially generalized as

(M, εijΘiPi) =
e

4π

2N∑
a=1

gaχaKa,µ

where ga represents the sign of the symmetry-breaking
mass for each Dirac point. Unfortunately, this simple
generalization has a few caveats, one example being that
it does not take care of the Z2 nature of the edge states,
which becomes important when edge states from different
blocks overlap in the edge BZ. We will discuss the details
of this generalization in Section III E.

If we repeat this calculation for case (ii), where mB is
non-vanishing, the result is almost identical, except for
the replacement of the matrix σab by the Kronecker δab,
i.e., the polarization tensor is

Πµν
ab (ν,q) =

~e2
a

4π
(sgn mB)εµρν(iqρ)δab (88)

where the charge eA = e/~ and eB = 1. Now this gives
rise to two terms in the effective action

S
(B)
eff [Aµ, bν ] =

e2

2h
(sgn mB)

∫
dtd2xεµνρAµ∂νAρ

+
~

4π
(sgn mB)

∫
dtd2xεµνρbµ∂νbρ. (89)

The first term is the conventional Chern-Simons term
which yields a Hall conductivity of σxy = e2

h (sgn mB)

which consists of e2

2h (sgn mB) from each of the two Dirac
cones. This type of response has been discussed exten-
sively in the literature so we will not dwell on it here. The
second term, which does not yield an electromagnetic re-
sponse since it is independent of Aµ, will be discussed
later in Appendix C.

D. Physical Interpretation of the Dirac Semi-metal
Response

The topological EM response of the DSM is more com-
plicated than the 1D band metal because the response
density and current depend on derivatives of bµ, not just
the vector itself. When the time-reversal mass term mB

dominates, and there are only two nodes, then we just
generate the well-known Chern insulator phase28, or its
associated parity anomaly in the limit mB → 086. In
this section we will consider the less well-known case

of when mA dominates, and the resulting inversion-
breaking semi-metal limit. This will help us solidify an
appropriate definition of charge polarization and magne-
tization for 2D Dirac semi-metals, akin to the definition
provided for Chern insulators in Ref. 61. In Section III F
we will revisit the case when mB is non-vanishing, and
consider the effects of a finite mA term in the Chern in-
sulator phase.

1. Response In the Inversion-Breaking Limit (mA

Dominating Regime)

Let us consider the limit in which the inversion break-
ing mass mA dominates over the time-reversal mass mB ,
and then send them both to zero (with mB → 0 first).
In that limit the response that we derived is given by

S
(A)
eff [Aµ, bµ] =

e

2π
(sgn mA)

∫
dtd2xεµνρAµ∂νbρ.

The current from this effective action is given by

jα =
e

2π
(sgn mA)εαµν∂µbν (90)

=⇒ ρ =
e

2π
(sgn mA)(∂xby − ∂ybx)

ji =
e

2π
(sgn mA)εij(−∂0bj + ∂jb0).

To simplify let us assume that mA → 0+ so that we can
replace sgnmA = +1.

These equations can be more easily interpreted if we
replace bi via the polarization P i1 = − e

2π ε
ijbj to generate

ρ = −∂iP i1
ji = ∂0P

i
1 +

e

2π
εij∂jb0.

We immediately recognize these equations as the contri-
butions to the charge density and current from gradients
and time-derivatives of the polarization. It is also easy to
interpret the term involving b0, as it just represents the
contribution to the current from gradients in the mag-
netization. We can let M = e

2π b0 be the out-of-plane
magnetization, from which we finally arrive at

ρ = −∂iP i1
ji = ∂0P

i
1 + εij∂jM (91)

which are the familiar constituent relations for bound
charge density and bound charge current in 2D. Thus
we see that, in the limit where mA dominates over mB

and then tends to zero, the DSM will exhibit an effective
polarization and magnetization if bi and b0 are non-zero
respectively. Bound charge and current manifest at in-
terfaces or boundaries where the bulk values of bµ are
changing, and are the consequence of the topological re-
sponse.

The relation between bµ and the bulk magnetization
and polarization makes an important physical connection
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between generic electromagnetic quantities (P i1,M), and
the quantities (εijbj , b0) that are determined by the en-
ergy and momentum locations of the nodal Dirac points
in the electronic spectrum. Accordingly, we can rewrite
the effective action as

S
(A)
eff [Aµ, bµ] =

∫
dtd2x

[
M(bµ)B + P i1(bµ)Ei

]
(92)

where we have included the dependence on bµ. Writing
the action this way is interesting because it highlights
that the DSM can have a well-defined polarization; some-
thing that is usually reserved for gapped insulators. From
this we see that one possible signature of a clean DSM
with non-degenerate nodes would be a semi-metal phase
with TI-symmetry and a non-vanishing charge polariza-
tion/magnetization.

2. Polarization and Boundary Charge

Using the model for the DSM introduced above, let
us revisit the origin of the bound charge and bound cur-
rent from a more microscopic picture. From the effective
action we see that we need by to change with x or vice-
versa to generate a non-zero charge density. To produce
a non-zero current, we need b0 to vary with x or y. The
easiest way to do either of these is to have an interface
or boundary. First, suppose we have a boundary where
by changes with x as by = byΘ(x − x0), where Θ(x) is a
step-function. From the response action we should have
a bound charge density

ρ = (sgn mA)Θy
eby
2π

δ(x− x0). (93)

where we recall that the Θy in this formula is needed
to capture the correct sign of the boundary charge for
lattice systems (c.f. Eq. 87).

The magnitude of the charge density determined by
the bulk response action exactly matches the bound-
ary charge we find in the DSM model from the edge
modes stretched between the two nodes. The role of
the value of (sgn mA)Θy is to fix which edge has the
occupied states, and subsequently, which edge is unoccu-
pied. Due to the inversion breaking mass, each bound-
ary state on one edge will be occupied and contribute
e/2 charge on that boundary for each edge mode. On
the other edge, all of the boundary modes will be un-
occupied, and each contributes a deficit charge of −e/2.
The total number of occupied of states on the edge is
given by the distance spanned by the edge states be-

tween the two nodes multiplied by
Ledge

2π , which, in total,

is Ledge
2by
2π . So, the total charge at the positive edge is

given by Ledge
e
2 ×

by
π = Ledge

eby
2π . This implies a polar-

ization of
eby
2π as expected. Thus, we see that while the

charge response in the 1D semi-metal is controlled by the
bulk states, here it manifests as a property of the bound-

ary modes. This is due to the charge density depending
on derivatives of bi instead of bi itself.

3. Orbital Magnetization and Boundary Current

Next, let us consider the microscopic origin of the mag-
netization. The bound current that exists on interfaces
when b0 is non-vanishing, i.e., when there is a bulk mag-
netization, is more delicate. For example, the magneti-
zation, as far as the 2D system is concerned, is isotropic
and thus should give rise to bound currents on any in-
terface, not just an edge with low-energy modes. We
already showed in Figs. 11 and 12 that, even though
the DSM model we have chosen is inherently anisotropic,
there are bound currents on all of the edges. Let us now
prove that this boundary current is indeed connected to
the bulk orbital magnetization.

First, to generate a non-vanishing b0 in the DSM
model, we can add a kinetic energy term ε(k) = γ sin kyI
to the Hamiltonian H2DWTI(k) in Eq. 63. If the Dirac
nodes are separated in the ky direction and located at
~k = (0,±kyc), as for our earlier parameter choice, then
this simple kinetic term will generate an energy difference
of 2γ sin kyc ≡ 2~b0 between the Dirac nodes. Note that
this term breaks both T and I but preserves the compos-
ite symmetry TI which is required for the local stability
of the Dirac nodes. Since it breaks T , in principle, a
magnetization would be allowed by symmetry.

Next, we can calculate the magnetization for this
model according to the results of Refs. 59 and 87 us-
ing

M =
e

2~

∫
d2k

(2π)2
Im [〈∂xu−|(H(k) + E−(k))|∂yu−〉

− 〈∂yu−|(H(k) + E−(k))|∂xu−〉] (94)

where E−(k), |u−〉 are the energy and Bloch functions of
the lower occupied band, H(k) = ε(k)+H2DWTI(k), and
the derivatives are with respect to momentum. To prop-
erly calculate this quantity, we need to turn on a small,
but finite, mA and then set it to zero at the end of the
calculation. From symmetry, and from the fact that the
extra kinetic term is proportional to the identity matrix,
the only terms that contribute to the non-vanishing mag-
netization are those proportional to ε(k), and we find the
simplification59

M =
e

2~

∫
d2k

(2π)2
2ε(k)Fxy(k) (95)

where Fxy(k) is the Berry curvature.
For small mA we know that Fxy is sharply peaked at

each of the two Dirac nodes. For example, when mA = 0
then TI is preserved, and the Berry curvature is a δ-
function source at each node. When mA 6= 0 the contri-
butions of the two Dirac points to the Berry curvature
have opposite signs because of their opposite helicities.
Thus, we can see that if ε(k) had the same value for both
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Dirac nodes then M would vanish. In the semi-metallic
limit mA → 0, which is the limit of physical interest, the
magnetization becomes

M = (sgnmA)
eΦDirac

4π2~

NDirac∑
a=1

ε( ~Ka)χa (96)

where ~Ka is the location of the a-th Dirac point, ε( ~Ka)
is the energy of the a-th Dirac point, χa is the sign of
the Berry phase around the Fermi-surface of each Dirac
point for an infinitesimally positive chemical potential,
and ΦDirac is the constant Berry curvature flux carried
by each Dirac point in the gapless limit, i.e., ΦDirac = π.
In terms of b0 for our single pair of Dirac points, we find
M = (sgnmA) e

2π b0 as expected. While this is the gen-
eral result for the bulk magnetization, even for a lattice
model, the connection to a boundary current must be
carefully addressed if there are Dirac nodes with over-
lapping edge modes that can cancel in a Z2 fashion. We
will discuss this more in Section III E.

Now that we have explicitly determined the relation-
ship between bulk magnetization and the energy loca-
tions of the nodal points, let us try to connect the re-
sponse to the edge state properties as mentioned earlier.
Consider our simple two-node DSM model with mA > 0
on a cylinder with periodic boundary conditions in the
trivial direction (y-direction), and open boundary con-
ditions in the topological direction (x-direction). With
this choice of orientation the system will exhibit gapless
boundary modes. Let us add in the term ε(k) = γ sin kyI
to generate a non-vanishing b0. The sample thus has
b0 = b0(Θ(x) − Θ(x − Lx)), where we have chosen the
cylinder to lie between x = 0 and x = Lx. The current
density near the left-edge (x = 0) is given from the re-
sponse action by

jyL = − e

2π
b0δ(x). (97)

The total current traveling within a region near x = 0

is simply JyL =
∫ δ
−δ dxj

y
L = − eb02π . Of course, the total

current in the y-direction will vanish once we take both
edges into consideration.

Now we can use this result to compare to the current
carried by the edge states. In Fig. 9a we show the energy
spectrum for the DSM in a cylinder geometry for a non-
zero γ, and a non-zero mA > 0. We see that the edge
states are attached to the Dirac nodes (slightly gapped
by mA), and their dispersion is εedge(ky) = −γ sin ky (for
a derivation see Appendix B 2). When mA is identically
zero, then at half-filling each edge branch will be occupied
up to E = 0 (which happens at ky = π for our model),
and the boundary currents vanish. When mA 6= 0 then
the remaining states on the left edge become occupied
which generates a current; the other edge will now have
an excess of unoccupied (hole) states which produce a
current in the opposite direction. If we take the limit
as mA → 0 then the boundary current will persist since

the electrons cannot scatter from one edge to the other
as long as translation symmetry is preserved, and the
edges remain far enough apart to prevent an inter-edge
hybridization gap. The edge electrons will remain in their
“adiabatically” filled state (in the language of Ref. 61).

Let us now calculate the magnitude of the edge current
in these conditions. Explicitly, the current on the left
edge when all of the boundary modes are occupied is

JyL =
e

2π~

∫ kyc

ky0

dky
∂εedge(ky)

∂ky

= − eγ

2π~
[sin kyc − sin ky0]

= − e

2π
[γ~ (sin kyc − sin ky0)] = −eb0

2π
, (98)

where ky0 is the energy up to which the edge state is
occupied when mA = 0, and kyc is the point up to which
the additional occupied states are filled when the entire
edge branch is occupied. Thus, we see that on the sides of
the system that have topological edge states, the current
is completely accounted for by the boundary modes.

As discussed above, the non-vanishing bulk magneti-
zation also implies there should be bound currents on
edges that do not have low-energy topological bound-
ary modes. Current conservation also indicates that on
finite-sized systems, where all boundaries are open, the
edge currents from a gapless edge must flow somewhere
after hitting a corner. Indeed this is confirmed in Figs.
11,12. Though we do not have a simple argument to de-
rive the magnitude of the edge current on non-topological
edges, we found numerically that the magnitudes of the
currents localized on each edge are the same.

E. General formulation of response for 2D DSM

Let us now consider a generic TI-invariant DSM which
harbors an even number of Dirac cones. Each Dirac cone
Da (a = 1, 2 . . . 2N) in the semi-metal is specified by the
data (χa, ~K̄a, εa, ga) which are the helicity, momentum-
space location of the Dirac node, energy of the node, and
the sign of an infinitesimal local mass term at the Dirac
point respectively. The helicity indicates whether the
winding of the (psuedo)-spin around a Fermi-surface at a
Fermi-energy above the node gives rise to a Berry phase
of ±π (i.e., χa = ±1). All of the response coefficients
in which we are interested arise from anomalous terms
which, even for gapless Dirac nodes, depend on how the
gapless point was approached from a gapped phase; this
is why we must include the ga. Another way to think
about this is that the choice of ga determines the sign of
the symmetry breaking response for each pair of Dirac
nodes.

Let us now consider the generalization of our earlier
continuum formula to the case with many flavors. Fol-
lowing Ref. 34, in the ultra-clean limit we can associate
a conserved current jµ(a) to each Dirac cone, and a match-
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ing gauge field A(a)µ. Each Dirac cone contributes a term
to the effective response action of the form

S
(a)
eff [A(a)] = χaga

e2

4h

∫
d3xεµνρA(a)µ∂νA(a)ρ. (99)

This gauge field contains two pieces: (i) the contribu-
tion from the electromagnetic gauge potential, and (ii)
the energy-momentum shift of each Dirac node. Thus,
we have A(a)µ = Aµ + ~

e K̄(a)µ where K̄(a)µ tells us
the energy-momentum location of the node such that
K̄(a)0 = εa/~, and Aµ is the true electromagnetic vec-
tor potential. With this specified, we can rewrite the
action in a more transparent manner:

S[A,K(a)] =

e2

4h

2N∑
a=1

χaga

∫
d3x εµνρ(Aµ + ~

e K̄(a)µ)∂ν(Aρ + ~
e K̄(a)ρ).

(100)

Let us now try to extract the important electromag-
netic contributions to the response. The term containing
only powers of Aµ, and none of K(a)µ, is simply

S1[A] =
C1e

2

2h

∫
d3x εµνρAµ∂νAρ (101)

where C1 is the total Chern number given by C1 =
1
2

∑2N
a=1 χaga. We will not discuss the extra terms in the

effective action which are independent of Aµ here. To
understand them better we can reformulate the response
theory using an analog of the K-matrix formalism famil-
iar from the Abelian FQH states90. This discussion lies
outside the main scope of the text and we defer it a brief
discussion in Appendix C.

To extract the mixed term that represents the charge
polarization and magnetization, we will, for simplicity,
restrict ourselves to particular configurations of the ga.
When there are more than two nodes, the concept of
a single inversion or time-reversal breaking mass term
is not clearly defined when given a full set of ga. One
appropriate generalization of the inversion breaking mass
is to have the sign of the mass fixed to be the same for
all nodes. That is ga = +1 or ga = −1 for all values of
a. For this choice let us call ga = g for all a. This choice
has some immediate consequences: (i) the total Chern
number vanishes, i.e.,

C1 =
1

2

2N∑
a=1

χaga = g
1

2

2N∑
a=1

χa = 0 (102)

since there is a generic constraint
∑
a χa = 0 coming from

the TI-symmetry of the lattice model; and (ii) the Chern
number for any pair of opposite helicity Dirac nodes van-
ishes. With this constraint we can determine the polar-
ization and magnetization from the band-touching data
as discussed below. On the other hand, if we allowed

each ga to have varying signs, the determination of the
polarization can be become more complicated since the
Chern number of individual pairs of Dirac nodes need not
always vanish (c.f. Section III F).88 Henceforth we will
fix the all ga = g > 0.

Now, using this choice for the set of ga we can extract
the mixed contribution to the action

S2[A, b] =
e

2π

∫
d3x εµνρbµ∂νAρ. (103)

where

bµ =
g

2

2N∑
a=1

χaK̄(a)µ. (104)

This is the more general formulation of the two node for-
mulae we had derived previously, and the magnetization
and polarization are given as ebµ = 2π(M, εijP

j
1 ).

Eqs. 101, 103, and 104 are the general continuum re-
sults, and are similar to the types of formulae one finds
for 3D Weyl semi-metals, for example. However, these
formulae only provide the correct bulk results for a lat-
tice system if there are an even number of edge state
branches (on one edge) that pass through the boundary
of the edge BZ. This issue is addressed by simply in-
cluding an extra sign (Θj) in the polarization for each
spatial direction as discussed above. Given our choice of
an edge, this automatically determines a reciprocal lat-
tice vector normal to the edge GN , and its dual vector
GF with components GFi = εijGNj . The Θn̂, which is
essentially a weak index, is determined by the Wilson line

integral Θn̂ = exp
[
i
∫
~GN

ai(~k)dki|kedge=π

]
, i.e., the line-

integral of the adiabatic connection across the Brillouin
zone along the momentum direction normal to the edge,
and evaluated at kedge = π (where kedge is the momen-
tum tangent to the edge). Physically, the quantity Θn̂

determines whether or not the effective 1D wire Hamilto-
nian at kedge = π has a trivial (Θn̂ = +1) or non-trivial
(Θn̂ = −1) polarization. To be explicit, let us consider
an orthogonal lattice basis ~a1 = x̂ and ~a2 = ŷ and pick an

edge with normal vector ~a1. We have ~GN = 2πx̂, ~GF =
2πŷ, and kedge runs over all values of ky. For this choice

we have the definitions Θx = exp
[
i
∫ π
−π dkxakx(kx, π)

]
and Θy = exp

[
i
∫ π
−π dkyaky (π, ky)

]
.

With this correction we arrive at the bulk values of
the polarization and magnetization of a DSM, which are
valid even in a lattice model:

P i =
eεijΘj

4π

2N∑
a=1

χagaK̄a,j (105)

and

M =
eg

4π

2N∑
a=1

χaεa. (106)
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Since the magnetization is isotropic, and can even gen-
erate currents on edges without low energy edge state
branches, we might have anticipated (and we actually
confirmed numerically above) that the formula would not
be dependent of the values of the weak-indices Θj .

While these results are what one would find via a
bulk calculation of the polarization and magnetization,
we should check whether or not they satisfy the correct
physical properties for these quantities. The physical
manifestation of the polarization is due to the surface
theorem that implies that the boundary charge is propor-
tional to the dot product between the polarization and
the normal vector to the edge. Hence, a useful definition
of polarization in a DSM should reproduce the correct
boundary charge. Similarly the boundary current should
be related to the magnetization. We have already car-
ried out this program for two nodes and found, up to
some benign ambiguities, the polarization and magneti-
zations determined from these bulk formulae match the
expected boundary charge and current. Let us now dis-
cuss the complications that arise when there are more
than two nodes.

Since we have already shown how this works out for
two Dirac nodes, our goal is to determine the connection
between the bulk value of the polarization in Eq. 105,
and the boundary charge for a generic (even) number of
nodes. Unfortunately, as we will note below, when we go
beyond four nodes the connection between the bulk value
of the polarization and the boundary charge can be a bit
byzantine. Ultimately, the boundary charge is decided
by the arrangement, and filling, of the low-energy edge
states that span between edge-projected Dirac points.
When multiple edge branches overlap, a coupling be-
tween them, even if it is only localized on the boundary,
can dramatically effect the boundary charge. In the most
general configuration of nodes, the polarization can be
calculated as a sum of the (signed) momentum-space lo-
cations of the Dirac nodes projected into the correspond-
ing edge BZ. Unfortunately, the signs that enter the lin-
ear combination must be determined from the edge state
occupation, and do not generically match the bulk result.
This is similar to the complication found in Ref. 61 where
a precise surface theorem for the bulk polarization in a
Chern insulator is only defined when the occupations of
the edge branches are included. Here the occupation can
change at each Dirac point and thus there can be many
possibilities for the boundary charge.

The issue of edge state overlap is challenging to deal
with, and can have important effects since the edge states
are only stable modulo 2, unlike, for example, the chiral
boundary states of a 3D Weyl semi-metal which have an
integer classification. If we constrain ourselves to four
nodes, then we can determine the correct set of signs
that enter the calculation of the boundary charge in the
presence of generic couplings between overlapping edge
states. We will now present an appropriate Z2 modified
construction that captures a well-defined value for the
boundary charge as determined from the bulk nodal data.

Our result shows that using Eq. 105 is still valid as long
as one replaces the set of helicities χa with a modified
set χ̄a (to be defined below) that takes into account the
Z2 cancellation. The modified set of helicities depends
on the particular edge projection of interest, and can be
easily determined from our construction below.

The construction is as follows. First, given a set of
Dirac nodes in the bulk, we choose an arbitrary pairing
between the nodes with opposite helicity (the reason they
have to be opposite helicity is that the edge states always
traverse between nodes with opposite helicity). This is
always possible since there are an even number of nodes,
and an equal number with positive and negative helic-
ity. The final result will not depend on how this pairing
is chosen (modulo the ambiguity of the polarization to
adding occupied bands with quantized polarization) as
long as the sign of ga is the same for all nodes (other-
wise we have to worry about pairs of nodes contributing
a non-vanishing Chern number instead of a polarization
as mentioned in the footnote above). Next, depending
on the value of g = +1(−1) we draw oriented lines be-
tween each nodal pair with the arrow pointing from the
negative helicity to the positive helicity (positive helicity
to negative helicity). The oriented lines should not cross
the boundaries of the Brillouin zone that is centered at
the Γ-point (for now). We show two examples of this in
Fig. 13a,b for two different choices of nodal pairs.

Now, if we want to calculate the boundary charge, we
begin by projecting the energy spectrum onto the asso-
ciated edge Brillouin zone. This will generate the nodal
locations in the edge Brillouin zone, as well as projec-
tions of the oriented lines (as shown in the subfigures
in Fig. 13a,b,c,d). It is at this stage that the complica-
tions begin. If the projections of the oriented lines do not
overlap at any point in the edge Brillouin zone, then one
can calculate the boundary charge by: (i) multiplying
the length of the each of the oriented lines in momentum
space by e

2
1

2π , (ii) then multiplying the result by a sign
that is +1 if the oriented line points from left-to-right in
the projected edge Brillouin zone or −1 if it points from
right-to-left, (iii) and subsequently adding up all of the
contributions for all of the pairs of nodes/oriented lines.

However, if there are some overlapping lines then we
have to carefully handle the general Z2 cancelation, which
we can eventually take into account by flipping the helici-
ties of some of the nodes.89 To determine which helicities
should be flipped, we can use the following procedure.
For each Dirac node there is one line emanating from it-
self to its partner. If the number of lines overlapping a
Dirac point with the same orientation is even (including
its own), then we must flip its helicity, otherwise we leave
it unchanged.

In both cases, i.e., whether or not the helicity is flipped,
we remove the oriented lines for intervals where there an
even number of overlapping lines, which always leaves al-
ternating intervals. We show the general rules for flipping
helicities in the schematic diagrams in Fig. 14. We can
subsequently take these newly determined helicities and
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FIG. 13. In (a) and (b) we show two arbitrary pairings of the four Dirac nodes with opposite (red and blue) helicity in the
2D square lattice BZ. In (c) and (d) we show cases when Θi for i = x, y both take their non-trivial values such that the edge
states/Dirac node pairing pass through the BZ boundary. Below and to the right of each 2D BZ we show the projection onto
the respective edge BZs. In cases where there are overlapping edge states and a Z2 cancellation we show the resulting modified
effective helicities in a second projected edge BZ subfigure. Finally, we show a diagram for each edge state projection showing
the calculated boundary charge resolved vs kedge when a uniform half-filled background charge has been subtracted, and in
units of e. The black curves show the results after the cancellation of overlapping edge states and the black + red curves show
the result if the overlapping edge state regions all contribute. In (c) and (d) there are cases where there are red curves below
and above the axes. These are contributions coming from each overlapping edge state which cancel when added together.
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FIG. 14. Rules for helicity modifications and line removal for
use with the determination of the boundary charge for Dirac
semi-metals with four nodes. The signs inside the enclosed
circles represent the helicities, and the oriented arrows refer
to the nodal pairing in the text.

plug them into Eq. 105 to generate a value for the polar-
ization that satisfies the surface theorem normal to the
chosen edge. We note that this process must be carried
out for each choice of edge individually, and the modified
helicities for one edge may not work for a different edge.
We see an example of this in Fig. 13a where when pro-
jected onto the x-axis the helicities of nodes B and C are
changed, while for the projection onto the y-axis, none
of the nodes have modified helicities. If we now remove
the regions over which pairs of overlapping lines exist, as
exemplified by the rules in Fig. 14, the boundary charge
can be determined geometrically from the remaining ori-
ented lines as in the non-overlapping case, or simply by

plugging into the polarization formula with the modified
helicities.

So far this algorithm still misses an important possibil-
ity that we have discussed earlier, namely the possibility
that the edge states pass through the boundary of the
edge Brillouin zone kedge = π instead of the origin. We
can take these effects into account in our geometric algo-
rithm above by making a simple extension. If Θn̂ takes
its non-trivial (trivial) value then an odd (even) num-
ber of oriented lines should pass through the Brillouin
zone boundaries normal to GN . This generalizes our dis-
cussion above where we have shown zero lines (i.e., an
even number) passing through the Brillouin zone bound-
ary. We show some examples of non-trivial Θx and Θy

in Fig. 13c,d. The results are independent of which ori-
ented lines are chosen to pass through the Brillouin zone
boundary (modulo the ambiguities in the polarization
discussed above). If one does not want to include any
information about the occupied bands, i.e., does not, or
is not able to, calculate Θn̂, then the overall sign of the
polarization is ambiguous, as well as the addition of a
quanta of e/2 boundary charge per unit cell which could
arise from fully occupied bands carrying a weak invari-
ant. However, this ambiguity essentially exists anyway
since one could layer an extra 2D weak TI on top of the
2D DSM and couple the modes of the weak TI to those
of the DSM and effectively change between the differ-
ent values of Θn̂. Thus, maybe the main advantage to
knowing Θn̂ is to compare with numerical calculations
of model systems where a precise model has been speci-
fied, and the total weak invariant of the occupied bands
is unambiguously specified.

While this algorithm works for four nodes (some ex-
tra details are given in the caption of Fig. 13), with six
nodes or higher the algorithm is not independent of how
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the Dirac nodes are chosen to be paired, and it can also
give ambiguous results when there are more than two
sets of edge states overlapping in a single region. Even
if one knows precisely how the edge states connect be-
tween the different nodes, e.g., by diagonalizing the sys-
tem with open boundaries, and thus how the Dirac nodes
are “paired,” the sign of the polarization due to regions
of the edge BZ with more than two overlapping edge
states depends in detail on the coupling between those
edge states. In fact, one can effectively switch the signs
of the helicities of the Dirac nodes in pairs (not neces-
sarily the same pairs that are connected via edge states)
by modifying boundary terms that couple the different
DSM edge state branches. The final value for the polar-
ization is still a signed sum of the momenta of the bulk
Dirac nodes, but the signs that determine the boundary
charge have to be determined from the occupation of the
edge state branches, similar in spirit to what is done for
the Chern insulator in Ref. 61. We expect this type of
issue to arise whenever the edge states are Z2 stable as
opposed to Z stable in the chiral case.

Similar complications can arise for the magnetization.
The boundary current can depend on the how different
pairs of edge states are coupled to each other, and on the
precise filling of the edge states. Since the edge states
are dispersing, even more complicated configurations can
arise where the edge states enter the bulk bands arising
from other sets of Dirac nodes. It quickly becomes te-
dious trying to numerically match the boundary current
calculation to a bulk result since it depends on both the
energies and occupations of the edge states, which can
be affected in many ways. In some simple cases where
the edge states do not enter the bulk bands, and hence,
the occupation of the edge states change at the Dirac
nodes themselves, then the bulk result can be recovered.
We leave it to future work for an exhaustive treatment
of generic edge state configurations.

F. General Comments about the 2D Dirac
Semi-Metal Response

(i) Symmetries of bµ in 2D: Let us discuss the transfor-
mation properties of bµ under time-reversal (T), charge-
conjugation (C), and inversion symmetry (I). Since in
2D we know that b0 is proportional to a magnetization,
and bi is proportional to a polarization, we can easily
determine their symmetry properties:

T : b0 → −b0
C : b0 → b0

I : b0 → −b0 (107)

and

T : bi → bi

C : bi → bi

I : bi → bi. (108)

Note that they are both even under C, which is due to
the fact that our convention for bµ in 2D still has the
charge factored out. The other thing to note is that M ∼
sgn(mA)b0 and P i1 ∼ sgn(mA)εijbj and sgn(mA) is odd
under inversion (and parity). When this is taken into
account we find that M and P i1 transform appropriately.
In fact, the symmetry properties of bµ in 2D match those
in 1D.

(ii) Comments on the electromagnetic response: The
response actions in this section all essentially depend on
derivatives of bµ. Thus, for a homogeneous system there
is no charge or current response. This pattern alternates
between spatial dimensions. In 1D, 3D, 5D,. . . , when the
low-energy Fermi surfaces are represented by chiral/Weyl
nodes, then the electromagnetic response will be a bulk
phenomena that does not depend on derivatives of bµ
whereas in 2D, 4D, 6D,. . . when the Fermi-surface arises
from Dirac nodes, then the response depends on deriva-
tives of bµ which are most commonly generated at inter-
faces and boundaries.

(iii) Dependence of the response coefficients on shifts
of the origin of the Brillouin zone or the energy refer-
ence point: One might be worried that defining physical
quantities in terms of the energy/momentum locations
of the nodal points might be problematic since the def-
initions might depend on arbitrary choices of, e.g., the
origin of the BZ or the zero-reference point for energy.
Let us consider changing both of these to see what ef-
fects they have. In fact, most of the results that follow
have been discussed extensively in Refs. 61 and 87, albeit
in a slightly different context, and we go through their
arguments here for completeness. For our purpose here
we will ignore the complication of the Z2 cancellations.

To illustrate the point, let us take K̄(a)µ → K̄(a)µ +
∆kµ. Let us consider the spatial components of bµ first,

which are related to the polarization ~P1. We can write
down the polarization in terms of Bloch wave functions
as

~P1[~k0] =
e

(2π)2
Im

∫
[~k0]

d2k 〈uk|∇k|uk〉 (109)

where we have included the dependence of the origin of

the BZ by ~k0. Under a change of the origin from ~k0 →
~k0+∆~k, it can be shown generally61 that the polarization
changes by

~P1[~k0+∆~k] = ~P1[~k0] −
eC1

2π
ẑ ×∆~k (110)

where C1 is the first Chern number. Thus, we see that
the polarization itself can seemingly depend on the choice
of the origin of the BZ, but only when the Chern number
is non-vanishing. When discussing the polarization for
the 2D DSM we have been careful to require that C1 = 0
and, hence we never have this problem. However, even
for non-vanishing Chern number it turns out that this
issue can be resolved. In fact, there is a discussion in Ref.
61 about a well-defined polarization for Chern insulators.
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To make sense of this, those authors showed that we need
to recall that what is physically meaningful is the change
in polarization under an adiabatic change of an internal
parameter of the system. They show that as long as the
same origin in the BZ is used for measuring the initial
and final polarization of the system, the results remain
consistent.

It is interesting that in our case we find that a shift of
~k0 in Eq. 104 produces exactly the same result as Eq.
110. That is, under K̄(a) → K̄(a) + ∆k, we see that

∆P i1 =
eεij

4π

2N∑
a=1

χaga∆kj =
eC1ε

ij∆kj
2π

(111)

which is the same as Eq. 110, even with a non-zero Chern

number. Thus, the effective ~b can change when the origin
of the BZ is re-defined, but only if the Chern number is
non-vanishing. In this case it is shifted according to the
formula derived in Ref. 61 for the charge polarization
in a Chern insulator, and any possible ambiguity can be
dealt with along those arguments without any issues.

Now, we look into what happens with the time com-
ponent of bµ. Increasing b0 at a Dirac node is equivalent
to reducing the chemical potential at the node or shifting
the reference of zero-energy for that point. For the pur-
poses of calculations we can interpret a shift in the global
reference point in energy as a global change to the chem-
ical potential for the overall system. The magnetization
for a Bloch system is defined to be

M =
eεij

2~

∫
d2k

(2π)2

×Im
∑
n

∫
εnk≤µ

〈∂kiunk|Hk + εnk − 2µ|∂kjunk〉.

(112)

Following Ref. 87, we see from this relation that

dM

dµ
= −eC1

h

=⇒ ∆M = −eC1∆µ

h
. (113)

In fact, this general result exactly matches what we find
from our definition of bµ. Under K̄(a)0 → K̄(a)0− ∆µ

~ , we
see that

∆b0 = − 1

2~

2N∑
a=1

χaga∆µ

=⇒ ∆M = −eC1∆µ

h
. (114)

Thus, we again see that b0 changes under a redefinition
of the origin of energy, but only when the Chern number
is non-zero. In this case it changes in the exact same way
as a non-trivial Chern insulator.

(iv) Polarization in a Chern Insulator: Finally, before
moving onto the 3D cases, we will discuss a related sys-

tem with just two Dirac nodes, and non-vanishing time-
reversal and inversion-breaking masses. This case, which
represents a Chern insulator with broken inversion sym-
metry, was discussed in Refs. 61 and 87 where they
have defined an electric polarization/magnetization for
a Chern insulator. The exact details of the model they
considered are a bit different since they use the honey-
comb Haldane model28 with both a nonzero inversion
breaking Semenoff mass, and a time reversal breaking
Haldane mass. In fact, they tune the size of the Haldane
mass by changing an adiabatic parameter α. What this
translates to in the context of our DSM model on the
square lattice is that they are working with both an mA

and an mB turned on. In our language the analogous
Hamiltonian is

H = sin kxσ
x + (−mA +mB(α) sin ky)σy (115)

+(1−m− cos kx − cos ky)σz

where mB = mA(1 + α) is tuned as a function of the
adiabatic parameter α.

Now let us describe the polarization of this system in
terms of the edge state filling. As shown in Appendix
B, the energy of the edge states, on edges parallel to the
y-direction, is given by EL/R(ky) = ±(mB sin ky −mA)
where the ± signs are correlated with the left/right edges.
In the limit that mB 6= 0,mA = 0, we have a Chern
insulator which is completely inversion symmetric. If we
fill all the states with E ≤ µ = 0 on the edge, then there
will be an equal number of filled edge states on both
edges, and hence a vanishing polarization. When we turn
on an mA, the energy of the edge states is shifted, and
filling all the edge states with E ≤ µ creates an imbalance
between the two edges depending on how large mA is. In
this case, there are more edge states filled on one edge
compared to the other, which leads to a polarization (and
possibly magnetization if the nodal energies are shifted).
This effect is illustrated in Fig. 15 where we compare the
edge spectrum with and without an mA turned on. The
plot has parameters by = π/3,mA = 0, 0.1 andmB = 0.2.
The crossing of the edge states moves to the right as we
start increasing the mA.

In the case when both the masses are finite, we can
think of this polarization/magnetization as still arising
from an energy and momentum difference, but modified
from its original value of bµ to new a value we will call

Φµ. The spatial component is given by Φi = sin−1 mA

mB
.

When there is a TI-breaking term tp sin kyI in our Hamil-
tonian, we will also generate a magnetization dependent
on Φ0 = tp

mA

mB
. Of course, since the edge states ex-

ist between the bulk Dirac nodes this heuristic descrip-
tion only makes sense when Φµ is lesser than the bµ
coming from the original gapless bulk Dirac nodes. In
the semi-metallic limit where mA,mB → 0, the polar-
ization/magnetization will actually depend on the ratio
of the masses Ξ = mA/mB as they are tuned to zero.
When the time reversal breaking mass is much greater
than the inversion breaking mass, the polarization and
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FIG. 15. We illustrate the dispersion of the edge states of the
model H = sin kxσ

x+(mB sin ky−mA)σy +(1−m−cos kx−
cos ky)σz in the limits mA = 0, 0.05, 0.10, 0.15,mB = 0.2 with
various dashed lines. The Dirac nodes are located at ±π

2
. The

crossing point has shifted to a nonzero ky once we turn on an
inversion breaking mass and moves towards one of the Dirac
points as mA is increased further. This leads to a non-zero
polarization which is decided by the ratio of mA and mB ,
while the sign of the polarization is decided by mA.

magnetization depend on the quantity Φµ instead of bµ.
However, in the limit that the inversion breaking mass
is much greater than the time reversal breaking mass,
the polarization/magnetization will depend only on the
bµ derived from the locations of the Dirac nodes in the
gapless limit as we have discussed throughout this sec-
tion. There is a switch between the two different be-
haviors when mA = mB sin kc where kc is a location of
a Dirac node in the gapless limit. In either case, there
is no polarization/magnetization without turning on an
inversion-breaking mass.

In our general discussions above, if we allowed for the
set ga to take generic values, then to calculate the po-
larization we would have to use a combination of the
results for vanishing Chern number and non-vanishing
Chern number on a case by case basis for each region of
the edge BZ with edge states.

IV. 3D TOPOLOGICAL SEMI-METALS

There has been a series of recent works that lay out
the theory of electromagnetic response in Weyl semi-
metals(WSM)34,53–58 and build on the seminal ideas of
Nielsen and Ninomiya from three decades ago31. We will
compliment these results in several ways. First, we in-
clude lattice-regularized numerical calculations of the re-
sponse, which show precisely under what conditions the
continuum field-theory response calculations can be ap-

plied, and most notably when a non-zero current due to
the Chiral Magnetic Effect (CME) can be observed in
lattice models. We connect the numerical results with
our earlier discussion of the 1D semi-metal using a map
between the 3D Weyl semi-metal in a uniform magnetic
field, and many degenerate copies of the 1D semi-metal,
which can be applied at low-energy. We also provide an
analytic description of the boundary modes for a lattice
model of the Weyl semi-metal, the response behavior of a
hetero-junction between two different Weyl semi-metals,
and a discussion of the anomaly cancellation which con-
nects the bulk and surface response.

Following this we move on to consider the response of
3D Dirac semi-metals in Section IV B. Since there is not a
similar Nielsen-Ninomiya no-go theorem for lattice Dirac
fermions, the Dirac semi-metals can come in different va-
rieties. The first type has the Dirac node(s) appearing at
the special time-reversal invariant momenta in the Bril-
louin zone. This type is reported to have been realized in
Cd3As2

47,48. The other variety is more closely related to
the WSM, and is essentially a time reversal and inversion
symmetric version of the WSM where each Weyl node,
which exists at generic points in the Brillouin zone, is
replaced by two copies of the Weyl node, but with oppo-
site chirality, i.e., Weyl nodes are replaced by 3D Dirac
nodes at generic points in the Brillouin zone. These have
recently been confirmed experimentally in Na3Bi46.

It is this second type, which was recently dubbed a
Z2 non-trivial 3D DSM49, to which our response the-
ory applies, and unfortunately it is yet to be realized in
real material samples. We will predict a quasi-topological
electromagnetic response for these materials which is re-
lated to the known electromagnetic response of the quan-
tum spin Hall insulator3,62. In particular, we discuss the
response of the 3D DSM when there is a magnetic film
in contact with the sample surface. Magnetization do-
main walls on the surface can generate a line of zero
modes along the domain wall and hence give rise to some
transport phenomena in these materials including bound
charge and currents. We have seen that when discussing
Dirac semi-metals, we must enforce extra symmetries to
provide local stability for the nodes. In 3D, to guarantee
local stability of the Dirac nodes, one must require sev-
eral preserved spatial symmetries, and only certain crys-
talline space groups support stable nodes44,49, though we
will not focus much more on this in this article.

A. Response for 3D Weyl Semi-Metal

A simple model for the WSM phase can be formulated
with two bands

HWSM =γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2−m− cos kx − cos ky − cos kz)σ
z. (116)

This model has two Weyl nodes at (kx, ky, kz) =
(0, 0,± cos−1(−m)). The identity matrix term generates
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a difference in energy between the nodes. Around the two
nodes, we have linear dispersion ε± ≈ ±vF |k|, and each
of the nodes acts as a monopole of Berry curvature. The
Berry curvature flux contained in a Fermi-surface sur-
rounding each node can be ±2π depending on whether
the node enclosed is of positive or negative chirality. This
property also leads to surface states whose Fermi-surfaces
consist of open line-segments traveling between the pro-
jections of the nodes onto the surface Brillouin zone32.
As mentioned before, we follow the convention used in

Ref. 54 and define ~b as half the momentum separation
in the Weyl nodes, and b0 to be half the energy dif-
ference between them (when there are more than two
nodes this needs to be appropriately generalized). So, in
the two band model we have here, bz = cos−1(−m) and
b0 = (γ/~) sin bz.

To calculate the electromagnetic response we can use a
continuum description of two Weyl nodes. Following the
calculation in Ref. 54, in the continuum approximation
we have the following low-energy four-band Hamiltonian

H = τz~σ · ~k + τzb0 + ~σ ·~b. (117)

When written as a Lagrangian density coupled to an elec-

tromagnetic gauge field the four vector bµ = (b0,~b) ap-
pears as an axial gauge field in the action

S[b, A] = −
∫
d4xψ(i/∂ − e /A− /bγ5)ψ, (118)

just as it does in the one dimensional case. We can re-
move the field bµ through a chiral rotation, and hence
use the Fujikawa method to evaluate the chiral anomaly
which appears due to the non-invariance of the measure
under this finite chiral transformation. This is very sim-
ilar to the derivation we had for the one dimensional
model. This calculation gives us a hint that breaking
Lorentz invariance, as we have done in the 1D model, is
an essential part of the mechanism to produce a non-zero
response. The response action was calculated to be54

Seff [A] = − e2

2πh

∫
d4x εµνρσbµAν∂ρAσ. (119)

We can easily interpret the form of the effective response
action since it appears just like an interpolation between
the WTI phase generated from a stack of 2D Chern insu-
lators, and the normal insulator phase, as was discussed
in Section I. The current and charge density, assuming
bµ is homogeneous in space-time, are given by

ρ =
e2

πh
~b · ~B (120)

~j =
e2

πh

(
~b× ~E − b0 ~B

)
. (121)

The term in the current involving the electric field is the
anomalous QHE of the WSM. The other terms depend

on the magnetic field ~B, and can be easily interpreted

using an analogy to the 1D semi-metal as we will now
show.

1. Understanding the Weyl Semi-metal Response Using a
Quasi-1D Description

To make the mapping to the 1D system we need to ap-
ply a uniform magnetic field to the 3D WSM. Consider
the two band model with bz 6= 0. Let us assume that we
have a magnetic field turned on in the z-direction so that
we have Fxy = −Bz. It is well-known, and we reproduce
the calculation below, that a Weyl node in a uniform
magnetic field has a low-energy zeroth Landau level with
dispersion E0 = χkz−bz near the Weyl node with chiral-
ity χ. It is this level that is responsible for the low-energy
electromagnetic response in Eq. 120. We see that the ze-
roth Landau level only disperses along the magnetic field
direction, and passes through the Weyl node with the
direction of the Fermi velocity given by the chirality of
the node. Thus, the application of the uniform magnetic
field generates a quasi-1D mode at low-energy. For a pair
of Weyl nodes, as would be found in the simplest WSM,
there are two low-energy branches, which, together, ef-
fectively form the same low-energy theory as many copies
of the 1D (semi-) metal discussed earlier. Thus, the low-
energy description is almost identical to the previous 1D
semi-metal discussion, except that each state has a de-
generacy which is set by the total flux of the magnetic
field through the x-y plane. We denote this degener-

acy by NΦ =
BzLxLy

Φ0
where Φ0 = h

e is the fundamental
flux quantum. Thus, in a uniform magnetic field, the
low-energy physics of the WSM is equivalent to multiple
copies of the 1D semi-metal. As will be seen below, the
description is even more apt because, in a lattice regular-
ized model, the zeroth Landau level modes arising from
each Weyl node connect at high energy and form multiple
copies of the usual 1D tight-binding bandstructure.

Let us try to reproduce the charge density predicted in
Eq. 120 by using the 1D model. There is a subtlety as to
how the states are filled. Of course, if the zeroth Landau
level is completely filled or completely empty, then there
will be no interesting response. In this case there will be
a background charge density of some integer charge per
unit cell, but no current will flow in the filled band, and
thus there will be no static chiral magnetic effect. This
was discussed in detail in Ref. 55. While a filled band
can give rise to Lorentz violation because of the inherent
lattice structure (e.g. the spatial components of bµ can
be half a reciprocal lattice vector), the field theory cal-
culations for the semi-metal are not sensitive to this. In
fact, they can only predict the response from a partially
filled band which provides an explicit fractional amount
of Lorentz violation (fractional meaning a fraction of a
fully-filled band). This is similar to the idea of Ref. 71 in
which the low-energy structure only determines the frac-
tional part of the response. To match the field-theory
calculation we need to assume that the zeroth Landau
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level is only filled to a chemical potential µ = 0, which
implies the band is partially filled. For example, to cal-
culate the density response we need to count the number
of states filled in the zeroth Landau level which is simply

Q = NΦeLz

∫ bz

−bz

dkz
2π

(122)

=⇒ ρ =
e2bzBz
πh

(123)

which matches Eq. 120. Before we attempt to under-
stand the properties which lead to a nonzero current, let
us look at the zeroth Landau level structure of the WSM
in more detail to see how b0 fits into the discussion.

2. Zeroth Landau Level Structure in a Weyl Semi-metal

In this Section, we proceed to show that b0 can be
thought of in a similar way as what we discussed in Sec.
II for the 1D model. In the usual case a b0 is produced
by shifting the Weyl nodes in energy with respect to each
other. We will show that when this is the case, the ze-
roth Landau level is shifted in momentum parallel to the
magnetic field. So, shifting the nodes in energy acts like
an electric field (k is shifted) on the zeroth Landau level.
As in 1D we can also generate a b0 by adding an intrinsic
term which generates a velocity difference in the disper-
sion at the two Weyl nodes; we will discuss this case as
well. We will now show some continuum calculations to
justify these statements, and then reproduce the same by
a simple numerical lattice calculation.

Consider a four band continuum model for the Weyl
semi-metal (a single pair of nodes) where only bz 6= 054.
A possible Hamiltonian is given by

H = τz⊗σxkx+τz⊗σyky+τz⊗σzkz+bzI⊗σz. (124)

To illustrate the effects of a non-vanishing b0 (which will
be introduced below), we need to include a magnetic field
with ki → ki − eAi and Ay = Bzx, where Bz is the uni-
form magnetic field in the z-direction. We note that we
have broken translation invariance in the x-direction with
our choice of Landau gauge, and the eigenvalue equa-
tion will be a differential equation in x where we have
to replace kx → −i∂x. From now on, this is implicitly
assumed. The time independent Schrodinger equation
reads

Hψ = Eψ. (125)

Following the usual strategy, we can apply H to ψ again
to produce H2ψ = E2ψ. We can evaluate the left hand
side to find

H2ψ =[k2
x + eBzI⊗ σz + (eBz)

2(x+ ky/eBz)
2

+ k2
z + 2bzkzτ

z ⊗ I + b2z]ψ. (126)

The wave function ψ can be taken to be an eigenstate
of σz for the spin sector, and τz for the orbital sector.
Let us denote the eigenvalue of σz as ζ = ±1, and the
eigenvalue of τz as χ = ±1. Then Eq. 126 is just the
harmonic oscillator eigen-equation and has the following
energies:

En(ζ, χ, kz) = ±
[
2eBz(n+

1

2
) + (kz + χbz)

2 + eBzζ

]1/2

(127)
with the corresponding wave functions given by

Φn(ζ, χ, ~x) = Nnζe−ikyy−i(kz+χbz)zFn(x+ ky/eBz)× η
(128)

where Nn is a normalization constant, Fn(x) are the Her-
mite polynomial wave functions, and η = Λ(σz)⊗ Λ(τz)
is a four-component spinor where Λ(±1) mean the eigen-
vectors of σz, τz given by ( 1

0 ) , ( 0
1 ) .

To be precise, we need to verify that all of these solu-
tions satisfy Eq. 125. This consistency check eliminates
half of the zero-mode solutions, and we end up with the
result that the zeroth Landau levels have energy

E0 = χkz − bz (129)

which depends on the chirality χ of the Weyl node. This
dispersion hits zero energy at kz = ±bz, i.e. the location
of the Weyl nodes, as expected. These modes also have
a degeneracy of NΦ for each value of kz as noted above.
In a lattice regularization the zeroth Landau levels of the
two Weyl nodes will be connected to each other at high-
energy (c.f. the energy spectrum in Fig. 16).

Now, to turn on a b0 we can add the extra term
δH = b0τ

z ⊗ I, which commutes with the initial Hamil-
tonian. Since it commutes with the original Hamiltonian
its primary effect is to shift the energies of the eigen-
states. We note that acting on the zeroth Landau level
wavefunctions the energy is shifted by b0χ, thus leading
to the dispersions

E0 = χ(kz + b0)− bz. (130)

This is just a shifted version of the original zeroth Lan-
dau level dispersions, and they cross zero energy when
kz = −b0±bz. So, the conclusion is that b0 shifts the low-
energy spectrum of the zeroth Landau level to the right
in momentum space, which is the same effect that an ex-
ternal electric field Ez would have. Thus, if the band is
partially filled, i.e. when we have explicit Lorentz viola-
tion due to the background charge density, this will lead
to a non-vanishing current in the presence of an applied
B-field, but in vanishing applied electric field, which is
essentially the chiral magnetic effect.

Further pushing the 1D description, let us also show
that modifying the relative velocities of the two Weyl
points will lead to a similar effect. Consider the Hamil-
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tonian given by

H = τz⊗σxkx+τz⊗σyky+τz⊗σzkz+I⊗σzαkz+I⊗σzbz
(131)

where α � 1. This α-dependent term modifies the ve-
locities of propagation in the z-direction of the two Weyl
nodes. It effectively changes bz → bz + αkz from our
previous analysis. The entire argument for the energies
of the zeroth Landau levels from before carries through
here too, and we find a modified zeroth Landau level dis-
persion of

E0 = χkz − bz − αkz. (132)

This dispersion crosses zero at kz = bz/(χ− α) ≈ χbz −
αbz +O(α2). So, near zero energy this term behaves like
a momentum shift in the Landau level, and this should
give us a non-zero current as we have shown in the 1D
model in Section II.
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FIG. 16. The zeroth Landau level of the Weyl semi-metal
in a uniform magnetic field is plotted vs kz before(in black)
and after(in red) switching on a γ which gives us b0 =
(γ/~) sin 2π/3 = 0.17. The blue line is shown to indicate
E = 0. The model parameters have bz = 2π/3,m = 1/2, and
Lx = Ly = Lz = 60 with the magnetic flux per unit cell given
by φ = 2π/60. b0 was then switched on to plot the curve in
red. We see that the Landau level is simply shifted in mo-
mentum space and is akin to turning on an external electric
field in the 1D model.

To verify these continuum results, we can perform
calculations using a simple lattice regularization of the
above continuum model. The Hamiltonian is given by

H = γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2−m− cos kx − cos ky − cos kz − tNNN sin 2kz)σ
z

(133)

where the term proportional to γ will cause a shift in
energy of the Weyl nodes, and the next nearest neigh-
bor term proportional to tNNN causes a change in the
velocity of the zeroth Landau level near the two Weyl
nodes.
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FIG. 17. The zeroth Landau level is plotted vs kz before(in
black) and after(in red) switching on a b0 using the NNN
velocity term. The blue line is shown to indicate E = 0. The
model had bz = 2π/3,m = 1/2, and Lx = Ly = Lz = 60 with
φ = 2π/60. We then switch on a term to change the velocity
of the two Weyl nodes with tNNN = 0.2. The shift we expect
is then given by 2tNNNm ≈ 0.2 as seen in the figure. In effect,
near E = 0 the zeroth Landau level is shifted.

For γ = 0 and tNNN 6= 0 the Weyl nodes are given by
solving

cos kz + tNNN sin 2kz = m, (134)

which gives us two solutions for kz. Let us try to extract
the low-energy Hamiltonians near the nodes in the limit
that tNNN � 1 by writing the two solutions as kz =
±κz + δk. We have

cos(±κz + δk) + tNNN sin(±2κz + 2δk) = m. (135)

We can subtract the two equations to find

2 sinκz sin δk − 2tNNN cos 2δk sin 2κz = 0. (136)

Using the small angle approximations sin δk ≈
δk, cos 2δk ≈ 1, we are left with

δk = 2tNNN cosκz ≈ 2tNNNm. (137)

Thus we see that a non-zero velocity change will lead
to a momentum shift of 2tNNNm at the nodal energies.
Comparing with the continuum calculation we see that
αbz = −2tNNNm.

We show the numerical results of γ = 0.2, tNNN = 0
in Fig. 16, and γ = 0, tNNN = 0.2 in Fig. 17. In both
cases we see that near E = 0 the zeroth Landau levels
are shifted.
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3. Response and Anomaly Cancellation in Weyl
Semimetals with Inhomogeneous bµ

So far, all of the response properties that we have con-
sidered for the WSM have assumed bµ was constant in
space-time. This will not be the case in systems which
have boundaries or interfaces across which bµ will nat-
urally change. In this section, we closely examine what
the bulk action implies for the surface/interface action,
and how the whole system remains gauge invariant. We
recall that the response action is

S = − e2

2πh

∫
d4x εµνρσbµAν∂ρAσ. (138)

Now, when we take the functional derivative of S with
respect to Aα to extract the current, we have to be careful
about the behavior of bµ

jα =
e2

πh
εαµρσbµ∂ρAσ +

e2

2πh
εαµρσAσ∂ρbµ. (139)

This gives us the usual current we expect for the AHE
and CME, along with a term which depends on deriva-
tives of bµ, but is not manifestly gauge invariant since it
depends directly on Aµ. This signals the presence of an
anomaly that will arise whenever bµ changes.

The Callan-Harvey mechanism provides a straightfor-
ward way of understanding this result91. To be explicit,
let us assume we have an interface in the x-direction, lo-
cated at x = x0, where bz jumps from a finite value to
zero. This is the case in the lattice models we studied
in the previous section. Under a gauge transformation
(Aµ → Aµ − ∂µλ) the action transforms as

δλS = − e2

2πh

∫
d4x εµνρσbµ(−∂νλ)∂ρAσ

= − e2

2πh

∫
d4x εµνρσ∂νbµ∂ρAσλ

=
e2

2πh

∫
d4x εzxρσbzδ(x− x0)∂ρAσλ

=
e2Lzbz

2πh

∫
dydt ερσ∂ρAσλ 6= 0. (140)

Thus, in order for the system to be gauge invariant
there must be localized fermion modes where bz jumps
(except in the case when it jumps in the z-direction,
since δλS = 0 in that case). In fact, for the simple
WSM models we have considered, we know that there are
such surface/interface states, and they are just straight-
line Fermi-arcs that stretch between the Weyl nodes pro-
jected onto the surface/interface BZ. For a non-zero bz,
and a surface with normal vector x̂ (just like the interface
considered in the previous paragraph), the surface states
have a chiral dispersion given by E(ky, kz) = ky at low-
energy. These chiral modes give rise to the usual chiral
anomaly. There is an independent chiral fermion for each
value of kz, but the surface states only exist in-between

the Weyl nodes, i.e., only for −bz ≤ kz ≤ bz. Each 1D
chiral mode generates an anomalous contribution to the
variation of the boundary/interface action under a gauge
transformation91,92

δλSbdry = − e
2

2h

∫
dydtερσ∂ρAσλ (141)

where ρ, σ = 0, y. To calculate the total variation due
to all of the modes we can convert the sum over the
independent kz modes to an integral which generates a
factor of Lz

2π 2bz. We thus find

δλS
(Tot)
bdry = −e

2Lzbz
2πh

∫
dydtερσ∂ρAσλ (142)

which exactly cancels the variation coming from the bulk
action. Eq. 142 is called the consistent anomaly. The
consistent anomaly leads to an anomalous Ward identity
for current conservation on the edge

∂µj
µ
bdry = −e

2Lzbz
2πh

ερσ∂ρAσ = −e
2Nc
2h

ερσ∂ρAσ (143)

where Nc is the total number of modes in the inter-
face/boundary Fermi-arc.

Going back to the bulk current response in Eq.
139, we see that the current naturally splits into two

terms: (i) jαbulk = e2

πhε
αµρσbµ∂ρAσ and (ii) j̃αbdry =

e2

2πhε
αµρσAσ∂ρbµ. For our interface configuration we find

j̃αbdry = − e2

2πh
εαzxσAσbzδ(x− x0). (144)

If we integrate this current density over x and z we can
combine this current with the current from the consistent
anomaly to arrive at the Ward identity for the covariant
anomaly (the anomaly that contains all contributions to
the boundary current)

∂α(jαbdry + j̃αbdry) = −e
2Lzbz
πh

εασ∂αAσ. (145)

This covariant anomaly precisely matches the bulk-
current inflow from jxbulk into the boundary/interface.
Note that although we have assumed a model which
has simple Fermi-arcs, the chiral anomaly result is very
robust and does not depend on the exact form of the
surface state dispersion, or any other details, only that
the states are chiral. Thus we expect it to hold in any
generic model, even in the cases when the Fermi-arcs are
not straight line segments, but are curved. This result
clearly shows that while the bulk action would predict a
gauge-variant response, it is compensated by the surface
Fermi-arcs states. The same is true when we do not have
a physical boundary, but a region in which bµ varies in
space-time. When bµ varies there are two contributions
to the boundary current, one arising from the bulk action
itself, and the other from the consistent anomalous cur-
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FIG. 18. The current is plotted vs b0 for the two band model
of the Weyl semimetal. The current is linear and the slopes
match almost exactly. This plot is generated for Lx = 30
and the flux per plaquette is φ = −2π/Lx. We use Ly = 30,
Lz = 30, and bz = π

2
to generate this plot.

rent required of the boundary states in order to preserve
gauge invariance of the bulk and boundary.

4. Numerical Results

After these analytic arguments let us explicitly test the
predictions with numerical calculations. For illustration,
we will probe two effects: (i) the CME, which we have
tried analyzing using a mapping to the 1D model, and
(ii) the charge density response in a system with an inho-

mogeneous ~b. We do this in the context of the two band
WSM lattice model

H = γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2−m− cos kx − cos ky − cos kz)σ
z (146)

where γ generates a nonzero b0. It is important to note
that to perform our numerical calculations we fill the
states up to E = 0, i.e. all states with E ≤ 0 are filled.
To illustrate an example of the CME, in Fig. 18, we have
plotted the current along the z direction as a function of
b0 in the presence of a uniform magnetic field, but no
electric field. The predicted current density from the
model, assuming a magnetic field in the z direction, is
given by

jz = −eb0Bz
πh

. (147)

The lattice calculation is shown in Fig. 18, and we find
exactly this result. For this calculation the magnetic field
is implemented using Peierls substitution. We use a Lan-
dau gauge to retain translation invariance in one of the
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FIG. 19. The charge density is plotted vs. position in the
x-direction with open boundary conditions. The system is
comprised of a Weyl semimetal with bz,L = π/5 for 0 < x <
Lx/2 and bz,R = π/3 for Lx/2 < x < Lx. The total number
of sites in the x-direction was Lx = 30 with magnetic flux
per unit cell in the x − y plane φ = −2π/30. Also, Lz = 30
and Ly = 30. The bulk charge density is given by Nx =
−LzLybzBz/4π2 = −3,−5 as is predicted by the action.

directions in the xy plane, and the z direction is also
translation invariant. The magnetic field is restricted to
have rational flux per unit cell for the spectrum to remain
periodic in momentum space.

Another simple effect to test is the density response at

an interface where ~b changes. With Bz 6= 0, we should
have

ρ =
ebzBz
πh

. (148)

So, if we vary bz in the x-direction (with open boundary
conditions the xz surfaces host nontrivial surface states)
one would expect a varying charge density. In fact, one
can see this is exactly reproduced in numerics and the
resultant charge density is plotted in Fig. 19. The bulk
charge follows what is predicted by the action in the con-
tinuum calculation.

B. Electromagnetic Response of a 3D Dirac
Semi-metal

There has been a lot of recent work predicting and
measuring materials candidates for 3D Dirac semi-
metals44–48, however we are interested in the so-called
Z2 non-trivial 3D Dirac semi-metals46,49 where the Dirac
nodes appear in pairs, and can exist at generic points in
the Brillouin zone, as recently measured in Na3Bi. In
this section, we will discuss an interesting electromag-
netic probe of this type of 3D DSM, and show that it can
be derived from the response properties of the 2D time-
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reversal invariant quantum spin Hall insulator3,62,93–96.

In fact, analogous to all of our previous constructions,
we can think of the 3D DSM as a layered 2D topological
insulator, and in this case it is formed from coupled layers
of the QSH system. The layer construction has aided
the discussion and analysis of the other topological semi-
metals, and we will see that it is very helpful in this case
as well. Thus, we begin this section by first examining
the response of the Quantum Spin Hall(QSH) insulator
itself, since the results can immediately be generalized
to stacks of QSH insulators, and hence the 3D DSM.
After reviewing the response of the QSH insulator, we
will discuses the analogous properties of the DSM, and
numerically validate our analytical calculations.

The QSH system has an unusual electromagnetic re-
sponse given by3,62

S[A] =
e

2π

∫
d3x εµνσAµ∂νΩσ (149)

where Ωµ is a gauge field which encodes configurations of
inhomogeneous adiabatic perturbations. We will clearly
define what this means in the following section. Essen-
tially, the configurations of Ωµ are related to possible
mass-inducing perturbations of a Dirac-type Hamilto-
nian. As a consequence of this response term, a mag-
netic film deposited at the edge of the QSH insulator
can generate a localized charge density or adiabatic cur-
rent if the magnetization is space or time dependent
respectively3,62. The edge of the QSH insulator is itself
a robust 1D massless Dirac fermion if we preserve time-
reversal symmetry. A magnetization on the edge will
open a gap, and through the well-known Jackiw-Rebbi
mechanism97, a spatial domain-wall in the magnetiza-
tion will trap a low-energy mid-gap mode. This mode
signals a bound charge of Qb = ±e/2. Additionally, ff
the magnetization on one side of the domain wall begins
to rotate as a function of time, a quantized adiabatically
pumped charge current can flow along the edge through
the magnetic junction. Ref. 3 showed that both of these
phenomena could be derived from Eq. 149. This is the
electromagnetic signature of the QSH insulator, and is
closely tied to the response of the 3D DSM.

Now we can construct a stack of QSH insulators. If
the layers are weakly coupled then we will get the con-
ventional WTI state73,98,99. If we increase the strength of
the inter-layer coupling so that we close the bulk gap we
will generate the 3D DSM phase. Just as with the WSM,
the edge states of the QSH layers forming the DSM will
survive in a certain region of momentum space and will
connect the various 3D Dirac nodes with Fermi-surface
arcs. We can easily extrapolate the response action of
the QSH insulator to the 3D DSM to find

S[A] =
e

2π2

∫
d4x εµνρσbµAν∂ρΩσ. (150)

We will discuss the consequences of this action below, but
first we will more carefully recount the analysis for the

2D QSH insulator since its formulation is not as widely
known, and we wish for this article to be relatively self-
contained.

1. Response from the Second Chern number

The discussion in this Section closely follows the ar-
guments in Ref. 3, although we will only reproduce the
necessary ingredients for our discussion of the 3D DSM,
and leave out some of the details which can be found
in the aforementioned reference. In general the response
of the QSH insulator is derived from the second Chern
number C2, which is a four dimensional topological in-
variant. Since the QSH exists in 2D, the Bloch Hamilto-
nian is only parameterized by two numbers kx, ky, which
is not enough to generate a non-zero C2. Thus, to probe
the electromagnetic response properties of the QSH state,
we need to couple the system to two additional parame-
ters θ(x, t), φ(x, t), which represent adiabatic parameters
which vary slowly in space and time so that momentum
space is still approximately well-defined. The gauge field
Ωµ introduced above is a function of space and time, but
only through its dependence on θ and φ.

To be explicit, consider the QSH Hamiltonian given by

HQSH(k, n̂) = sin kxΓ1 + sin kyΓ2 (151)

+(cos kx + cos ky − 2)Γ0 +m
∑

a=0,3,4

n̂aΓa

in which m > 0, Γa are the 4 × 4 Dirac matri-
ces, and n̂ = (n3, n4, n0) is a 3D unit vector. The
Γ1,2,3,4 are all odd under inversion and time-reversal
(T 2 = −1), while Γ0 is even under both. The un-
perturbed QSH insulator will have n3 = n4 = 0
but n0 6= 0. If we let n̂ vary slowly as a function of
space-time we can parameterize it using two adia-
batic space-time dependent parameters via n̂(x, t) =
(sin θ(x, t) cosφ(x, t), sin θ(x, t) sinφ(x, t), cos θ(x, t)).
The results of Ref. 3 show that in the low-energy contin-
uum limit of HQSH expanded around the Γ-point, the
gauge curvature of Ω is directly related to the skyrmion
density of the unit vector n̂ as

∂µΩν − ∂νΩµ =
1

2
n̂ · ∂µn̂× ∂ν n̂. (152)

Using Eq. 149 we can write down the current in terms
of this skyrmion density as

jµ =
e

8π
εµνρn̂ · ∂ν n̂× ∂ρn̂. (153)

Now let us consider an important example case. As-
sume that we have a QSH sheet with a static edge parallel
to the y-direction and a pair of static magnetic films next
to each other on the edge. If the magnetizations of the
two films are opposite, this will produce a domain wall on
the edge with a magnetization that varies as a function
of y. In that case we find the parameterization θ = θ(x)
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and φ = φ(y). At the location of a θ domain wall between
θ = 0 and θ = π there will be an edge. At the location
of a φ domain wall between φ = 0 and φ = π there will
be a magnetic domain wall. In this geometry we find

j0 =
e

4π
n̂ · ∂xn̂× ∂yn̂ (154)

=
e

4π
sin θ × dθ

dx

dφ

dy
.

Due to the dependence on the derivatives of θ and φ, the
charge density is localized wherever θ(x) and φ(y) are
both changing. If we have a sharp magnetic domain wall
on a sharp edge, then all of the charge density will be
localized at the magnetic domain-wall, i.e., where the θ
and φ domain walls intersect. The total charge in the
neighborhood of this intersection can be calculated by
integrating over x, y. The integration is easily performed
since the integrand is a total derivative in x and y. We
just get the integral over the solid angle swept out by θ
and φ, which for this configuration is half the sphere, i.e.
±2π. This yields a bound charge Qb = ±2π e

4π = ± e2 .

We can similarly find an adiabatic pumping current
by having a static edge (θ = θ(x)), and sweeping the
relative magnetization between the two magnetic films on
the edge as a function of time (φ = φ(t))62. Everything
carries through in exactly same way and we find

jy =
e

4π
sin θ × dθ

dx

dφ

dt
. (155)

We can again integrate over x, t to get the total charge
transported as the relative magnetization angle sweeps
through a full cycle to find, as φ : 0 → 2π, we have
∆Q = e. This current is localized wherever θ has a sharp
change in its value, i.e. on the edge.

We can understand the physics underlying the QSH re-
sponse from the microscopic behavior of the edge states.
In the low energy limit near the Dirac point, we can write
down the Hamiltonian for one of the edges of the QSH
system (say an edge at x = 0) as

Hedge(k) = kσz (156)

where k is the momentum of the coordinate along the
edge, and we have set the edge velocity to unity. Cou-
pling the magnetic layer to the edge will induce a gap
from the proximity exchange (Zeeman) coupling. If the
magnetization lies in the plane, then the effective Hamil-
tonian becomes

Hedge +H ′ = kσz +mxσ
x +myσ

y. (157)

Let us choose a configuration with mx = 0 and my =
m(y) is a shifted step-function which goes from a negative
value to a positive value at y = 0. It is well-known97

that this Hamiltonian has an exponentially localized zero

θ

π
0

φ

π
0

FIG. 20. Setup to generate an electromagnetic response in
a 3D Dirac semi-metal. To get a non-zero response there
must be two adiabatic parameters θ and φ. The parameter
θ represents an interpolation between a 3D Dirac semi-metal
with, for example, bz 6= 0 to a trivial insulator with bz = 0.
The parameter φ represents a magnetization domain-wall on
the xz surface plane. There will be a branch of low-energy
fermion modes trapped on the domain wall which can bind
charge or can carry current if b0 6= 0.

mode at the domain wall of m(y) given by

ψ = e−
∫ y
0
m(y′)dy′ 1√

2

(
1
1

)
(158)

when the mass jumps from negative to positive as y in-
creases. On a periodic edge, m(y) will have to have two
domain walls to maintain the proper boundary condi-
tions, and the edge will have two zero modes, one at
each domain wall. These localized zero modes carry a
half charge each. This is the same result found from Eq.
154. To complete the story in the language above, the
QSH system itself has a non-trivial value of the Z2 invari-
ant θ = π3,95. Thus, its boundary gives a natural place
where θ has a jump from π to 0. The spatial dependence
of the φ parameter is due to the magnetization induced
mass.

We can also generate an adiabatically pumped current.
To see this we can add a slow, time-dependent perturba-
tion to the edge Hamiltonian in the following way

Hedge(k) = kσz +m sinφ(t)σy +m cosφ(t)σx (159)

where φ(t) = 2πt/T. The mass terms are periodic in time
with a period of T . From the original work by Thouless81
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FIG. 21. The localized charge on a magnetic domain wall on
the surface of a 3D DSM resolved vs. kz, i.e., the direction
in which the Dirac nodes are separated in momentum space.
We note that there is a half charge bound at the domain wall
only for each state satisfying |kz| < cos−1m. In the plot, we
have used m = 0.5 which means bz = π

3
.

we know that as φ→ φ+2π an integer amount of charge
will be pumped, in this case just a single electron per
cycle. This is the same current which is reported in Eq.
155.

2. Response of the Dirac semi-metal

Now that we have finished the discussion for a single
QSH layer we are ready to move on to the 3D DSM. We
can start from the QSH Hamiltonian, but we need to
modify it to include tunneling in the z-direction due to
the coupled layers. The following model can be used

HDSM3(k, n̂) = sin kxΓ1 + sin kyΓ2 (160)

+(cos kx + cos ky + tz cos kz − 3)Γ0 +m
∑

a=0,3,4

n̂aΓa.

If the 2D layers are in the QSH phase, then when the
tunneling term tz is weak, the system will be in a WTI
phase. As it becomes stronger eventually the gap will
close at one of the time-reversal invariant momenta along
the kz axis and generate a pair of Dirac nodes, hence
entering the 3D DSM phase. In a recent work49 this
has been called a Z2 non-trivial Dirac semi-metal. From
the previous patterns of the electromagnetic response,
and the known response of the QSH insulator, we can
immediately write the response action

S3D =
e

2π2

∫
d3x dt εµνρσbµAν∂ρΩτ (161)
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FIG. 22. The total current localized at the magnetic domain
wall is plotted vs b0 for the 3D DSM. The expected value of
the total current localized on the domain wall is eb0

2π
. The

system size is a cube of L = 30 lattice sites in every direction
with bz = π

2
. We used open boundary conditions in both

the x, y directions and periodic boundary conditions in the
z direction. The red dots are the theoretical result and the
black line is the numerical result. The deviation arises due to
the importance of lattice effects at larger values of b0.

for the 3D DSM, where 2bµ is the energy-momentum
separation of the Dirac nodes. We now have a natu-
ral family of 2D Bloch Hamiltonians parameterized by
kz Hkz (kx, ky). Each of the 2D Hamiltonians, for kz not
at a Dirac node, represents at 2D time-reversal invariant
insulator and is classified by the same Z2 invariant as the
QSH insulator. As kz passes through a Dirac node the
Z2 invariant jumps from trivial to non-trivial, or vice-
versa. Thus, one of the regions of kz between the Dirac
nodes will harbor non-trivial topological QSH insulators
and thus generate edge states. For each kz in the topo-
logical range we will have a contribution of one layer of
QSH to the total electromagnetic response. This is the
meaning of Eq. 161. Ref. 49 has shown that this type
of semi-metal requires a uniaxial rotation symmetry to
locally stabilize the Dirac nodes. Our model has such
a symmetry (C4 rotation around the z-axis), and thus
represents a stable Z2 non-trivial DSM. We will leave a
more general symmetry analysis of the electromagnetic
response to future work.

Let us look at some examples of the physical phenom-
ena associated to Eq. 161. Just like the case of a single
QSH layer, to get a non-trivial response we need to apply
a magnetic film to a boundary with non-trivial surface
states. As shown in Fig. 20, for Dirac nodes separated
in kz we can coat the xz boundary plane with a mag-
netic layer. A translationally invariant magnetic domain
wall parallel to the z-axis in the magnetic layer (see Fig.
20) will create a line of low-energy modes which do not
disperse with kz. Thus for each kz that contributes a
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boundary mode we will bind a half charge. We numer-
ically calculated the bound charge at a domain wall as
a function of kz and the result is shown in Fig. 21. In
this figure we see exactly e/2 charge contributed for each
value of kz between the Dirac nodes. For this calculation
we used the mass parameter m = 0.5, and varied φ and
θ as functions of y and x respectively according to Eq.
160.

The bound charge response will also occur in a time-
reversal invariant WTI system, however a new phe-
nomenon which is not available in the WTI is the gener-
ation of a current along the domain wall in the direction
along which the Dirac nodes are separated. This can oc-
cur if the Dirac nodes are not at the same energy, and
it is the 3D DSM analog of the chiral magnetic effect in
Weyl semi-metals.

We can generate an energy difference, i.e. 2b0, in our
Hamiltonian by adding the term γ sin kzI to the Hamil-
tonian in Eq. 160. When we have a magnetic domain
wall and a non-zero b0, the localized domain wall states
will disperse with energy Edw = 2γ sin kz and this leads
to a non-zero current. We calculated this current numer-
ically as shown in Fig. 22. With a b0 6= 0, the current
is being generated due to the dispersion of the localized
edge modes which now have to traverse between the two
Dirac nodes in a continuous fashion. The total current
localized on the domain wall is given by

Jz =
eb0
2π2

∫
d2x (∂xΩy − ∂yΩx) (162)

=
eb0
2π2

∫
dθdφ

1

2
sin θ =

eb0
2π

which matches the numerical calculation well until b0 is
large enough for lattice effects to become important. This
mechanism for current generation is reminiscent of the or-
bital magnetization generation due to currents produced
by dispersing edge states in the 2D Dirac semi-metal.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have explored the electromagnetic re-
sponses of topological semi-metals with point like Fermi
surfaces in various spatial dimensions. We have seen that,
generically, the quasi-topological contribution to the re-

sponse depends on a 1-form bµ = (b0,~b), which repre-
sents an energy difference (2b0) and momentum separa-
tion (2bi) of the nodes. To study these systems we first
introduced a simple 1D model of a metal, which illus-
trated some of the general physical principles as well as
helped to understand some response properties of the 3D
Weyl semi-metal in a uniform magnetic field. This ap-
proach works because of the fact that the 1D response is
embedded in the 3D Weyl semi-metal response, similar
to the 1D topological insulator charge-polarization re-
sponse being embedded in the 3D axion electrodynamic
response3.

After 1D we then moved onto the case of the 2D Dirac
semi-metal which was constructed from layered 1D topo-
logical insulators that are stacked and coupled together.
The gapless Dirac nodes which occur in this model each
have a Chern-Simons response which, when written in
terms of the electromagnetic gauge field, gives a polar-
ization/magnetization which can be defined for a semi-
metal, and is encoded in the momentum space positions
and energies of the nodes. In this case, an energy dif-
ference between the nodes led to an edge current (bulk
orbital magnetization) and a momentum separation be-
tween the nodes led to a a boundary charge (bulk polar-
ization). The T I symmetry ensures that the Dirac nodes
are locally stable, immediately leads to the viable defini-
tion of charge polarization even in this gapless system.

We then moved onto 3D where we studied the proper-
ties of the Weyl semi-metal, and tested the predictions of
the continuum field theory results with some numerical
examples. Furthermore, we showed the precise anomaly
cancellation calculation that connects the surface and
bulk degrees of freedom. From there, the 3D DSM was
then analyzed from the perspective that it is a layered
QSH system. The 3D Dirac nodes separate Z2 trivial
regions of momentum space from Z2 non-trivial regions,
and the resultant response follows from the existence of
these nontrivial QSH layers. As such, when a magnetic
film is applied to a boundary with non-trivial surface
states, we get boundary modes, and bound charge, local-
ized on domain walls of the magnetization. Additionally
a nonzero energy difference in the 3D Dirac nodes pro-
duces a localized current which runs along the domain
wall.

There are several natural areas to pursue from this
point. We have shown that we can understand some
topological semi-metals, i.e. those with point Fermi sur-
faces, by stacking topological states in one dimension
lower. We only considered the simplest cases in this ar-
ticle, and we have barely scratched the surface of the
different 1D and 2D states that could be coupled to-
gether to form 2D and 3D semi-metal states. Addition-
ally one could take 1D topological wires and stack them
into planes, and then subsequently take those planes and
stack them into 3D to get a secondary WTI, or, if the
inter-wire coupling is strong enough, a 3D semi-metal
with line-node Fermi-surfaces. In this case the Lorentz
violation enters as a 2-form bµν that will couple to the
EM field via

∫
d4xεµνρσbµνFρσ. In the simplest case, this

will give rise to lines of Dirac nodes which will have a po-
larization and magnetization response controlled by bµν .

Along with determining the electromagnetic response,
the stacking construction is also useful for discussing
the properties of dislocations in WTIs and topologi-
cal semi-metals17,100. Additionally, the general pattern
of metal/semi-metal responses is as follows. For a D-
dimensional sample, a conventional Fermi-surface is a
D − 1-dimensional surface in momentum space. The
response of this metal is given by a D-form bµ1...µD

which is equivalent to a current via the identification
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jα(b) ∼ εαµ1...µDbµ1...µD
. Generically when the Fermi sur-

face has dimension D − q (codimension q), then the re-
sponse is controlled by a D − q + 1-form. These higher
forms are sure to yield interesting physical predictions
and connections with protected boundary modes. We
will explore both of these directions further in Ref. 72.

Another immediate application of our results is to the
bulk response action of the 3D topological crystalline in-
sulator protected by mirror symmetry101–103. It has been
shown that alloys of PbSnTe exhibit a mirror-symmetry
protected topological phase. If we consider the [001] sur-
face, then there will be four Dirac nodes which all have
the same helicity102, i.e. in our notation for the 2D Dirac
semi-metal χa = +1 for a = 1, 2, 3, 4. To define the re-
sponse we also need to know the momentum positions of
the Dirac nodes, and the sign of the local mass terms at
the Dirac nodes. Since the four nodes are symmetrically
arranged in the surface BZ let us parameterize their 2D

momenta as ~K1 = (K, 0), ~K2 = (0, L), ~K3 = (−K, 0),

and ~K4 = (0,−L).

The two relevant possibilities for the response coef-
ficients are the Chern number C1 = 1

2

∑4
a=1 gaχa and

~b = 1
2

∑4
a=1 gaχa

~Ka. Since the chiralities are all the

same we can replace these by C1 = 1
2

∑4
a=1 ga and

~b =
∑4
a=1 ga

~Ka, where we recall that ga is the sign of
the local mass term at the a-th Dirac node. Ref. 102
showed that there are four possibilities for the ga due to
inversion breaking perturbations, one particular case be-
ing g1 = g4 = −g2 = −g3 = 1. For this set of mass signs

C1 = 0 and ~b = (−K,L). If we include the other choices

of mass sign we get the four possibilities ~b = (±K,±L).
This is interesting because if the top surface and bot-

tom surface have different values of ~b then there will be
an interfacial region where the polarization changes and
there will be bound charge proportional to the difference.
Microscopically, this bound charge arises because the do-
main wall between the two regions of the surface will bind
low-energy fermion modes. It would be interesting to ex-
plore this further to develop the full response theory, but
we will leave this for future work.
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Appendix A: Transformation from a Dirac
Semi-metal on the Square Lattice to the Honeycomb

Lattice

In this section, we show that graphene can be thought
of as an array of 1 + 1-d TI wires. Let us begin with the
one dimensional TI given by the following Bloch Hamil-
tonian:

H(k) = tx(1 +m− cos kxa)σx + tx sin kxa σ
y (A1)

where tx,m are parameters and a is the lattice constant.
The system is gapped for all values of m except m = 0 or
m = 1. Let us now induce tunneling in the y direction.
In the following, the assumption of y being perpendicular
to x is not needed. We could have this tunneling along
an oblique direction and orthogonality is not required. In
this case the Brillouin zone is not a simple square, but it
can be a parallelogram. With hopping in the y-direction
consider the modified Hamiltonian:

H(k) = [tx + txm− tx cos kxa

− tθ cos(kxa cos θ + kya sin θ)]σx

+
[
tx sin kxa+ tθ sin(kxa cos θ + kya sin θ)

]
σy.

(A2)

where we have parameterized the y-direction by an angle
θ with respect to the initial x-axis.

Let us now look at the graphene Hamiltonian. It is
given by

HG(k) = −(t1 + t2 cos~k · ~a1 + t3 cos~k · ~a2)σx (A3)

+(t2 sin~k · ~a1 + t3 sin~k · ~a2)σy

where ~a1,2 =
√

3a (cos(π/6),± sin(π/6)). For an
easier comparison let us rotate this system in the
counter-clockwise direction in real space by an angle
π/6. The two lattice vectors are now given by ~a1 =√

3a (cos(π/3), sin(π/3)) and ~a2 =
√

3a (1, 0). Labeling√
3a = b, we reduce the Hamiltonian to

HG(k) = −(t1 + t2 cos(kxb cosπ/3 + kyb sinπ/3)(A4)

+t3 cos kxb)σ
x + t3 sin(kxb))σ

y

+(t2 sin(kxb cosπ/3 + kyb sinπ/3).

We note that the Hamiltonians in Eq. A4 and Eq. A2 are
the same with the following identifications. t1 → −(tx +
txm), t2 → tθ, t3 → tx with the additional constraint
tθ = tθ.

Let us now set all parameters in our model A2 to 1
except for tθ. From our previous statement we know
that this will be exactly the same as graphene when tθ =
tθ = 1. We want to show that the effect of deforming tθ
away from this point is to move the Dirac nodes around
in the BZ. Let us look at the gapless points of our model
which are the solutions to

sin(kxa) + tθ sin(kxa cos θ + kya sin θ) = 0 (A5)

cos(kxa) + cos(kxa cos θ + kya sin θ) = 1 +m. (A6)

In the limit that tθ = 1, we have

(±1
a cos−1( 1+m

2 ), ∓(1+cos θ)
a sin θ cos−1( 1+m

2 )) as the gap-

less points. On the other hand, if tθ = 0, we have
(0,± cos−1(m)) as the gapless points. As long as
|1 + m| < 2, and 0 ≤ tθ ≤ 1, we get two gapless points
in the spectrum but their location depends generically
on the model parameters. In this paper, we always use
the model in A2 in the limit of tx = 1, tθ = 1, tθ = 0 for
describing Dirac semi-metal physics with two bands.
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Appendix B: Exact Solution for Boundary States in
Topological Semimetal Lattice Models

In this Appendix we will study the edge states of the
various topological semi-metal lattice models. The solu-
tion can be found analytically for the Dirac-type models
we have been using following the results of Refs. 23 and
104. We will begin by solving for the edge states of the
two-band lattice Dirac model, i.e., the minimal model for
1+1-d and 2+1-d topological insulators. We will then go
on to modify these models to form Dirac and Weyl semi-
metal states and solve for their boundary modes.

1. Exact solution for edge states of the lattice
Dirac model

Consider the model given by

H = ε(k)I2×2 + da(k)σa (B1)

da(k) = (A sin(k1), d2(k2),M(k))

M(k) = M − 2B[2− cos(k1)− cos(k2)]

where d2(k2) is an unspecified, but odd, function of k2,
and A,B,M are model parameters. Let us fix the sign of
A > 0 and B > 0. Additionally, we assume that ε(k) = 0
for now, but we will add it back in later. Note that with
ε(k) = 0 and d2(k2) = −d2(−k2) the model is particle-
hole symmetric with the symmetry operator C = σx;
it is also inversion symmetric with I = σz. The energy
eigenvalues are given by

E± = ±
√
dada

= ±
√
A2 sin2(k1) + d2

2(k2) +M2(k). (B2)

This spectrum is a gapped insulator as long as
√
dada 6=

0. One gapless critical point of this model occurs when
k1 = k2 = M = 0 and for M < 0 (M > 0) the model is
in a trivial (topological) insulator phase.

When the system is tuned to the non-trivial phase
there are gapless edge states which can be shown explic-
itly in a finite strip geometry or a cylinder geometry. Let
us assume that the system has boundaries at x1 = 0, L
and is infinite in the x2 direction. Since we have an in-
homogeneous system with open boundaries we need to
Fourier transform the Bloch Hamiltonian back from k1

to x1 via the substitution

c~k =
1√
L

∑
j

eik1x1(j)ck2,j . (B3)

This reduces the Hamiltonian to

H =
∑
k2,j

(Mc†k2,jck2,j + T c†k2,jck2,j+1 + T †c†k2,j+1ck2,j)

M = A sin(k2)σ2 − 2B

[
2− M

2B
− cos(k2)

]
σ3

T =
iA

2
σ1 +Bσ3. (B4)

Since we are interested in the exponentially localized
edge states, we will focus on a solution ansatz of the form

ψα(j) = λjφα (B5)

where λ is a complex number, j is the site index in the x1

direction, and φα is a 2 component spinor with α = 1, 2.
We will first look for a solution at k2 = 0, and since
the Hamiltonian is particle-hole symmetric, the mid-gap
edge state for this momentum will occur at E = 0. Acting
with the Hamiltonian at k2 = 0 on our ansatz yields the
equation[

iA

2
(λ−1 − λ)σ1 +B(λ+ λ−1)σ3 +M(0)σ3

]
φ = 0.

Multiplying this equation on both sides by σ3 gives us

A

2
(λ−1 − λ)(iσ3σ1)φ = −[B(λ+ λ−1) +M(0)]φ. (B6)

The operator iσ3σ1 has eigenvalues ±1. First consider
iσ3σ1φ = −φ, under which Eq. B6 becomes a quadratic
equation in λ which can be solved to find:

λ(1,2) =
−M(0)±

√
M2(0) + (A2 − 4B2)

A+ 2B
. (B7)

Thus, from the quadratic equation we have two λ solu-
tions for the −1 eigenvalue (chirality) of iσ3σ1. For every
solution λ we find that λ−1 is a solution for iσ3σ1φ = +φ,
and thus for each eigenvalue of iσ3σ1 there are two pos-
sible values of λ. Let us label the eigenstates of iσ3σ1

as φ± corresponding to the chiralities. The most general
edge state can by written as

ψj(k2 = 0) =
(
aλj(1) + bλj(2)

)
φ+ +

(
cλ−j(1) + dλ−j(2)

)
φ−

(B8)
but to satisfy open boundary conditions we must have
a = −b and c = −d since φ± are linearly independent.
Additionally, since the mode must be normalizable, we
can only keep positive or negative powers of λ and thus
only one normalizable mode exists (on each edge) as long
as the λ do not lie on the unit circle, i.e. |λ(1,2)| 6= 1. If
|λ(1,2)| = 1 an edge state solution does not exist at all.

We also note that solutions with eigenvalues λ and λ−1

are localized on opposite edges of the system based on
the form of Eq. B8.

Now, let us generalize this solution for k2 6= 0. We see
that the term cos(k2) simply acts as a shift of the param-
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eter M and can be easily accounted for. We also see that
[iσ3σ1, σ2] = 0 and clearly [iσ3σ1, I2×2] = [σ2, I2×2] = 0.
So, the terms d2(k2)σ2 and ε(k2)I2×2 can simply be in-
cluded as k2 dependent shifts of the energy. These terms
change the energy dispersion of the edge states, but the
eigenstates remain the same. The energy for the edge
state for any k2 is given by

E±(k2) = ε(k2)∓ d2(k2). (B9)

Importantly, this dispersion does not hold across the en-
tire k2 Brillouin zone because there will exist some values
of k2 where the values of λ coming from a solution of

λ(1,2)(k2) =
−m(k2,M)±

√
m(k2,M)2 + (A2 − 4B2)

A+ 2B
m(k2,M) = −2B[2−M/2B − cos(k2)] (B10)

do not yield normalizable modes. For the edge states to
be normalizable, we have to satisfy the condition that
|λ(1,2)| 6= 1 which can be reduced to

− 2B < m(k2,M) < 2B (B11)

for each k2. The special points in k2-space where the in-
equalities become equalities are places in the energy spec-
trum where the edge states merge with the delocalized
bulk states. Beyond these special values of k2 the edge
states no longer exist. This result, which consists of the
dispersion, wavefunctions, and conditions for normaliz-
ablity represents the full analytic solution of the lattice
edge states.

2. Edge theory for two dimensional semimetal

Based on the solution for the 2-band Dirac model we
can immediately adapt it to the case of topological semi-
metal states with minor modifications. First, let us con-
sider the 2+1-d Dirac semi-metal including the possibility
of the inversion breaking (mA) and time-reversal break-
ing (mB) mass terms discussed in Section III. The Hamil-
tonian takes the form

H = ε(k)I2×2 + da(k)σa

da(k) = (A sin k1,mA +mB sin k2,M(k))

M(k) = M − 2B[1− cos k1 − cos k2]

ε(k) = γ sin(k2).

Depending on the values of M and B this Hamilto-
nian can have Dirac nodes at (0,±k0) where k0 =
cos−1(−M/2B). For a cylinder geometry with open
boundary in the x1 direction and periodic boundary con-
ditions in the x2 direction, this model will have edge
states when the Dirac nodes exist. The edge states will
occur between the Dirac nodes, but depending on the
values of M and B they either stretch between the nodes
within the Brillouin zone or across the Brillouin zone
boundaries. For a choice such that they stretch within

the Brillouin zone, the energies of the edge state branches
on the two edges are given by

E± = γ sin(k2)∓ |mA +mB sin(k2)| |k2| < k0. (B12)

The restriction on the range of k2 arises from a modified
condition on normalizability through the relation

−2B < m(k2,M) < 2B

m(k2,M) = −2B[1−M/2B − cos(k2)]. (B13)

We can observe several interesting details from Eq.
B12. First we see that if we let mA = γ = 0 but mB 6= 0,
then the dispersion matches that of the edge states of the
2+1-d Chern insulator28 as it must since the mB term
is exactly the mass term required to convert a 2D Dirac
semi-metal into a Chern insulator. If only mA is non-zero
and mB = γ = 0, then we get two flat bands, one band
on each edge. Finally, if we have γ 6= 0 and mA 6= 0
but mB = 0, then the two flat bands from the previous
case will each disperse, and at half-filling there will be
bound currents on each edge that, in the limit mB → 0
give rise to the magnetization discussed in Section III.
This matches our expectation because if M and B are
tuned to values where k0 6= 0 as we have assumed, then
for non-zero γ there will be an energy difference between
the two Dirac nodes given by ∆E = 2|γ sin k0|.

3. Edge theory in the case of the Weyl semimetal

The Weyl semi-metal also has a Hamiltonian which is
given by the form of Eq. B12 where

H = ε(k2, k3)I2×2 + da(k)σa

da(k) = (A sin k1, A sin k2,M(k))

M(k) = M − 2B[2− cos k1 − cos k2 − cos k3]

where we can let ε(k) be a generic function of k2, k3. This
Hamiltonian has two gapless Weyl nodes for |M/2B| < 1
at (k1, k2, k3) = (0, 0,±k0) where k0 = cos−1(−M/2B)).
Let us assume again that our system has boundaries at
x1 = 0, L and that it is periodic in the other two di-
rections. The main change between this case and the
previous ones is that the condition for existence of these
edge states at each momentum gets modified because the
mass m(k,M) is now parameterized by k2 and k3. The
new normalizability condition that must be satisfied is
given by

−2B < m(k,M) < 2B (B14)

m(k,M) = −2B[2−M/2B − cos k2 − cos k3].

The edge state energies in this case are given by E± =
ε(k2, k3)∓ |A sin k2|.

Let us consider a simple case first where ε(k) ≡ 0. We
want to consider the structure of the boundary modes
on a surface with the normal vector in the x-direction
and the surface Brillouin zone is the (k2, k3) plane. If we
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set the chemical potential to zero, we see that there exist
Fermi arcs in this plane when E± = ∓|A sin k2| = 0 which
allows for k2 = 0, π and does not explicitly depend on k3.
The correct value of k2 depends on the particular choice
of M and B, so without loss of generality let us choose
k2 = 0. The boundary state existence condition of Eq.
B14, which does depend on k3, can be simplified to give
us the condition that boundary states are only present
when |k3| < k0. Thus, for this case there exist Fermi arcs
that are straight lines which go from (k2, k3) = (0,−k0)
to (k2, k3) = (0, k0) in the surface Brillouin zone.

To get more non-trivial Fermi-arc shapes inversion
symmetry needs to be broken to lift the degeneracy be-
tween the arcs on the two edges. Let us consider the
Hamiltonian given by B14 with ε(k) = γ sin k3. The en-
ergy is given by E± = γ sin k3 ∓ |A sin k2|. With the
chemical potential again set at µ = 0 and, for example
γ = A/2, we see that the points in the Fermi arc must
satisfy sin k3 = ±2 sin k2 and Eq. B14. The solutions
to these constraints are complicated functions of (k2, k3)
and must, in general, be solved numerically.

4. Tunneling Between Edge States

In this section, we will use our model of the boundary
states for the topological semimetals to study properties
at interfaces between semimetals with different Lorentz
violating parameters, and thus different boundary state
structures. Let us consider the interface between two,
semi-infinite 2D DSMs first. Assume that the interface
is at x = 0 with parameters for x ≤ 0 given by A,B,M, γ
and for x > 0 given by A′, B′,M ′, γ′.

The lattice Hamiltonian for x ≤ 0 is given by

H =

 j=−1∑
j,k2=−∞

Hj(k2)

+Mc†0,k2c0,k2

+ T c†0,k2c1,k2 + T †c†1,k2c0,k2 (B15)

where Hj is the lattice Hamiltonian we have been previ-
ously using. To be specific,

M = γ sin k2I + (mA +mB sin k2)σ2

− 2B

[
1− M

2B
− cos k2

]
σ3

T =
iA

2
σ1 +Bσ3. (B16)

The Hamiltonian for x > 0 has a similar form, just with
different parameters. We notice that there is a natural
hopping term to connect the two systems. The matrix
element for tunneling from site 0 to site 1 is T † and the
matrix element for tunneling from site 1 to site 0 is T .

Assume that the edge states are of chiralities c, c′ which
take on the values +1,−1. The chirality of the state is
simply defined as its eigenvalue under the iσ3σ1 matrix
discussed in the previous section. The state on the left

edge and right edge are given by φc, φc′ respectively. The
Hamiltonian in the edge subspace is given by

H =

(
〈φc|M|φc〉 〈φc|T |φc′〉
〈φc′ |T †|φc〉 〈φc′ |M′|φc′〉

)
. (B17)

We can evaluate the matrix elements in each case by
using the fact that |φ±〉 are eigenstates of −σ2. When the
chiralities are opposite, i.e cc′ < 0, we have 〈φ±|M|φ±〉 =
γ sin k2 ∓ (mA +mB sin k2), 〈φ+|T |φ−〉 = 〈φ+|T |φ−〉† =
B−A/2. Off diagonal terms turn out to be zero if cc′ > 0
i.e. we have 〈φ+|T |φ+〉 = 〈φ−|T |φ−〉 = 0. So, in the case
of cc′ > 0, which is to say we have the same chirality for
the edge states the tunneling Hamiltonian is given by

H =
γ + γ′

2
sin k2I±

(
mA + (mB +

γ − γ′
2

) sin k2

)
σ3.

(B18)
We see that the edges don’t mix and are only completely
gapped when the inversion symmetry is broken (i.e. mA

non-zero). When they are of opposite chiralities, the tun-
neling Hamiltonian is given by

H =
γ + γ′

2
sin k2I± (B19)(

mA + (mB +
γ − γ′

2
) sin k2

)
σ3 + (B −A/2)σ1.

We see that the term B − A/2 when nonzero acts like
a mass term and gaps the edge out in this case. In the
models we consider, A = 1, B = −1/2 and A−B/2 6= 0.
In the case when the edge modes have the same chirality
the ± signs in Eq. B18 refer to the chirality itself. In the
case when the edge modes have the opposite chirality the
± signs in Eq. B19 refer to whether the left edge has +
or − chirality.

An important thing to notice is that M and M ′ do
not enter the edge Hamiltonians, however it still has an
important effect. The above analysis tells us that the
edge modes can gap each other out when they both exist
at the same momentum k2. However, it is M and M ′

that control where the Dirac nodes are and therefore the
domain of existence of the edge states in k2. So, those
edge states on one edge with a momentum k2 which do
not have a counterpart on the other edge will remain
gapless regardless. Thus, the edge states will only be
removed if the domain of existence overlaps in the two
systems.

5. Tunneling in Weyl semimetals

Let us start off with the Hamiltonian which is of the
same flavor as before with

M = A sin k2σ
2 − 2B

[
2− M

2B
− cos k2 − cos k3

]
σ3

T =
iA

2
σ1 +Bσ3. (B20)
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Let us assume that again that we have an edge at x = 0
and the same setup as the 2D Dirac semi-metal. For
x ≤ 0 we have parameters A,B,M and for y > 0 we have
parameters A′, B′,M ′. Our analysis from the previous
subsection helps us immensely here. The edge states |φc〉
are again eigenvectors of −σ2. The edge Hamiltonian
when we have same chiralities on the two edges is again
given by

H = ±A sin k2I. (B21)

On the other hand, when the edge states have opposite
chiralities, the edge Hamiltonian is

H = ±A sin k2σ
3 + (B −A/2)σ1. (B22)

So, yet again, when the edges have opposite chiralities,
the term B − A/2 acts like a mass term and gaps the
modes out. This is of course only valid if the edge states
exist at the same k3. Edge states with a momentum k3

which do not have a counterpart on the other edge will
remain gapless. The ± signs are related to the same
definitions in the previous subsection. There could be
more complications when a term ε(k2, k3)I is added to
the Hamiltonian. This modifies the surface Fermi arcs
from being straight lines to some other complicated struc-
ture. When this happens, only those states on the sur-
face which are degenerate at the same momenta k2, k3

gap each other out.

Appendix C: K-matrix formalism

The action in Eq. 99 can be rewritten as

Seff =
e2

4h

∫
d3xKabε

µνρA(a)µ∂νA(b)ρ (C1)

where Kab = χagaδab. From these independent cur-
rents and gauge fields we can extract the electromag-
netic response which couples democratically to each
Dirac cone via a 2N-dimensional “charge”-vector tEM =
(e, e, . . . , e, e)T where e is the electron charge. The Hall
conductivity is then σxy = 1

2h t
T
EMKtEM . We can also de-

fine a valley charge vector tV = (χ1, χ2, . . . , χ2N )T . We
can define a valley Hall conductivity via σVxy = 1

h t
T
EMKtV

which determines the valley current in response to an
electromagnetic field. Finally, we can define a valley-
valley Hall conductivity via σV Vxy = 1

2h t
T
VKtV which de-

termines the amount of valley current that flows in re-
sponse to a valley electromagnetic field (generated, for
example, by strain).

In general we may have other interesting types of
charge vectors tS if we have more symmetries, e.g., spin-
rotation symmetry, or point-group symmetries, that cor-
respond to the quantum numbers carried by the corre-
sponding Dirac cones. We can define charge and valley
Hall conductivities of those additional quantum numbers
by σSxy = 1

h t
T
EMKtS and σV Sxy = 1

h t
T
VKtS . As an ex-

ample, suppose that we have translation symmetry in
spacetime, which gives rise to conserved momentum and
energy. For translation along the x-direction each Dirac
cone has a momentum component kx(i) leading to a charge

vector tx = ~(kx(1), k
x
(2), . . . , k

x
(2N))

T . We could use this

to define the charge polarization along the y direction
as P y1 = 1

2h t
T
EMKtx. This can be written in a more co-

variant way as P a1 = 1
2hε

abtTEMKtb and M = 1
2h t

T
EMKtε

where tε = ~(ε(1), ε(2), . . . , ε(2N))
T .

Let us consider a few explicit examples. The sim-
plest case is N = 1 where the the Dirac cones are spec-
ified, without loss of generality by (+,P(1), ε1, g1)and
(−,P(2), ε2, g2). Up to global signs, the two possible K-
matrices are K1 = I and K2 = σz. The K-matrix K1

(K2) corresponds to the case of a time-reversal symme-
try (inversion symmetry) breaking anomalous response.
The electromagnetic and valley charge vectors for both
K-matrices are tEM = (e, e)T and tV = (1,−1)T . For K1

we easily find σxy = e2/h, σVxy = 0 and σV Vxy = 1/h. For

K2 we have σxy = σV Vxy = 0 and σVxy = e
h .

Now let us consider translation invariance so that we
can construct a charge vector associated to the energy
and momentum of each Dirac point tx = (k(1)x, k(2)x),
ty = (k(1)y, k(2)y), tε = (ε(1), ε(2)). We can see that the

Polarization would be P a1 = 1
4π ε

ab(k(1)b + k(2)b) when

K = I and P a1 = e
4π ε

ab(k(1)b − k(2)b) when K = σz. The
Magnetization would be given by M = e

4π (ε(1) − ε(2))
when K = σz and M = e

4π (ε(1) + ε(2)) when K = I.
We can also consider a more complicated example with

N = 2 which will have four Dirac cones. As an ex-
plicit example, take χ1 = χ2 = 1 and χ3 = χ4 =
−1. The electromagnetic and valley charge vectors are
tEM = (e, e, e, e)T and tV = (1, 1,−1,−1). We can also
define two other useful, linearly-independent charge vec-
tors tU = (1,−1,−1, 1) and tW = (1,−1, 1,−1). There
are 24 = 16 possible K-matrices but we only need to con-
sider eight since the other eight differ by an overall sign.
These eight are

K1 = diag[1, 1, 1, 1] K2 = diag[1, 1,−1,−1]

K3 = diag[1,−1,−1, 1] K4 = diag[−1, 1,−1, 1]

K5 = diag[1, 1,−1, 1] K6 = diag[1,−1, 1, 1]

K7 = diag[−1, 1, 1, 1] K8 = diag[1, 1, 1,−1]. (C2)

We can tabulate their (dimensionless) electromagnetic re-
sponses via 1

2 t
T
EMKtα where α = EM, V, U, and W. We

find : 

EM V U W
K1 2 0 0 0
K2 0 2 0 0
K3 0 0 2 0
K4 0 0 0 2
K5 1 1 1 1
K6 1 −1 1 −1
K7 1 −1 −1 1
K8 1 1 −1 −1


. (C3)
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We note that while all of these results are simple and
appealing, we must be careful to handle the cases when
the response coefficients have a Z2 nature, i.e. when they
are connected to the charge polarization. As shown in
the main draft, handling the possibility of Z2 cancella-
tion can be taken care of by modifying the product χaga
for certain nodes. This could, in general, give rise to a
modified K-matrix, but after that the rest of the formu-

lation would go through. Additionally, since this formal-
ism was derived from independent continuum flavors of
Dirac fermions, it may be necessary to modify the sign of
certain response coefficients to match the lattice results.
Such a sign may be present, for example, for the charge
polarization. We called this extra factor Θ in the main
text. We will leave a full discussion of these issues to
future work.
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