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We present a strategy for producing multi-qubit gates that promise high fidelity with minimal
tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dy-
namical decoupling in a complementary manner. Energy-level transition errors are protected by
adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful
way to divide and conquer the various error channels. In order to accomplish this without violat-
ing a No-Go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314
(2009)], we require a robust operating point (sweet spot) in control space where the qubits interact
with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We
apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons
between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as
long-lived data qubits. This system can have a very robust operating point where the electron spin
is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be
performed using well-established global magnetic resonance pulse sequences. Single electron spin
preparation and measurement has also been demonstrated. Putting this all together, we present a
robust universal gate set for quantum computation.

One of the main challenges in realizing a quantum
information processor is the ability to implement high-
fidelity entangling operations. It can be relatively easy to
control well isolated qubits. Nuclear magnetic resonance
(NMR) and electron spin resonance (ESR) are well de-
veloped for manipulating nuclear and electron spins with
high fidelity [1, 2]. Turning interactions between qubits
on and off in a controllable manner for a coherent quan-
tum operation remains very challenging. The process of
coupling different qubits is often accompanied by an en-
hanced sensitivity to the environment. When qubits are
not isolated, they are vulnerable to noise.

The adiabatic theorem [3] provides remarkably robust
operations in the sense that transitions between non-
degenerate eigenstates are suppressed. If the Hamilto-
nian of a quantum system is varied slowly enough, instan-
taneous eigenstates will be tracked. Exploiting this phe-
nomonon, dramatic improvements in single-qubit NMR
operations have been observed [4] by combining the BIR-
4 [5] pulse sequence with WURST-20 [6] adiabatic pulse
shaping. In our proposal, we perform an adiabatic pro-
cess involving two qubits and non-degenerate eigenstates
(diabatic energy level crossings are allowed, however).
Transition errors are suppressed by the adiabatic theo-
rem, but phase errors must be mitigated using a different
mechanism.

The Hahn echo [7] is simple and effective for cancel-
ing phase errors induced by low-frequency noise and un-
certainty. An unknown but systematic Ẑ rotation on a
qubit is reversed by flipping it with an X̂ gate. The Hahn
echo, and a variety of more elaborate sequences or strate-
gies [8–12] are very effective at prolonging coherence and
storing quantum information. These are known as dy-
namical decoupling (DD) schemes because they decou-

ple the qubit system from its environment. There exist
analogous strategies called dynamically corrected gates
(DCGs) to cancel errors during nontrivial quantum gate
operations [13–17]. However, a No-Go theorem forbids
black-box DCGs [14], presenting a challenge relative to
DD sequences. DCGs must assume there are relation-
ships between the effects of noise induced under different
control settings. In a two-qubit DCG, for example, you
would need to vary the inter-qubit interaction but main-
tain consistent or correlated environmental interactions
in order to cancel their effects. This presents a problem
when interactions are varied by moving the qubits (such
as localized electrons in a solid state material) and the
environment varies at this length scale.

We demonstrate a way to circumvent this No-Go the-
orem when there exists a robust operating point (ROP),
a ”sweet spot” in control space where the qubits interact
stably with respect to noise (already exploited in vari-
ous semiconductor qubit settings [18–21]). We do not
attempt to correct for errors induced during this ROP
time, but we do correct for errors induced in transit (adi-
abatically) to and from this control space point. This is
illustrated schematically in Fig. 1. We will show how this
can be accomplished in a generic model in three nested
components, prove that it provides a universal gate set
when combined with single qubit operations, and then
discuss the suitability of silicon donor qubits for imple-
menting this scheme.

The first of our nested components is the adiabatic cy-
cle of moving isolated qubits to a ROP, where they inter-
act, and then back. In an ideal limit, adiabatic operations
are, by definition, diagonal with respect to instantaneous
eigenstate bases. Up to an irrelevant global phase such
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FIG. 1. Control space schematic showing an adiabatic path
between isolated qubits and a ROP where the qubits interact.
We will cancel phase accumulated during this traversal using
dynamical decoupling.

an operation for two qubits is generically
eiα 0 0 0
0 eiβ 0 0
0 0 eiγ 0
0 0 0 e−i(α+β+γ)

 ≡ Za •

Zb Zc
(1)

in the eigenstate basis using a matrix representation (left)
or a circuit-model representation (right). We assume that
there is good energy gap protection throughout, includ-
ing when the qubits are isolated, so that low frequency
noise will only induce phase errors. That is, we assume
we are not T1 limited. Consider the path illustrated
in Fig. 1 consisting of three stages: 1) traversing from
isolated qubits to the ROP; 2) waiting at the ROP; 3)
traversing back to isolated qubits. Each is an operation
as in Eq. (1) and these operations commute. Generically,
we may write the circuit model representation as

Za1 • Za2 • Za3 •

Zb1 Zc1 Zb2 Zc2 Zb3 Zc3

=
Za • Zd(τ) •

Zb Zc Ze(τ) Zf(τ)
(2)

where a = a1 + a3, b = b1 + b3, c = c1 + c3, d(τ) = a2,
e(τ) = b2, and f(τ) = c2. We parameterize this opera-
tion with τ , the amount of time spent at the ROP. Some-
what arbitrarily, we will refer to the top rail of Eq. (2)
as the ancilla and the bottom rail as the data.

The d(τ), e(τ), and f(τ) phases are incurred at the
ROP and therefore presumed to have little sensitivity to
noise. In contrast, the a, b, and c phases are sensitive
to noise and uncertainty during transit. The second and
third components of our procedure are designed to cancel
these dependences. In the second component, we cancel
out the a dependence by applying DD to the ancilla qubit
in what we will call an “ancilla-refocused double-cycle”.
This component has three stages. First, we perform an
adiabatic cycle where we set τ such that f(τ) = π. Next,
we apply a refocusing X gate on the ancilla qubit. Fi-
nally, we perform another adiabatic cycle that is the same

as the first except we take τ = 0. It is only important
that the difference in the two adiabatic cycles amounts
to an extra controlled-Z operation (it is unnecessary to
literally spending zero time at the ROP for one of the
cycles). To the extent these operations are not ideally
realized, there will be noise that is not canceled, but it
is instructive to assume idealism in the initial analysis.
The net operation of this component is then

Za • Zd • X Za •
Zb Zc Ze • Zb Zc

=
• Zd X

• Zg
(3)

where g = 2b+c+e. Notice that, in addition to canceling
the a dependence, we have also made the c rotation on
the data qubit deterministic rather than dependent upon
the ancilla state. As far as the ancilla qubit is concerned,
it has performed a CPhase operation with the data qubit
and the uncertainty has been canceled.

The final, top-level component applies DD in a three
stage process as before, but it will involve two differ-
ent ancilla qubits. In the first stage, we do an ancilla-
refocused double-cycle with one ancilla. Next, we per-
form a refocusing X gate on the data qubit. Finally,
we do another ancilla-refocused double-cycle but with a
different ancilla. The circuit-model representation is

• Zd X

Zd • X

• Zg X • Zg

=

• Zd X

Zd • X

• X •
⇒ • •• •

(4)

where the bottom rail is the data qubit. We permuted
commuting operators on the left side of Eq. (4) for com-
pactness. The right side of the equation shows how the
g dependence (which is a function of the uncertain b and
c parameters) is canceled. On the right of the arrow is
the equivalent operation up to single qubit operations
that are perfectly known in the ideal limit with respect
to being adiabatic, repeatable, insensitive to noise at the
ROP, and with ideal single-qubit operations. We can un-
derstand non-ideal operations as evolving states into su-
perpositions of ideal and errant parts, limiting the overall
gate fidelity.

The robust multi-qubit gate that we have produced,
shown at the right of Eq. (4), is not standard. We pro-
duce two CPhase gates between one data qubit two dif-
ferent ancilla. To prove that this is a sufficient for uni-
versality, we show how to produce a single CPhase gate
between two data qubits, mediated by ancilla. First, it is
straightforward to produce a CPhase between an ancilla
and data by discarding one of the ancilla:

•
|0〉 •
• •

= •• . (5)

This is wasteful, but suffices for a proof. With this data-



3

ancilla CPhase, we can produce a data-data CPhase via

|0〉 H • H • H • H
• ••

=
|0〉 •
• ••

= •
•
.

(6)
Also note that data measurements may be performed in-
directly from ancilla measurements using

|0〉 H • H
•

. (7)

Preparation can be implemented via measurement.
Thus, along with full single-qubit control of data qubits,
Hadamard gates, and measurement on ancilla qubits, our
multi-qubit operation forms a universal gate set.

We now transition from an abstract to a concrete pro-
posal applied to donor qubits in silicon. We envision a
similar layout as the well-known Kane architecture [22]
in which we have array of P donors in Si and donor elec-
trons are controlled with electrostatic pads from above.
Rather than mediating interactions through the exchange
coupling of electrons, however, we propose to shuttle in-
dividual electrons between donors as proposed in Refs. 23
and 24, possibly by shuttling the electron along an oxide
interface [25, 26]. The innovation in our proposal is the
use of adiabaticity and DD to cancel uncertainty and low-
frequency noise incurred during the shuttling process.
We treat the electron spins as ancilla qubits and donor
nuclear spins as data qubits and apply our robust multi-
qubit gate proposal directly to this system. Single elec-
tron spin preparation may be performed via spin-selective
tunneling into a single-electron transistor [27–29]. Single
qubit operations can be performed using global ESR and
NMR [1, 2]. We can implement selective data qubit oper-
ations by addressing only donors that are occupied with
properly initialized electrons. Universality does not re-
quire ancilla gate operations to be selective beyond the
shuttling done with local electrostatic controls; the an-
cilla only need to be able to mediate data qubit interac-
tions selectively (and in parallel). The two-qubit inter-
action is simply the hyperfine (HF) coupling between an
electron and the donor it is occupying.

In order to establish the suitability of our multi-qubit
gate strategy to this Si:P system, we must address the
following questions. How isolated are the qubits when
the interaction is supposed to be off? How robust is the
ROP? How adiabatic can we make the shuttling process?

When electrons and nuclei are sufficiently far apart,
the dipolar interaction is the dominant coupling. When
wavefunctions of electrons overlap, the exchange inter-
action dominates. When the electron wavefunction has
considerable amplitude on a phosphorus donor, the con-
tact HF interaction dominates. We’ll assume the dipolar
interaction dominates in the regime in which we regard
qubits to be isolated. The dipolar Hamiltonian between

FIG. 2. Top: Hyperfine coupling (A) computed in NEMO-3D
as a function of E-field for a P donor in Si near an interface
at two different depths (a0 ≈ 0.54 nm is the lattice constant).
Bottom: Fractional HF difference from its maximum. Dotted
line indicates the ROP (sweet spot).

a pair of spins is

HD =
µ0γ1γ2~2

4πr3

[
~I1 ·~I2 −

3(~I1 · ~r)(~I2 · ~r)
r2

]
(8)

where γ1 and γ2 are respective gyromagnetic ratios, ~I1
and ~I2 are respective spin operators, and ~r is the vector
between the spin positions (the sign is unimportant). Us-
ing appropriate gyromagnetic ratios for an electron (γS =
gµB with g ≈ 2) and P nucleus (γP = 10.8 × 107/Ts),
this interaction strength is at most 105 MHz/(r/nm)3

between electrons, 64 kHz/(r/nm)3 between an electron
and nuclear spin, and 40 Hz/(r/nm)3 between nuclei. Nu-
clear data qubits are well isolated from each other (tens
of µHz interaction strength at 100 nm). Electron an-
cilla qubits can also be regarded as well isolated if their
lifetimes between measurements are short compared to
10 ms (100 Hz interaction scale at 100 nm electron sep-
aration and 10 nm electro-nuclear separation).

The contact HF between an electron (ancilla) and nu-
cleus (data) dominates the inter-qubit interaction. The
Hamiltonian for one electron and nucleus is

Ĥ = B (γSS
z − γP Iz) +A( ~E)S · I (9)

where S and I are respective electron and nuclear spin
operators, B is the magnetic field (B-field) applied along
z, and A is the HF interaction that is electric field (E-
field) dependent. Figure 2 shows A versus E-field that
we computed in NEMO-3D as in Ref. 30. The bottom
figure shows a log-scale view of the ROP at the max-
imum of A. NEMO-3D predicts relatively large mini-
mum orbital energy gaps of about 0.9 meV and 0.3 meV
for the 13a0 and 20a0 cases respectively, not expected
to limit the adiabatic transfer rate [25, 26]. We ne-
glect anisotropic HF [31] with the P nucleus (unknown
at non-zero E-field), HF with 29Si [32], spin-orbit inter-
actions [33], and g-factor variations [30] as sub-dominant
effects to be studied in future work.
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FIG. 3. Left: Heuristic electron shuttling schedule with re-
spect to E-field (top) and HF interaction A (bottom) for neu-
tralizing then ionizing a donor near an interface corresponding
to Fig. 2. Dotted curves show hypothetical E-field shifts of
∆E = ±0.3 MV/m as considered in Fig. 4. Right: Flip-flop
failure probability as a function of shuttling time in a 100 mT
B-field, showing the timescale required to be adiabatic. The
vertical dotted lines indicate shuttle times used in Fig. 4.

To test adiabaticity, we used a heuristic control sched-
ule, shown on the left of Fig. 3, that limits the first and
second order time derivatives of the E-field and A (mo-
tivated by findings of Ref. 34 that adiabaticity improves
by setting time derivatives of the initial and final Hamil-
tonian to zero). While the schedule could be optimized
further, our simple heuristic already performs very well
as shown on the right of Fig. 3 based upon simulations
using QuTiP [35, 36]. In a 100 mT field (or more), the
probability of non-adiabatic electro-nuclear flip-flops is
very low for shuttle times of a few nanoseconds.

To illustrate the great benefit from the DD that our
scheme employs, Fig. 4 compares sensitivity to static ver-
sus dynamic E-field shifts for the various error channels.
The error probability for each channel in Fig. 4 (and right
of Fig. 3) is the Born rule probability for the worst-case
initial state (orthoganol to the error channel). Static
shifts are the limit of low-frequency noise and well tol-
erated because of DD. Flip-flop error probabilities (top)
increase with abrupt transitions in the shuttling sched-
ule that result from static E-field shifts. The remaining
error channels are sensitive to static shifts away from the
ROP. Alternating shifts are the worst-case higher fre-
quency noise, flipping the sign of the shift at the time of
the refocusing pulse. This causes differences of the time
integration of A, increasing error rates for the bottom
three error channels of Fig. 4. The contrast between the
solid and dotted curves illustrates the tremendous benefit
of DD. We calculate very high entangling gate operations,
well below error correction thresholds, from estimates of
fast and slow voltage fluctuations/drift based upon ac-
tual device observations [Refs. 37 and 38].

In conclusion, we present a procedure for making
robust, universal multi-qubit operations even if qubit-
environment interactions change non-trivially when
inter-qubit interactions turn on and off. Our composite

FIG. 4. (Color online) Sensitivity to static (solid) or al-
ternating (dotted) shifts in the E-field, ∆E, corresponding
to schedules indicated in Fig. 3 for a donor 20a0 (red) or
13a0 (green) from an interface. Each panel is for a differ-
ent noise channel. Static shifts probe the low-frequency noise
limit. Alternating shifts probe the worst-case sensitivy to
E-field fluctuations with a ±∆E/2 shift before/after the rel-
evant DD refocusing pulse. Vertical lines indicate magnitude
estimates of slow (solid), 0.1 day scale, and fast (dotted),
millisecond scale (to be conservative), fluctuations. These
are based upon charge drift observations reported in Ref. 37
(0.15×22 mV = 3.3 mV), E-field versus voltage for a Si qubit
device in Ref. 38 (0.026 MV/m per mV), and an assumption
that the noise behaves in a diffusive manner like a random
walk).

sequence is extremely efficient relative to other DD [10]
and DCG [15, 39] strategies, making it less vulnerable to
control noise, because we exploit the adiabatic theorem
to eliminate most error channels. In order to circumvent
a No-Go theorem that prohibits black-box DCGs [14], we
require a sweet spot (ROP) for pairwise interactions that
may be turned on and off adiabatically. The requirements
are well met for a system of P donors in Si, using electron
and nuclear spins as two species of qubits. Our calcula-
tions estimate remarkable insensitivity to expected low
frequency E-field noise.
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