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We develop an extension of the Gutzwiller approximation to finite temperatures based on the
Dirac-Frenkel variational principle. Our method does not rely on any entropy inequality, and is
substantially more accurate than the approaches proposed in previous works. We apply our theory to
the single-band Hubbard model at different fillings, and show that our results compare quantitatively
well with dynamical mean field theory in the metallic phase. We discuss potential applications of
our technique within the framework of first principle calculations.
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The Gutzwiller approximation (GA)1–3 is a very use-
ful tool in order to study the ground state of complex
strongly correlated electron systems. This important
many-body technique has been also formulated and im-
plemented in combination with density functional the-
ory (DFT),4 e.g., in the LDA+GA approach,5–7 which
has been applied successfully to many real materials.7–15

For strongly correlated metals, the accuracy of the
GA is comparable with dynamical mean field theory
(DMFT),16,17 even though the GA is much less compu-
tationally demanding. This property makes it an ideal
theoretical tool, as numerical speed is essential for the
purpose of studying and discovering new materials.

In order to study several temperature-dependent phe-
nomena, such as structural and magnetic transitions
and coherence-incoherence crossovers, it would be highly
desiderable to have at our disposal an extension to fi-
nite temperatures of the GA as accurate as the ordinary
theory for the ground state. In fact, this would enable
us to study these properties also for correlated systems
so complex to be out of the reach of the presently avail-
able methods, such as DMFT. These motivations have
stimulated several previous efforts to generalize the GA
to finite temperatures.18–23 In particular, the extension
of the GA derived in Refs. 22,23, which is based on an
exact entropy inequality, enables to evaluate the free en-
ergy23 more accurately than in previous works.18–20 How-
ever, estimating the entropy using an inequality — rather
than calculating it exactly — constitutes a source of ap-
proximation not present in the GA theory for the ground
state, thus leading to finite-temperature results less ac-
curate than at zero temperature.

In this work we introduce an extension of the GA to fi-
nite temperatures based on the Dirac-Frenkel variational
principle24–26 and, in particular, on the time-dependent
GA theory27–30 (that we generalize to mixed states). Our
method does not rely on any entropy inequality, but only
on the variational principle and the Gutzwiller approx-
imation — which are the same approximations done in
the ordinary zero-temperature GA. Consequently, as we
are going to show, our theory improves considerably the
method of Refs. 22,23, and gives results in good quanti-
tative agreement with DMFT for correlated metals, even

though it is much less computationally demanding.
Imaginary-time evolution.— Let us consider a generic

system of correlated electrons represented by a Hamil-
tonian Ĥ, and define the imaginary-time evolution of a
given initial density matrix ρ̂0 as follows:

ρ̂(τ) = e−Ĥτ ρ̂0 e
−Ĥτ , (1)

i.e., according to the following differential equation:

∂τ ρ̂(τ) = −(Ĥρ̂(τ) + ρ̂(τ)Ĥ) ≡ −{Ĥ, ρ̂(τ)} . (2)

Our aim consists in approximating the imaginary-time
dynamics defined above and use it to construct the state
of N electrons at temperature T . In fact, if τ = β/2

and ρ̂0 = P̂N is the projector onto the subspace with N

electrons, Eq. (1) reduces to P̂N e
−βĤ, which represents

a thermal state with T ≡ 1/β.31

In order to derive our approximation scheme, it will be
useful to think of ρ̂ as the density matrix corresponding
to an ensemble of pure states {|Ψn〉},

ρ̂(τ) ≡
∑
n

pn |Ψn(τ)〉〈Ψn(τ)| , (3)

where pn are fixed probability coefficients. Within this
definition, evolving ρ̂ according to Eq. (1) amounts to
evolve all of the pure states of the ensemble according to
the equation

d|Ψn(τ)〉 = −Ĥ|Ψn(τ)〉 dτ . (4)

Note that Eq. (4) resembles a Schrödinger evolution in
imaginary time, as it can be obtained from the ordinary
real-time Schrödinger evolution

d|Ψn(t)〉 = −iĤ|Ψn(t)〉 dt (5)

by substituting dt→ −i dτ .
Real-time Dirac-Frenkel scheme.— Let us introduce

the following action:26

S{pn}[{Ψn(t)}] =

∫ tf

ti

dtL{pn}[{Ψn(t)}] (6)
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L{pn}[{Ψn}] ≡
∑
n

pn 〈Ψn| i∂t − Ĥ |Ψn〉

=
∑
n

pn 〈Ψn| i∂t |Ψn〉 − E , (7)

where E ≡
∑
n pn 〈Ψn| Ĥ |Ψn〉. Note that S{pn} depends

parametrically on the probability coefficients pn, that are
fixed and depend only on the initial condition. From now
on we refer to Eq. (6) as the Dirac-Frenkel action.

It can be readily verified that, regardless the values of
pn, the exact solution of the Lagrange equations for the
ensemble of states {|Ψn(t)〉} is given by Eq. (5).

The key advantage of the Dirac-Frenkel characteriza-
tion of the time evolution outlined above is that it allows
us to build up a well-founded variational approximation
scheme for the time evolution [Eq. (5)] as follows.

Let us assume that we want to solve approximately
the time-dependent problem by restricting the search of
the solution within a subsetM of trial ensembles {|Ψn〉}.
Once we are able to evaluate the action S along any given
trajectory in M, the Dirac-Frenkel variational principle
provides us with a prescription to approximate the in-
stantaneous time evolution of any {|Ψn〉} ∈ M. Note
that, by construction, this time evolution is such that
{|Ψn(t)〉} ∈ M ∀ t.
Application to the GA.— For sake of simplicity, in this

work the method will be formulated for the single-band
Hubbard model:

Ĥ =
∑
R 6=R′

∑
σ=↑,↓

εRR′ c
†
RσcR′σ+U

∑
R

c†R↑cR↑c
†
R↓cR↓ , (8)

where R is the site label and σ is the spin label. This
model will be studied at generic filling N/N = 1 + δ,
where N is the number of sites and δ is the doping. Fur-
thermore, a paramagnetic solution will be assumed. The
extension to multi-band Hubbard models is straightfor-
ward, and its numerical implementation will be discussed
in a future work.

Here we want to search for the saddle point of the
Dirac-Frenkel action within the set MG of ensembles of
Gutzwiller states represented as follows:

{|Ψn〉} = {P̂G |Ψ0n〉} ≡ MG , (9)

where |Ψ0n〉 are Slater determinants and P̂G ≡
∏
R P̂R

is an operator whose local components are defined as
P̂R ≡

∑
ΓΓ′ ΛΓΓ′ |R,Γ〉〈R′,Γ|, where ΛΓΓ′ are gener-

ally complex numbers and |R,Γ〉〈R,Γ′| act onto the cor-
responding local many-body states |R,Γ〉 ∈ {|0〉, |R, ↑
〉, |R, ↓〉, |R, ↑↓〉}. Note that from the assumptions that

P̂R conserves the number of electrons and is spin rota-
tionally invariant it follows that the off-diagonal elements
of Λ are zero.

The physical density matrix corresponding to the en-
semble [Eq. (9)] is

ρ̂G ≡ P̂G ρ̂
∗
0 P̂
†
G , (10)

where

ρ̂∗0 ≡
∑
n

pn |Ψ0n〉〈Ψ0n| /
∑
n

pn 〈Ψ0n|Ψ0n〉 (11)

is called variational density matrix. We assume that ρ̂∗0
can be represented as the Boltzmann distribution of a
generic noninteracting Hamiltonian ∀ t.

Note that the variational form of ρ̂G is exactly the
same as in Ref. 23. Consequently, the same procedure
can be applied to evaluate the total energy corresponding
to ρ̂G — which is necessary to evaluate the Dirac-Frenkel
action, see Eq. (7). Let us summarize the main steps of
this procedure. (1) The set of ensemblesMG is restricted
by the so called Gutzwiller constraints:22,23,32

Tr[ρ̂∗0 P̂
†
RP̂R] = 1 (12)

Tr[ρ̂∗0 P̂
†
RP̂R c

†
RσcRσ] = Tr[ρ̂∗0 c

†
RσcRσ] = [1 + δ]/2 . (13)

(2) The Gutzwiller approximation is assumed,3 which is
an approximation scheme that, as DMFT,16 becomes ex-
act in the limit of infinite coordination lattices. As in
Ref. 23, we introduce the matrix of slave-boson ampli-
tudes:

φΓΓ′ = δΓΓ′ΛΓΓ

√
P 0

Γ (14)

P 0
Γ ≡ Tr[ρ̂∗0 |R,Γ〉〈R,Γ|] . (15)

(3) Within the above definitions and the Gutzwiller ap-
proximation, the Gutzwiller constraints can be repre-
sented as:

Tr[φ†φ] = 1 (16)

Tr[φ†φF †σFσ ] = Tr[ρ̂∗0 c
†
RσcRσ] = [1 + δ]/2 , (17)

where [Fσ]ΓΓ′ ≡ 〈Γ |cRσ|Γ′〉. (4) Furthermore, it can
be shown that φφ† represents the local reduced density
matrix in the basis {|R,Γ〉}, while the expectation values
of the inter-site single-particle density-matrix operators
is given by:

Tr[ρ̂G c
†
RσcR′σ] = |R|2 Tr[ρ̂∗0 c

†
RσcR′σ] ∀R 6= R′ , (18)

where R = Tr[φ†F †σφFσ ]/[1− δ2]
1
2 .

The above equations enable us to evaluate the total
energy E ,23 which enters in the definition of the GA
Dirac-Frenkel Lagrange function, see Eq. (7). The term
of Eq. (7) involving the time derivative can be readily
evaluated following Ref. 29. In conclusion, thanks to the
equations above, the GA Dirac-Frenkel Lagrange func-
tion can be rewritten as follows:
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L{pn}[{Ψ0n};φ,R,R∗,D,D∗] =
∑
n

pn 〈Ψ0n| i∂t − |R|2
∑
R 6=R′

∑
σ=↑,↓

εRR′ c
†
RσcR′σ |Ψ0n〉 (19)

+N Tr
[
φ†i∂tφ

]
−N Tr

[
U φφ† F †↑F↑F

†
↓F↓

]
−N

∑
σ=↑,↓

(
Tr
[
D φ†F †σφFσ

]
−DR

[
1− δ2

] 1
2 + c.c.

)
.

Note that, following Ref. 7, we have formally enforced
the definition of R using the Lagrange multiplier D.

The Lagrange equations for the real-time dynamics in-
duced by Eq. (19) are the following:[

i∂t − Ĥ<qp[R,R∗]
]
|Ψ0n〉 = 0 ∀n (20)[

i∂t −H<emb[D,D∗]
]
φ = 0 (21)

R = Tr
[
φ†F †σφFσ

] [
1− δ2

]− 1
2 (22)

D = 2
[
1− δ2

]− 1
2 Tr

[
ρ̂∗0

∂

∂R
Ĥ<qp[R,R∗]

]
, (23)

where

Ĥ<qp[R,R∗] ≡ |R|2
∑
R 6=R′

∑
σ

εRR′ c
†
RσcR′σ (24)

H<emb[D,D∗]φ ≡ δ

δφ†

{
Tr
[
U φφ† F †↑F↑F

†
↓F↓

]
+
∑
σ

(
Tr
[
D φ†F †σφFσ

]
+ c.c.

)}
φ . (25)

Note that the generator of the instantaneous evolution is
quadratic and identical for all of the |Ψ0n〉, and that also
the evolution of φ resembles formally a time-dependent
Schrödinger equation.

The instantaneous real-time evolution described by the
equations above corresponds to apply well defined incre-
ments on all of the the states of MG, see Eq. (9). We
may represent these increments as follows:

d|Ψn〉 = [(∂tP̂G) |Ψ0n〉+ P̂G (∂t|Ψ0n〉)] dt . (26)

Imaginary-time dynamics.— Our goal consists in mod-
ifying the real-time GA dynamics defined above in order
to approximate the imaginary-time evolution [Eq. (4)].

The formal similarity between Eqs. (4) and (5) suggests
us that it is possible to approximate the imaginary-time
evolution of {|Ψn〉} simply by substituting dt → −i dτ
in Eq. (26). It can be readily verified that this prescrip-
tion would amount to update the Gutzwiller variational
parameters, see Eqs. (14) and (15), as follows:38[

∂τ + Ĥ<qp[R,R∗]
]
|Ψ0n〉 = 0 ∀n (27)[

∂τ +H<emb[D,D∗]
]
φ = 0 . (28)

Unfortunately, Eqs. (27) and (28) violate the Gutzwiller
constraints, see Eqs. (16) and (17). Consequently, sim-
ilarly to Ref. 33, it is necessary to define a “projection
scheme” in order to enforce them at every time step.

Here we propose to enforce Eqs. (16) and (17) by using
the following prescription:[

∂τ + Ĥ=qp[R,R∗, E0]
]
|Ψ0n〉 = 0 ∀n (29)[

∂τ +H=emb[D,D∗, λc, Ec]
]
φ = 0 , (30)

where the “generators” have been modified as follows:

Ĥ=qp ≡ Ĥ<qp − E0 (31)

H=embφ ≡ H<embφ+
δTr[λc

∑
σφ
†φF †σFσ−Ec φ†φ]

δφ†
φ ,(32)

and E0(τ) is constructed in order to enforce the normal-
ization condition of ρ̂∗0, see Eq. (11), while Ec(τ) and
λc(τ) are constructed in order to enforce Eqs (16) and
(17), respectively.

We point out that the procedure defined above enables
us to recover the ordinary GA theory for the ground state
at τ →∞. In fact, within the formulation of Ref. 7, the
GA parameters of the ground-state are obtained as the
ground states of Ĥ=qp and H=emb, which correspond to a
fix point of our imaginary-time dynamics.

It can be readily verified that Eq. (29) implies that
the imaginary-time evolution of the variational density
matrix is given by:

ρ̂∗0(τ) = P̂Ne
−2

∫ τ
0
dτ ′[Z(τ ′)

∑
R 6=R′,σ εRR′c

†
RσcR′σ−E0(τ ′)],(33)

where Z(τ ′) ≡ |R(τ ′)|2 is the Gutzwiller quasi-particle
weight, and E0(τ ′) is constructed in order to enforce the
normalization condition of ρ̂∗0(τ) for all imaginary times.
In fact, Eq. (33) satisfies:

∂τ ρ̂
∗
0(τ) = −{H=qp(τ), ρ̂∗0(τ)} , (34)

which is consistent with Eq. (29), and enables us to avoid
to keep track of the time evolution of all of the states of
MG (which would be practically impossible).

Note that, since we are in the thermodynamical limit,
the expectation values with respect to ρ̂∗0(τ) can be evalu-
ated in the grand-canonical ensemble, i.e., we can assume
that

ρ̂∗0(τ) ∝ e−β
∗
0 (τ)[

∑
R 6=R′,σ εRR′ c

†
RσcR′σ−µ

∗
0(τ)N̂] , (35)

where β∗0(τ) ≡ 2
∫ τ

0
dτ ′Z(τ ′), N̂ is the number operator,

and µ∗0(τ) is such that the system has N electrons in
average.

The imaginary-time evolution of the slave-boson am-
plitudes is obtained by substituting Eq. (35) into the
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FIG. 1: GA calculations of the single-band Hubbard model at
half-filling (N/N = 1) in comparison with DMFT+CTQMC
and the data of Ref. 22. Upper panel: temperature depen-
dence of the double occupancy. Lower panel: temperature
dependence of total energy per site. Inset of the lower panel:
temperature dependence of the GA entropy per site in com-
parison with DMFT.

other Lagrange equations and solving them numerically.
A possible numerical implementation is explained in de-
tail in the supplemental material.39

Numerical results.— Let us now discuss our numerical
calculations of the Hubbard model, see Eq. (8). We as-
sume a semicircular density of states (corresponding to
a Bethe lattice in infinite dimensions)40 and set the half-
bandwidth D as the unit of energy. For comparison, we
perform DMFT calculations using the continuous time
quantum Monte Carlo method35,36 as impurity solver, as
implemented in TRIQS.37

Note that in the following calculations the entropy will
not be calculated directly from the GA variational pa-
rameters (which could be done only approximately23),
but will be evaluated as a byproduct of the imaginary-
time evolution of the total energy, i.e., by using the ther-
modynamical identity dS = dE/T and fixing the constant
of integration in such a way that at S(T =∞) is exact.

In Fig. 1 is shown the evolution of the double occu-

FIG. 2: GA calculations of the single-band Hubbard model
away from half-filling (N/N = 0.8) in comparison with
DMFT+CTQMC. Upper panel: temperature dependence of
the double occupancy. Lower panel: temperature dependence
of the total energy per site. Inset of the lower panel: temper-
ature dependence of the GA entropy per site in comparison
with the DMFT data of Ref. 34.

pancy d ≡ 〈c†R↑cR↑c
†
R↓cR↓〉 (upper panel) and the total

energy (lower panel) as a function of the temperature at
half-filling for several values of U . In the inset is shown
the corresponding entropy for U/D = 1.95. The GA
results are shown in comparison with DMFT and the
Gutzwiller data of Ref. 22.

The agreement between the GA and DMFT+CTQMC
is quantitatively satisfactory, especially for smaller val-
ues of U and higher temperatures (i.e., when the system
is less correlated). Indeed, our method improves sub-
stantially the results obtained within the approximation
scheme of Ref. 22. The slight quantitative discrepancy
with DMFT for larger U ’s reflects the known fact that
the Mott insulator is not well described by the GA, but
is approximated by the simple atomic limit — that is
a state with d = 0. However, as long as the system
is metallic, our extension of the GA to finite tempera-
tures is remarkably accurate. Also the GA entropy is in
reasonable agreement with DMFT and, in particular, it



5

displays the expected plateau at S ' ln(2).34 However,
since the integral of dS over the whole range of temper-
atures is not exact, the GA entropy does not vanish at
T → 0 — even though, as pointed out before, the GA
solution is actually a pure state in this limit. Note that
DMFT does not suffer this inconvenience because it is
an exact theory in infinite dimensions, while the GA is a
variational approximation in this limit.

Let us now consider the Hubbard model away from
half-filling. In particular, we consider the case of N/N =
0.8 electrons per site (i.e., δ = −0.2). In the upper panel
of Fig. 2 is shown the temperature dependence of the
double occupancy for several values of U , while in the
lower panel is shown the evolution of the total energy E .
Finally, in the inset of the lower panel is shown the tem-
perature dependence of the entropy for U/D = 4, in com-
parison with the DMFT entropy calculated in Ref. 34.

The agreement between the GA and DMFT+CTQMC
is even better for N/N = 0.8 than for half-filling (which
is to be expected, as the doped system is metallic for all
U ’s). It is especially remarkable the fact that the behav-
ior of S is satisfactory for U/D = 4, which is the largest
interaction strength considered. In particular, we point
out that the position of the plateau is in excellent agree-
ment with DMFT, and is consistent with the expected
value based on the atomic limit: S ' −(1 + δ) ln(1+δ

2 ) +
δ ln(−δ). Note that for the doped system the value of S
at T →∞ is −(1 + δ) ln(1+δ

2 )− (1− δ) ln( 1−δ
2 )], which is

slightly smaller than ln(4).

In conclusion, using the Dirac-Frenkel variational prin-
ciple, we have developed an extension of the GA to finite
temperatures as accurate as the ordinary GA theory for
the ground state. We have performed benchmark cal-
culations of the single-band Hubbard model at different
fillings, and compared our results with DMFT+CTQMC,
finding good quantitative agreement between the two
methods in the metallic phase. We believe that our
method will enable us to calculate from first principles
several important physical quantities — such as the spe-
cific heat, the entropy and the temperature dependent
structural properties — of strongly correlated systems
presently too complex to be studied with more accurate
methods, such as DMFT. It will be also interesting to
see whether the imaginary-time scheme proposed in this
work can be used to develop an efficient numerical al-
ternative strategy to calculate the GA ground state of
complex multi-band systems.

Acknowledgments

We thank Michele Fabrizio for useful discussions,
Michel Ferrero for providing us with his DMFT code,
and Qiang-Hua Wang for allowing us to use his data in
Fig. 2. This work was supported by U.S. DOE Office
of Basic Energy Sciences under Grant No. DE-FG02-
99ER45761 and by NSF DMR-1435918.

∗ Corresponding author: lanata@physics.rutgers.edu
1 M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
2 M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).
3 M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).
4 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
5 X.-Y. Deng, L. Wang, X. Dai, and Z. Fang, Phys. Rev. B
79, 075114 (2009).

6 K. M. Ho, J. Schmalian, and C. Z. Wang, Phys. Rev. B
77, 073101 (2008).
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