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Motivated by the recently developed renormalized second-oder perturbation theory for ground-
state energy calculations, we propose a second-order screened exchange correction (SOSEX) to
the GW self-energy. This correction follows the spirit of the SOSEX correction to the random-
phase approximation for the electron correlation energy and can be clearly represented in terms of
Feynman diagrams. We benchmark the performance of the perturbative G0W0+SOSEX scheme for
a set of molecular systems, including the G2 test set from quantum chemistry as well as benzene and
tetracyanoethylene. We find that G0W0+SOSEX improves over G0W0 for the energy levels of the
highest occupied and lowest unoccupied molecular orbitals. In addition, it can resolve some of the
difficulties encountered by the GW method for relative energy positions as exemplified by benzene
where the energy spacing between the valence orbitals is severely underestimated.

The energy gain for adding an electron to, or the cost
for removing an electron from a molecule, a nanostruc-
ture, or a solid is a fundamental property, which can
be measured by experimental techniques such as photoe-
mission or inverse photoemission spectroscopy. The first
principles theory of choice for describing such charged ex-
citations in solid-state physics has been many-body per-
turbation theory in the GW approximation1, due to its
balance between accuracy and computational expense2–4.
Recently, the GW approach has also increasingly been
applied to molecules and nanosystems5–12.

An accurate determination of single-particle excita-
tion energies is indispensable in many areas of chem-
istry, physics, materials-, and nano-science. However,
despite the success of the GW approach, several chal-
lenges remain. While some of GW ’s shortcomings can
be attributed to the starting-point dependence11,13–15 of
the common perturbative (G0W0) scheme, others prevail
also in self-consistent approaches10,16. For example, in
solids, the binding energies of semi-core states tend to be
underestimated17,18 whereas band gaps of polar materials
are often severely overestimated19. Also an assessment of
d- and f -electron compounds is only just emerging with
mixed success20–23. For finite systems, G0W0 based on
a Perdew-Burke-Ernzerhof hybrid functional (PBE0) ref-
erence yields excellent vertical ionization energies (IEs)
for molecules with an average deviation from experiment
of only 3%9,11,12,15. However, relative energy difference
in the full spectrum are not always this accurate. A
good example is the benzene molecule, for which the en-
ergy separation of the two states just below the highest-
occupied-molecular-orbital (HOMO) is considerably un-
derestimated in GW (∼0.1 eV compared to ∼0.6 eV in
experiment)15. For molecules with lone pair orbitals, the
energy ordering of the first few valence orbitals can be

incorrect15, whereas for some acceptor molecules with
positive electron affinities (EAs), e.g. tetracyanoethy-
lene (TCNE), GW tends to overestimate the EAs sub-
stantially, irrespective of the starting point or the self-
consistent scheme. These are just a few examples to il-
lustrate the need to go beyond the GW approximation.

Beyond-GW schemes, so called “vertex corrections”,
have a long history24–29. However, simple, computation-
ally efficient vertex corrections24 have almost no effect
on the GW description, while more elaborate schemes
are computationally so involved that they have only
been applied to the homogeneous electron gas25,28, the
Hubbard molecule30, or simple solids such as silicon or
argon24,26,27,31. Thus, there is currently no generally ac-
cepted way to go beyond the GW approach for real solids,
molecules or nanostructures. We here focus on finite sys-
tems and present a self-energy correction to GW that
derives rigorously from many-body perturbation theory,
is computationally tractable and improves on GW in al-
most all the cases mentioned above.

We propose to go beyond GW by adding a sub-
set of higher-order exchange-type processes. This ad-
ditional self-energy term is inspired by the renormalized
second-order perturbation theory (rPT2)32 for the elec-
tron correlation energy that some of us have developed
recently. rPT2 improves on the random-phase approxi-
mation (RPA)33–35 with second-order screened exchange
(SOSEX)36,37 and a renormalized single-excitation term
(rSE)38. This yields a much more balanced description
than RPA alone or RPA combined with either SOSEX or
rSE can achieve32. The exchange-correlation diagrams
in RPA are topologically identical to those of the (per-
turbative) G0W0 approach39,40. GW thus provides the
corresponding self-energy to RPA. Here we demonstrate
that, in a similar fashion, we can derive a self-energy that
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corresponds to the SOSEX term. The rSE term is auto-
matically included and thus does not appear explicitly in
the self-energy.
The RPA correlation energy can be computed as41

ERPA
c =

1

2

∑

ij,ab

〈ij|ab〉Tjb,ia . (1)

Tjb,ia are the ring coupled-cluster doubles amplitudes and
〈ij|ab〉 the bare two-electron Coulomb integrals,

〈ij|ab〉 =

∫∫

dx1dx2
ψ∗

i (x1)ψa(x1)ψ
∗

j (x2)ψb(x2)

|r1 − r2|
. (2)

Here x = (r, σ) is a combined spatial-spin variable, and
i, j and a, b refer to occupied and unoccupied Kohn-
Sham single-particle spin orbitals, respectively. The
RPA+SOSEX correlation energy can then be obtained
by antisymmetrizing the Coulomb integrals in Eq. 136,
i.e., 〈ij|ab〉 → 〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉.
To apply the same strategy to the self-energy, we sepa-

rate the GW self-energy into its exact-exchange and the
remaining correlation part ΣGW = Σx+ΣGW

c . The ΣGW
c

term is then given by

ΣGW
c (1, 2) = iG(1, 2)[W (1, 2)− v(1, 2)] , (3)

where G is the Green function of the interacting elec-
tron system, v the bare Coulomb interaction, and W

the screened Coulomb interaction. The numbers are a
short-hand notation for combined spatial, spin, and time
variables (i.e. 1 = (r1, σ1, t1)). Here, as usual, W is
evaluated at the RPA level, i.e.,

W (1, 2) = v(1, 2) +

∫

d3d4v(1, 3)χ0(3, 4)W (4, 2) , (4)

where χ0 is the irreducible polarizability,

χ0(1, 2) = −iG(1, 2)G(2, 1) . (5)

ΣGW
c can thus be rewritten as

ΣGW
c (1, 2) =

∫

d3d4G(1, 2)v(1, 3)G(3, 4)G(4, 3)W (4, 2) ,

(6)
which is illustrated by Feynman diagrams in Fig. 1(a).
The diagrams reveal that ΣGW

c arises from screened
second-order direct (Coulomb) interactions.
The key step comes next: By exchanging the con-

nection between the Green’s function and the (bare
and screened) Coulomb interaction lines, we arrive at a
second-order screened exchange diagram, which we call
the SOSEX self-energy

ΣSOSEX
c (1, 2) = −

∫

d3d4G(1, 4)v(1, 3)G(4, 3)G(3, 2)W (4, 2) .

(7)
The procedure is illustrated diagrammatically in
Fig. 1(b)42.

Traditionally, perturbation theories have been mostly
carried out by considering Σxc to be a functional of either
G and W or a functional of G and v. The diagrammatic
representation of ΣGW

c in Fig. 1(a) suggests that one may
combine both options, which makes the construction of
diagrams more flexible, but carries the danger of dou-
ble counting. By further expanding W in terms of v,
we ensured that no term in our theory is counted more
than once. The ΣGW

c and ΣSOSEX
c diagrams are the only

two non-trivial self-energy diagrams which can be con-
structed with one v line and one W line, in analogy to
the conventional second-order self-energy that is given in
terms of the two bare Coulomb lines9,43,44.

The construction of different diagramatic series is
guided by different principles, e.g. conservation of cer-
tain properties45,46, positivity of the spectral function47

or size consistency44. Our SOSEX self-energy in Eq. (7)
can be viewed as a functional derivative of a SOSEX-type
correlation energy with respect to the Green’s function,
while keeping the screened Coulomb interaction fixed.
This SOSEX-type correlation energy is however differ-
ent from the coupled-cluster SOSEX36 and the adiabatic-
connection SOSEX48 discussed in the literature. In fu-
ture work, we will put our double expansion in v and W
on a more rigorous footing49.

It should be noted that the SOSEX correction to GW
proposed here is different from a straightforward second-
order expansion in terms of W , as orginally formulated
by Hedin1, for which the SOSEX self-energy graph (cf
Fig. 1(b)) contains two screened Coulomb lines. If one
expands W in terms of v for both self-eneriges, one will
find the two approaches are identical to leading order
(second order in v), but differ for higher orders. For
example, at third order in v, the SOSEX self-energy is
only half of Hedin’s 2nd-order self-energy in W , because
the latter contains two topologically equivalent diagrams
while the former only picks up one of them. The SO-
SEX self-energy diagrams are a subset of those included
in Hedin’s self-energy, and hence can be considered as an
approximation to the latter. Compared to the SOSEX
self-energy proposed here, a full treatment of the 2nd-
order self-energy in W is numerically much more chal-
lenging because of the presence of a double frequency
integration. Historically, it was first examined numeri-
cally for silicon by Bobbert and van Haeringen26 with a
plasmon-pole approximation for W , but no appreciable
change to G0W0 was observed. Very recently, Grüneis et
al.29 implemented an approximate version of this scheme
using static W ’s and found that the ionization energies
and d-electron binding energies of solids are improved.

Returning to the rPT2 analogy, rPT2 contains a third
term that arises from single excitations32. Close in-
spection reveals that the single-excitation contributions
as included in rSE only leads to improper self-energy
diagrams50, i.e., merely trivial repetitions of the irre-
ducible self-energy part. As demonstrated in the sup-
plemental material50, the irreducile part of the rSE self-
energy is nothing but the difference between the exact-
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FIG. 1: (a) Feynman diagram for the correlation part of the
GW self-energy (ΣGW

c ); (b) diagrammatic illustration of ob-
taining the SOSEX self-energy from ΣGW

c by interchanging
the Green’s function lines. Solid lines, dashed lines, and wig-
gly lines represent the Green’s function, the bare Coulomb
and the screened Coulomb interaction, respectively.

exchange self-energy and the Kohn-Sham (KS) exchange-
correlation potential, ∆v = Σx − vKS

xc , which is already
included in normal G0W0 calculations. We thus con-
clude that the sum of ΣGW and ΣSOSEX

c corresponds to
a proper renormalized second-order perturbation theory
for the self-energy.
In analogy to the G0W0 method, we have imple-

mented GW+SOSEX in a perturbative way, denoted as
G0W0+SOSEX in the following. In terms of a set of
single-particle spin-orbitals ψp(x) (with energies ǫp) for
which G0 is diagonalized, we have

G0(x1, x2; iω) =
∑

p

ψp(x1)ψ
∗

p(x2)

iω − ǫn
. (8)

For numerical simplicity we work on the imaginary fre-
quency axis, and the results will be analytically continued
to the real axis at the end. Using (6), (7), and (8), the
diagonal matrix elements of ΣG0W0+SOSEX

c within the set
of orbitals {ψp(x)} are given by

[

ΣGW+SOSEX
c

]

pp
(iω) = 〈ψp|Σ

GW
c +ΣSOSEX

c (iω)|ψp〉

= −
1

2π

∫

∞

−∞

dω′

∑

qrs

(fq − fr)〈pr||qs〉〈qs|W (iω′)|pr〉

(iω + iω′ − ǫs)(iω′ + ǫq − ǫr)
,

(9)

where 〈qs|W (iω′)|pr〉 are the two-electron integrals for
the screened Coulomb interaction. In Eq. (9), the sum-
mation over spin-orbital indices p, q, r runs over both oc-
cupied and unoccupied states, and fq and fr are Fermi
occupation factors. In this work we only consider closed-
shell molecules, and hence fq = 1 for occupied states,
and 0 for unoccupied states.
Equation 9 has been implemented in the local-orbital

based, all-electron Fritz Haber Institute ab-initio molec-

ular simulations (FHI-aims) code package9,51. In FHI-
aims two-electron Coulomb integrals are evaluated us-
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FIG. 2: Histograms of the vIE error distribution of 50 atoms
and small molecules9 . Here tier 4 was augmented by the
diffuse functions from the Gaussian aug-cc-pV5Z basis set53.

ing the resolution-of-identity (RI) technique. The imple-
mentation details for correlated methods (including RPA,
RPA+SOSEX, andGW ) have been documented in Ref. 9
and 32, which our GW+SOSEX implementation follows
closely. Computationally, a standard RI implementation
of Eq. (9) using canonical molecular orbitals scales as
O(N5) with respect to the system size N . Ways to re-
duce the scaling are foreseeable if one exploits the locality
of the atomic orbitals and the Green’s function.
Next, we demonstrate the performance of

G0W0+SOSEX. We use the notation @DF to de-
note the density functional (DF) starting point that the
perturbative calculation is based on (e.g. G0W0@PBE
refers to a PBE-based G0W0 calculation). Unless
otherwise stated, the high-quality tier 4 FHI-aims-2009
basis sets51 are used in the calculations below52.
We first check how well GW+SOSEX performs for

ionization energies, considering a subset of 50 molecules
from the G2 test set54. The vertical IEs (vIEs) used here
as reference are those obtained by the G2 theory itself54,
corrected by the difference between adiabatic ionization
energies (aIEs) and vIEs given by experiment:

EvIE(Ref) = EaIE(G2)+EvIE(Exp)−EaIE(Exp) . (10)

The error distribution of the vIEs is presented in Fig. 2
for G0W0 and G0W0+SOSEX, based on both PBE and
PBE0. The G0W0 results were already presented in
Ref.9 where it was shown that G0W0@PBE systemati-
cally underestimates vIEs, whereas G0W0@PBE0 yields
results that are in good agreement with experiment on
average. This behavior does not change when compar-
ing to the reference values obtained from the G2 theory,
as can be seen from Fig. 2. Adding the SOSEX cor-
rection, the aIEs are systematically increased, and now
(G0W0+SOSEX)@PBE yields a vanishingly small mean
error (ME) of only -0.01 eV, and a mean absolute error
(MAE) of 0.28 eV that is comparable to G0W0@PBE0.
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Conversely, (G0W0+SOSEX)@PBE0 has a MAE of 0.26
eV, comparable to both (G0W0+SOSEX)@PBE and
G0W0@PBE0. The ME is now 0.16 eV, which indicates
that (G0W0+SOSEX)@PBE0 on average slightly over-
estimates vIEs, in contrast to (G0W0+SOSEX)@PBE
that slightly underestimates vIEs. Not surprisingly, as
a purturbative treatment, G0W0+SOSEX still shows no-
ticeable dependence on the reference orbitals. However,
on average this dependence is not as significant as the
G0W0 case, as measured by the respective ME differ-
ences. In the supplemental material50 we further present
G0W0+SOSEX benchmark results for two other subsets
of G2, and compare them to reference results obtained
with coupled-cluster theory with single, double, and per-
turbative triple truncations (CCSD(T)). The message
from these additional tests is the same as conveyed in
Fig. 2.

The benzene molecule is our next example. The
HOMO is a 2-fold degenerate π state (e1g representa-
tion), whose G0W0 energy has been calculated by vari-
ous groups9,55–57. The general agreement of G0W0 and
the experimental vIE is satisfactory (cf Fig. 3). How-
ever, our real interest lies in the energy spacing of the
next two states below the HOMO (denoted as HOMO-1
and HOMO-2, respectively). These are the two-fold de-
generate e2g(σ) and the non-degenerate a1u(π) state

58,59.
The exact energy spacing between these two peaks varies
slightly between different experiments59–61, but is larger
than 0.5 eV in all cases. However, in all G0W0 as well
as in self-consistent GW (scGW ) calculations10 this sep-
aration is vanishingly small (∼0.1 eV). The two peaks
merge into one when a Gaussian broadening of 0.3 eV
is applied as in Fig. 3. Most importantly, the splitting
in G0W0 is independent of the starting-point and there-
fore does not depend on the self-interaction error that
might be present in the preceding mean-field calculation.
We thus conclude that the significant underestimation of
the e2g(σ)-a2u(π) splitting in benzene is an intrinsic GW
error that requires a correlation treatment beyond GW .

Figure 3 shows that already the addition of a bare
second-order exchange term (G0W0+2OX) increases the
splitting of the two peaks15. Unfortunately, G0W0+2OX
overshoots, leading to an energy spacing of ∼2 eV.
Screening the second-order exchange term, as in the
G0W0+SOSEX scheme, moves the a2u peak back. Now
the e2g(σ)-a2u(π) separation is ∼1 eV, which although
not in perfect agreement with experiment, is a signifi-
cant improvement on GW .

The difficulty that GW encounters for benzene can be
understood in terms of the delicate balance between the
π-π (i.e. HOMO and HOMO-2) and the π-σ splitting (i.e.
HOMO and HOMO-1). The HOMO and the HOMO-2
are both bonding π states that derive from the pz or-
bital of the C atoms. However, their nodal structures are
different: the lower a2u(π) state has no nodes, whereas
the higher e1g(π) states have two nodes. The HOMO-1
state, on the other hand, exhibits a completely different σ
bonding character arising from the px/y orbitals of the C

FIG. 3: Quasi-particle energy spectra of the benzene
molecule62, obtained with different GW based schemes. The
experimental photoemission spectrum is taken from Ref.60.
The short vertical lines below the peaks mark the positions
of the energy levels (obtained as delta peaks) before broaden-
ing with a 0.3 eV Gaussian (with thick lines corresponding to
two-fold degenerate and thin lines to non-degenerate states).

atoms. Describing the relative energy positions of these
different orbitals is a challenging task. Although GW

improves the KS spectrum in general, the self-screening
problem of GW 63,64 affects the relative energy positions
for orbitals that have drastically different bonding char-
acters. Figure 3 illustrates that the higher-order ex-
change contribution controls the magnitude of the e2g(σ)-
a2u(π) splitting in benzene and that GW+SOSEX cap-
tures the essential physics that is missing in GW . Pre-
dicting relative energies accurately is of paramount im-
portance for the level alignment at hetero-interfaces as
found in microelectronics, organic electronics and at hy-
brid interfaces. We thus expect GW+SOSEX to play a
significant role for such systems in the future.

The third example we consider here is the TCNE
molecule – an excellent electron acceptor because of its
large EA value, which is a highly desired property in
certain electronic devices. In Fig. 4 we present several
GW spectra for TCNE in comparison to the experimen-
tal photoemission data65. The vertical EA (vEA) val-
ues of 3.05 eV obtained from CCSD(T)67 and 2.91 eV
from the complete active space method with a second-
order perturbation (CASPT2)68, as well as the experi-
mental adiabatic EA value (3.16) are indicated by ver-
tical dashed lines. We observe that all GW meth-
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FIG. 4: Quasi-particle spectra of TCNE obtained with dif-
ferent GW based schemes, in comparison to the experimen-
tal photoemission spectrum65. The positions of the first
peaks on the left correspond to the vertical EA values, which
are separated by the double vertical lines from the occupied
states. Vertical dashed lines mark the experimental66, the
CCSD(T)67 and the CASPT268 EA.

ods significantly overestimate the EA, even G0W0@HF,
which usually yields the highest LUMO (smallest vEA).
(G0W0+SOSEX)@PBE improves on G0W0@HF by more
than 0.3 eV, reducing vEA from 3.61 eV to 3.30 eV.

Moreover, we note that the improved description of
G0W0+SOSEX for the unoccupied states does not dete-
riorate the occupied states. (G0W0+SOSEX)@PBE also
yields the best valence spectrum.

To summarize, we have proposed a GW+SOSEX
scheme for self-energy calculations. It goes systemati-
cally beyond the GW approximation and has a clear di-
agrammatic representation. We note that a perturbative
expansion may appear intuitively clear and systematic.
However, it always also carries a subjective component.
Thus the final proof of the quality of such expansion
is only provided by comparing to (essentially) exact re-
sults. This is the stratgey taken in the present work. Ex-
tensive benchmark calculations were carried out, which
show that G0W0+SOSEX gives vIEs of atoms and small
molecules in excellent agreement with the best theoretical
reference values. G0W0+SOSEX also improves on GW

for the relative energy position of molecular orbitals in
difficult cases such as benzene and for electron affinities
of strong acceptors such as TCNE, which G0W0 consis-
tently overestimates.
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133, 154106 (2010).
49 It appears that the SOSEX self-energy is not a Φ- or Ψ-

derivable theory46, and one may then question about its
conserving property which is a relevant issue when running
self-consistent calculations.

50 See the supplemental material for further details. webpage?
??

51 V. Blum, F. Hanke, R. Gehrke, P. Havu, V. Havu, X. Ren,
K. Reuter, and M. Scheffler, Comp. Phys. Comm. 180,
2175 (2009).

52 The convergence behavior of FHI-aims-2009 basis sets for
G0W0-type calculations has been thoroughly investigated
in Ref.9.

53 J. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
54 L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A.

Pople, J. Chem. Phys. 109, 42 (1998).
55 P. Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 81,

115104 (2010).
56 G. Samsonidze, M. Jain, J. Deslippe, M. L. Cohen, and

S. G. Louie, Phys. Rev. Lett. 107, 186404 (2011).
57 S. Sharifzadeh, I. Tamblyn1, P. Doak1, P. Darancet, and

J. Neaton, Eur. Phys. J. B 85, 323 (2012).
58 T. A. Carlson and C. P. Anderson, Chem. Phys. Lett. 10,

561 (1971).
59 T. A. Carlson, P. Gerard, M. O. Krause, F. A. Grimm,

and B. P. Pullen, J. Chem. Phys. 86, 6918 (1987).
60 S.-Y. Liu, K. Alnama, J. Matsumoto, K. Nishizawa, H. Ko-

hguchi, Y.-P. Lee, , and T. Suzuki, J. Phys. Chem. A 115,
2953 (2011).

61 J. A. Sell and A. Kuppermann, Chem. Phys. 33, 367
(1978).

62 The PBE-relaxed (with tier 2 basis) geometry is used in
the calculation.

63 W. Nelson, P. Bokes, P. Rinke, and R. Godby, Phys. Rev.
A 75, 032505 (2007).

64 F. Aryasetiawan, R. Sakuma, and K. Karlsson, Phys. Rev.
B 85, 035106 (2012).

65 I. Ikemoto, K. Samizo, T. Fujikawa, K. Ishii, T. Ohta, and
H. Kuroda, Chem. Lett. 7, 785 (1974).

66 D. Khuseynov, M. T. Fontana, and A. Sanov, Chem. Phys.
Lett. 550, 15 (2012).

67 Ryan M. Richard and Michael S. Marshall and Olga Dol-
gounitcheva and J. V. Ortiz and Jean-Luc Bredas and Noa
Marom and C. David Sherrill, to be published.
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