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Recent theoretical insights into the possibility of non-Abelian phases in ν = 2/3 fractional quantum Hall
(FQH) states revived the interest in the numerical phase diagram of the problem. In this letter, we investigate the
effect of various kinds of two-body interlayer couplings on the (330) bilayer state and exactly solve the Hamil-
tonian for up to 14 electrons on sphere and torus geometries. We consider interlayer tunneling, short-ranged
repulsive/attractive pseudo-potential interactions as well as Coulomb repulsion. We find 6-fold ground-state
degeneracy on the torus when interlayer hollow-core interaction is dominant. To identify the topological nature
of this phase we measure orbital-cut entanglement spectrum, quasi-hole counting, topological entanglement en-
tropy and wave-function overlap. Comparing the numerical results to the theoretical predictions, we interpret
this 6-fold ground-state degeneracy phase to be the non-Abelian bilayer Fibonacci state.

PACS numbers: 73.43.-f, 03.67.Lx, 05.30.Pr, 11.15.Yc

Introduction– There is a surging interest in the search for
non-Abelian (NA) anyons in topological states of matter.1–8

NA anyons register protected quantum memory and the stored
information can be processed through braiding the world line
of NA anyons. This comprises the basic notion of building
fault tolerant quantum computers. Two famous examples are
Ising and Fibonacci anyons which have been conjectured to
emerge in ν = 5/2 and ν = 12/5 fractional quantum Hall
(FQH) states, respectively.9–11 In particular Fibonacci anyons
are of interest for universal quantum computation. However,
there is no experimental observation of these exotic quasipar-
ticles in FQH systems to date. Another approach for realiz-
ing NA anyons is through coupling Abelian states via various
types of interactions to drive phase transition to NA topolog-
ical phases.12–17 In a realistic experimental situation, some of
the interactions considered in theoretical investigations are in-
deed relevant.18–25 Pursuing this direction further can poten-
tially lead to a novel venue for realizing NA anyons.

In this letter, we focus on the two-component FQH system
at ν = 2/3, whose parent state consists of two decoupled
ν = 1/3 Laughlin states. The two components may describe
physical spins,18 spatial (physical layer) degrees of freedom,
e.g., in wide quantum well realization of 2/3 state,19–22 or val-
ley indices in graphene-like systems.23–25 For convenience, in
this letter we refer to all these various realizations of two-
component systems as “2/3 bilayer” state. Early studies of
2/3 bilayer state focused on various possible Abelian phases26

and experimental observation of phase transitions.18,19 In par-
ticular McDonald and Haldane numerically established phase
diagram of the system in presence of interlayer tunneling and
bare Coulomb interaction projected to the lowest Landau level
(LLL)27 and confirmed possibility of various Abelian phases.
Recent analytical insights into possibility of NA phases in 2/3
bilayer state3,28–33 brought this seemingly closed problem into
new focus. However, results of Ref. 27 imply that microscopic
realizations of these Abelian phases require perturbation to the
model Hamiltonain consisting of interlayer tunneling and bare
Coulomb interaction projected to the LLL. In fact such pertur-
bations may already exist in experimental systems.

Therefore, the recent proposals3,28–33 beg for revisiting the

2/3 bilayer problem numerically considering modified inter-
layer Coulomb interaction and interlayer tunneling. Any two-
body interaction projected to the LLL can be expanded in
terms of the so-called Haldane pseudo-potentials, Vm,34,35

which are projector operators of two electrons to the state with
relative angular momentum m. Modifying the Coulomb in-
teraction amounts to changing the coefficient of the pseudo-
potentials. Here, we modify the interlayer Coulomb inter-
action by changing its dominant components, namely V inter

0

and V inter
1 (also known as hollow-core interaction). We solve

the resulting Hamiltonian for up to 14 electrons using exact
diagonalization (ED) method and utilize a variety of numer-
ical measurements to establish the nature of different topo-
logical phases achieved through varying coupling parameters.
We obtain a wide range of parameters where enhancing V inter

1

and suppressing V inter
0 components of the Coulomb interaction

drives phase transition to a NA state with Fibonacci anyons.
Model– We start with two ν = 1/3 Laughlin states that
are coupled through a number of distinct interlayer inter-
actions. Let us now consider a torus with Lx, Ly di-
mensions. In the Landau gauge A = B(0, x), sin-
gle particle states in the LLL are labeled by their mo-
mentum along y direction quantized as ky = 2πn/Ly .
The parent state, (330) Halperin state,36 is the exact
eigenstate of the following V1 Haldane’s pseudo-potential
V intra

1 =
∑
σ=↑,↓

∑
n,r,s V

(1)
r,s c

†
n+r,σc

†
n+s,σcn,σcn+r+s,σ ,

where σ =↑, ↓ denotes the layer index, cn,σ annihilates
an electron with ky = 2πn/Ly momentum, V

(1)
r,s =

κ3
√

2π

(
r2 − s2

)
e−κ

2 r2+s2

2 , and κ = 2π/Ly .

We investigate the effects of interlayer coupling by
considering both tunneling and interlayer two-body in-
teraction of Haldane’s V0 and V1 pseudo-potentials.
The tunneling Hamiltonian is Ht = −t⊥

∑
n c
†
nσxcn,

where cTn ≡
(
cn,↑, cn,↓

)
. The two-body interactions

are V inter
0 =

∑
σ;n,r,s V

(0)
r,s c

†
n+r,σc

†
n+s,−σcn,−σcn+r+s,σ ,

where V
(0)
r,s = κ√

2π
e−κ

2 r2+s2

2 and V inter
1 =∑

σ;n,r,s V
(1)
r,s c

†
n+r,σc

†
n+s,−σcn,−σcn+r+s,σ . In order to
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Phase c GSD S D OES
(330) 2 9 3 3 1, 2, 5, 10, 20, · · ·
1/3 0 3 0

√
3 1, 1, 2, 3, 5, · · ·

(112) 0 3 1
√
3

Fibonacci 14/5 6 3
√

3
2

(
5 +
√
5
)

1, 1, 3, 6, 13, · · ·
I. L. Pfaffian 5/2 9 3

√
12 1, 2, 6, 13, · · ·

Z4 RR 2 15 3 6 1, 1, 3, 6, 13, · · ·

Table I. Total central charge c, ground-state degeneracy (GSD),
the sphere shift S = ν−1Ne − NΦ, total quantum dimension
D, and orbital-cut entanglement spectrum (OES) counting for l =
0, 1, 2, 3, 4, · · · (l is the angular momenta relative to the ground
state) for various topological phases at ν = 2/3. For NA states,
the OES counting generally depends on the number of electrons NA

e

and the pseudospin SA
z in region A. Here we only show the case

when NA
e /2 (NA

e /4) is an integer and SA
z = 0 for the Fibonacci

and I. L. Pfaffian states (Z4 RR state). Although the counting of the
bilayer Fibonacci state with NA

e = 0 (mod 2) and Z4 RR state with
NA

e = 0 (mod 4) are equal for l ≤ 4, they are different for other
values of NA

e . The counting of the (112) state is the convolution of
the counting of two counter-propagating U(1) modes.

address the stability of the phases we obtain with this model
we also consider the effect of interlayer Coulomb interaction
in the limit of negligible interlayer separation perturbed by
the above terms.

Candidate phases– Below, we consider two categories of
possible states at ν = 2/3: Abelian and non-Abelian, each
with three members. Tables I summarizes some of their
defining properties. (i) (330) state which is simply two de-
coupled ν = 1/3 Laughlin states. This phase has 9-fold
degenerate ground states on the torus. (ii) 1/3: Particle-
hole(PH) conjugate of the ν = 1/3 Laughlin state.37,38 (iii)
Layer singlet state: non-chiral (112) Halperin state.36–39 (iv)
Bilayer Fibonacci phase3, which is a non-Abelian state de-
scribed by SU(3)2 Chern-Simons field theory and contains 6
distinct quasiparticles, three of which are non-Abelian with
d = 1+

√
5

2 quantum dimension. (v) Interlayer (I. L.) Pfaf-
fian state,32 which has 9 distinct quasiparticles and its wave-
function can be written as the product of (221) Halperin state
and a Pfaffian wave-function.32 (vi) Fermionic (M = 1) Z4

Read-Rezayi (RR) state.28,29,40 This non-Abelian state with 15
distinct quasiparticles is described by Z4 × U(1)6 edge con-
formal field theory. A unique feature of this state is the emer-
gence of a non-Abelian quasihole excitation with −e/6 frac-
tional charge.

Numerical results– Now we numerically search for possi-
ble phases by exact diagonalization of our model Hamilto-
nian. To mitigate the limitations of finite-size system study,
we make measurements of various characteristics of topolog-
ical phases using both toroidal and spherical geometries. The
number of electrons Ne and total number of quantum fluxes
NΦ are related through NΦ = 3

2Ne relation on the torus and
on the sphere NΦ = 3

2Ne − S, where S is the shift of a FQH
state on sphere.41 Good quantum numbers that can be used
to label energy states are the total center-of-mass momentum
K on the torus and angular momentum Lz on the sphere. In
the absence of the interlayer tunneling, the total pseudospin

(6)

(6)

(3)

(3)

(3)

(9)

(9)

(9)

Figure 1. (Color online) The phase diagram based on GSD of the
Hamiltonian H = V intra

1 + U inter
0 V inter

0 + U inter
1 V inter

1 +Ht. The num-
bers in the parentheses indicate GSD. (a)-(c) The GSD for Ne = 8
particles for (a) t⊥ = 0, (b) U inter

1 = 0, and (c) U inter
0 = 0. (d)

The GSD as a function of U inter
1 for Ne = 8 and 10 electrons with

U inter
0 = t⊥ = 0. E0, E1, E2 are the lowest three energy levels in

the K < NΦ/3 sectors. One can see that with the increase of U inter
1 ,

E2 − E1 � E1 − E0, implying a total 6-fold degeneracy.

Sz = 1
2 (N↑ − N↓) is also a good quantum number, where

N↑,(↓) is the electron number in the upper (lower) layer.
Below we present the resulting phase diagram and the mea-

surements characterizing the phases.
(a) Ground-state degeneracy: The GSD on the torus is sig-

nificant as it equals the number of distinct anyon excitations.42

Fig. 1 shows the phase diagram of the interactionH = V intra
1 +

U inter
0 V inter

0 +U inter
1 V inter

1 +Ht exhibiting several phases with 3-
fold (purple), 6-fold (green), and 9-fold (red) GSD phases. Of
these the 9-fold GSD region in Figs. 1(a) and (b) is smoothly
connected to the parent state, so it is most likely the (330)
phase. For the 3-fold GSD region, there are two Abelian
candidates (see Table I) which can be differentiated by their
different shifts on sphere, S. The most tantalizing is the 6-
fold GSD region, for which the NA bilayer Fibonacci state is
the only candidate to the best of our knowledge. Figs. 1(a)-
(c) show that dominant V inter

1 is required for the 6-fold GSD
phase. Nevertheless, this phase is stable against subdominant
tunneling and V inter

0 terms. In the rest of this letter, we will fo-
cus on the t⊥ = 0 limit where we can take advantage of Sz as
a good quantum number. Fig. 1(d) shows that this degeneracy
is stable upon increasing the system size.

To further address the stability of the 6-fold GSD phase
against higher order pseudo-potentials which must exist in
any realistic setting, we study H = H intra

coulomb + H inter
coulomb +

U inter
0 V inter

0 +U inter
1 V inter

1 Hamiltonian with U inter
0 < 0. We con-

sider this particular form, because the V inter
0 component of the

bare Coulomb interaction is larger than its V inter
1 component.

Intriguingly, Fig. 2(a) shows that this Hamiltonian can sta-
bilize the 6-fold GSD phase with a robust degeneracy and a
large gap. Moreover, the finite-size scaling of the energy gap
and the ground-state splitting [Fig. 2(b)] shows that this phase
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Figure 2. (Color online) Here we consider the interaction H intra
coulomb +

H inter
coulomb+U

inter
0 V inter

0 +U inter
1 V inter

1 withU inter
0 = −0.4 andU inter

1 = 0.6
on the square torus.43 (a) The energy spectrum of Ne = 6, 8, 10 and
12 electrons in the Sz = 0 sector. (b) The finite-size scaling of the
energy gap and the ground-state splitting in the Sz = 0 sector. (c)
The PES of Ne = 8 electrons, the counting below the gap (green
line) is 1332. (d) The PES of Ne = 10 electrons, the counting below
the gap (green line) is 4875.

is probably gapped in the thermodynamic limit. The finite-
size scaling of the energy gap on the sphere also supports this
conclusion [Fig. 3(c)].

(b) Edge state counting and entanglement spectrum:
Orbital-cut entanglement spectrum (OES)44 encodes the de-
generacy of the edge excitations with angular momentum l
relative to the ground-state.39 We computes the OES on the
sphere which leads to a single boundary. For a bilayer FQH
system without interlayer tunneling, each OES level on the
sphere can be labeled by the total electron number NA

e , the
total angular momentum LAz and the total pseudospin SAz in
the subregion A.

Table I lists the expected counting for the candidate phases
that can be obtained using the thin torus patterns and gener-
alized exclusion rules.45,55 Care has to be given to the fact
that OES counting generally depends on NA

e . For example,
in the case of Abelian phases, OES is independent of NA

e ,
while for the bilayer Fibonacci state it depends on the par-
ity of NA

e . In the case of Z4 RR state, the counting de-
pends on NA

e modulo 4. In general, it can be shown that
the OES counting of a k−electron clustered topological phase
described by SU(n)k Chern-Simons theory depends on NA

e

modulo k. For the bilayer Fibonacci state, the counting for
NA
e = 2M + 1 is 1, 2, 5, 10, · · · . For the Z4 RR state, the

counting is 1, 2, 5, 10, · · · (1, 2, 6, 11, · · · ) for NA
e = 4M − 1

(NA
e = 4M − 2) for large values of NA

e . For finite systems,
the counting is slightly different. For instance, when Ne = 6
the expected counting for the bilayer Fibonacci (Z4 RR) state
is 1, 1, 3, 6, 12, · · · (1, 2, 5, 7, · · · ). For NA

e = 7, the expected
counting of the Z4 RR state becomes 1, 2, 4, 7, · · · .

For the region with 9-fold GSD we obtained OES counting
consistent with Abelian (330) state: 1, 2, 5, 10, 20, · · · inde-
pendent of NA

e . On the other hand, the measured OES count-

ing for the 6-fold GSD phase is different for the odd and even
values of NA

e , and distinct from any Abelian state. The OES
counting of the modified interlayer Coulomb interaction with
6-fold GSD is presented in Figs. 3(a)-(b). The OES counting
we obtain for the bilayer Fibonacci state dictates the following
generalized Pauli exclusion rules: (a) In every three consecu-
tive orbitals, there are at most two electrons. (b) Each config-
uration of two electrons with distance more than two orbitals
such as (1001) or (10001) is doubly degenerate after assign-
ing spin indices and must be counted twice. It was shown that
these rules give rise to 6-fold GSD on the torus, and result in
three NA anyon excitations with d = 1+

√
5

2 quantum dimen-
sion, hence the Fibonacci anyons.3

The fact that the counting for l = 1 is unambiguously 1
for NA

e = 6 rules out the I. L. Pfaffian and Z4 RR states (for
both of these states at l = 1, we expect the counting to be 2).
Moreover, the fact that the measured OES counting depends
on the parity of NA

e indicates that the 6-fold GSD phase is a
paired state with k = 2. This is consistent with the SU(3)2
Chern-Simons description of the bilayer Fibonacci state.

(c) quasihole counting: The degeneracy of the ground-state
in the presence of quasihole excitations, usually referred to
as quasihole counting, is a telling property of a topological
phase.46,47 One way to create quasiholes is by adding addi-
tional fluxes to the system. For instance, in the bilayer Fi-
bonacci phase, each additional flux would create two quasi-
holes. Another way is to use particle-cut entanglement spec-
trum (PES) which is achieved by tracing out some electrons
in the density matrix associated with the ground-state wave
function.48 Each PES level is labeled by the total electron
number NA

e , momentum KA and pseudospin SAz in the sub-
system A. In Figs. 2(c) and (d), we observe a clear gap in the
PES. The counting below gap is different from the expected
counting for the Abelian as well as I. L. Paffian and Z4 RR
states,55 while it is consistent with the generalized Pauli ex-
clusion rules of the bilayer Fibonacci state described in the
previous section.

(d) Topological entanglement entropy (TEE): The entan-
glement entropy of a two-dimensional gapped state follows
SA(L) = αL − γ relation, where L is the perimeter of sub-
region A. The sub-leading constant γ is related to the to-
tal quantum dimension of the topological phase D, through
γ = logD49,50 relation. The precise numerical evaluation of
the TEE for small systems is usually challenging.51–54 How-
ever, qualitative aspects of our results in Fig. 3(d) are sugges-
tive of 6-fold GSD phase is a NA state. The numerically esti-
mated γ for the 6-fold GSD state is larger than the estimated
γ for the unperturbed (330) state and far from the values of
γ for the remaining Abelian phases whose γ’s are expected to
be half the value of (330) state (see Table I). Although this
argument suggests the resulting state is NA, it does not rule
out the possibility of other NA states.

(e) Wave-function overlap: We have also computed the
squared overlap of the ground state of the 6-fold GSD region
on the sphere with several candidate states in Table I. The
overlap with the (112), 1/3 and Z4 RR state is always neg-
ligible. The overlap with the (330) state is only 0.12 for 12
electrons. The overlap with the I. L. Pfaffian state is 0.80 for
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Figure 3. (Color online) For (a)-(c) we consider the modi-
fies Coulomb interaction with H intra

coulomb + H inter
coulomb + U inter

0 V inter
0 +

U inter
1 V inter

1 with U inter
0 = −0.4 and U inter

1 = 0.6 on the sphere. (a) and
(b) show the OES for Ne = 14 electrons in the NA

e = 6, SA
z = 0

and NA
e = 7, SA

z = −1/2 sectors. The levels consistent with the
exclusion rule proposed in the text are colored by red. (c) The finite-
size scaling of the energy gap in the Sz = 0 sector. (d) The measured
entanglement entropy SA(L) for different boundary lengths, L, and
its extrapolation using the method in Ref.51 for the unperturbed (330)
state and the 6-fold GSD phase in the large V inter

1 limit.

8 electrons, which is not quite low, but it decays very quickly
to 0.73 and 0.66 when the system increases to 10 and 12 elec-
trons.

To gain analytical insight about the numerical results, we
also studied the thin torus limit of the coupled (330) system.55

We show that at least four of the topological phases conjec-
tured in Table I are plausible. Further, we obtain the thin torus
patterns of the ground states.56–59 We then use the resulting
patterns to extract several key information about the nature
of the underlying topological order, e.g. GSD, fusion rules
and quantum dimensions of the anyons.3,58 In particular we
confirmed that the numerically obtained ground-states of the
6-fold GSD phase in the thin torus limit are consistent with
the thin torus patterns of the bilayer Fibonacci state.55

Discussion– In summary, we reinvestigated the phase di-
agram of the coupled (330) bilayer state and considered the
effects of modified interlayer Coulomb interaction by varying
its V inter

0 and V inter
1 components. We have verified the result

of McDonald and Haldane27 indicating that interlayer tunnel-
ing and bare Coulomb interaction projected to the LLL can
only yield Abelian phases. However, we found that when
the pseudopotential components decay smoothly and both
g1 ≡ V inter

1 /V intra
1 and g2 ≡ V inter

1 /V inter
0 increase, the result-

ing ground-state exhibits many properties of the bilayer Fi-
bonacci phase. To the best of our knowledge this is the first
numerical evidence for topological quantum phase transition
between (330) state and a NA phase. Moreover the robust-
ness of the bilayer Fibonacci phase which contains Fibonacci
anyons which are capable of performing universal quantum
computation is tantalizing.

Our result raises the question of how 6-fold GSD region
of our model can be realized experimentally. Our calcula-
tions indicate that when g1 and g2 ratios are large enough, the
Fibonacci state becomes energetically favorable. If the inter-
layer distance is small, V inter

1 ≈ V intra
1 so g1 ≈ 1. One strat-

egy to get larger g2 is to go to higher Landau levels with 2/3
filling.60,61 It is known that in higher Landau levels, V0 com-
ponent of the bare Coulomb interaction decreases w.r.t. LLL
while other components do not change too much. Although in
the second Landau level (2LL) for 2DEG systems, g2 ≈ 0.68
is significantly larger than its value 0.5 in the LLL, unfortu-
nately we do not have smooth pseudopotentials (the V2 com-
ponent is larger than the V1 component). However, in the 2LL
for graphene-like systems, g2 ≈ 0.70 grows and pseudopoten-
tials decay smoothly. In fact, it can be shown through ED that
even the bare Coulomb interlayer interaction projected to the
2LL in graphene yields a 6-fold degenerate ground-state in the
Sz = 0 sector, and considering slight finite interlayer distance
stabilizes that phase even further.62 Therefore, we expect that
graphene is a promising platform for the Fibonacci state.
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