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Excitons, composite electron-hole quasiparticles, are known to play an important role in optoelec-
tronic phenomena in many semiconducting materials. Recent experiments and theory indicate that
the band-gap optics of the newly discovered monolayer transition-metal dichalcogenides (TMDs)
is dominated by tightly bound valley excitons. The strong interaction of excitons with long-range
electromagnetic fields in these 2D systems can significantly affect their intrinsic properties. Here, we
develop a semi-classical framework for intrinsic exciton-polaritons in monolayer TMDs that treats
their dispersion and radiative decay on the same footing and can incorporate effects of the dielectric
environment. It is demonstrated how both inter- and intra-valley long-range interactions influence
the dispersion and decay of the polaritonic eigenstates. We also show that exciton-polaritons can
be efficiently excited via resonance energy transfer from quantum emitters such as quantum dots,
which may be useful for various applications.

PACS numbers: 78.20.-e, 73.22.Pr

I. INTRODUCTION.

Monolayer molybdenum disulfide MoS2 and other
group-VI transition-metal dichalcogenides (TMDs) are
novel two-dimensional (2D) semiconductor systems
whose electronic and optical properties attract a great
deal of attention.1–29 One of their prominently discussed
features is the opportunity to manipulate the valley
degree of freedom, including by optical means due to
opposite-handed circular polarizations of the interband
transitions in the two valleys.4 A growing experimen-
tal and theoretical evidence2–8,17–29 indicates that the
band-gap optical properties of monolayer TMDs are dom-
inated by relatively tightly bound electron-hole pairs, ex-
citons, with binding energies substantially larger than
in the majority of conventional inorganic semiconduc-
tor quantum wells.30,31 The corresponding 2D exciton
physics in TMDs may therefore reflect generally stronger
interactions of excitons with macroscopic electric fields
and light. In fact, experimental evidence of strong cou-
pling between MoS2 excitons and dielectric microcavity
photons has been recently32 reported.

An important fundamental issue is the nature of in-
trinsic excitonic eigenstates and their energy-momentum
(dispersion) relationships. It is these relationships that
are of particular interest to us here. It was emphasized
recently23 that the long-range exchange Coulomb inter-
action mixes individual valley excitons to establish ex-
citons with the longitudinal (L) and transverse (T ) po-
larizations as normal system modes, similarly to quan-
tum well excitons.33,34 It was also suggested23 that the
resulting exciton spectrum, as a function of its center-of-
mass in-plane wave-vector k = (kx, ky) = k (cos θ, sin θ),
would exhibit a specific Dirac-cone-like behavior at low
momenta ~k, in particular within the light cone, k < κ =
ω/c. In this paper35 we address the issue of the exciton
dispersion at small k as affected exclusively by long-range

(or macroscopic) interactions. Consistently with this
end, a semi-classical analysis is performed of the interac-
tion of monolayer excitons with long-range electromag-
netic fields. Our results will show that (1) the dispersion
of L- and T -excitons is affected by both inter- and intra-
valley interaction processes leading to the overall generic
behavior characteristic of the 2D excitons.33,34,36,37 That
behavior does not exhibit a Dirac-cone feature. In the
electrostatic limit, this can be seen already from the
Coulomb interaction calculations as illustrated below and
was recently29 recognized. While the dispersion of L-
excitons is indeed substantially altered, the effect on
the dispersion of T -excitons would be inconsistent with
the electrostatics of the transverse polarization waves.
(2) Moreover, also in a general fashion, we demonstrate
that the intrinsic behavior of excitations within and in
the vicinity of the light cone would be that of the 2D
exciton-polaritons as determined by the full electromag-
netic (rather than just electrostatic23) coupling of valley
excitons taking account of the retardation effects.31,37

With this approach, both renormalization of the exci-
tonic bands and the exciton radiative decay appear on the
same footing as a consequence of the exciton interaction
with macroscopic electromagnetic fields. Consequently,
general features of the intrinsic exciton-polaritons are
particularly clearly accentuated in the macroscopic elec-
trodynamics framework. It allows one, for instance, to
straightforwardly generalize the analysis of the polariton
dispersion and radiative decay in free-standing monolayer
TMDs to monolayers at the interface between different
media that we discuss in this paper. Such a framework
would also be applicable to more involved photonic struc-
tures with TMDs that can be of interest for optoelec-
tronic applications. In another example, we use that
framework here to illustrate the possibility of very effi-
cient direct excitation of monolayer polaritons by energy
transfer from proximal electric-dipole emitters. Energy
transfer from quantum dots to MoS2 has been observed
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experimentally,38,39 this process is also considered of po-
tential importance for practical applications.

II. EXCITON-POLARITONS FROM

EFFECTIVE DIPOLE-DIPOLE INTERACTIONS.

In a common basic description of optically active low-
est energy excitons in monolayer TMDs, they arise as a
result of the direct Coulomb attraction between an elec-
tron and a hole in the same valley. Due to the strong
spin-orbit coupling in TMDs, the electron-hole spin com-
position is associated with the valley4 and therefore we
will be omitting spin indices. In the valley-based picture
there are then two exciton species (index α = 1, 2) corre-
sponding to two different valleys, both having the same
energy dispersion

E0(k) = ~ω0(k) = ~ω0 + ~
2k2/2M0, (1)

where ~ω0 is typically somewhat below 2 eV and the ex-
citon mass M0 is close to the free electron’s me.

8,10,19,23

The parabolic kinetic energy in Eq. (1) with M0 being
the sum of electron and hole effective masses signifies the
fact that the exciton propagation in space is enabled by
the simultaneous motion of the electron and hole. The
inclusion of the standard exchange Coulomb interaction
results in another mechanism of the exciton propagation
and concomitant modifications of its dispersion, which
can be seen as the electric field of the exciton annihi-
lated at one spatial point creating the exciton at an-
other point. Such a long-range process corresponds to
the effective electrostatic dipole-dipole coupling, which
is a well-known major exciton transport mechanism in
molecular systems.37 To briefly outline this picture for
the generic continuum description of excitons as relevant
for our application here, consider the electron-electron
Coulomb interaction

U =
1

2

∫

dr1dr2ψ
†(r1)ψ

†(r2)UC(r1 − r2)ψ(r2)ψ(r1),

(2)
where the electron annihilation operator

ψ(r) =
∑

αµ

ψαµ(r) =
∑

αµq

aαµ,qφ
α
µq(r) (3)

is associated with the sum over valleys (α = 1, 2) and
bands (conduction, µ = c, and valence, µ = v). Further
expansion in Eq. (3) is over electron operators aαµ,q with
wave-vectors q and Bloch wave functions φαµq(r). For a
uniformly screened Coulomb repulsion, UC(r1 − r2) =
e2/ε|r1 − r2|, where e is the electron charge and ε the
effective dielectric constant, but the screening could also
be distance-dependent. The peculiarities of screening ef-
fects in (quasi) 2D systems and applications to TMDs
have been discussed in Ref. 22.
In accordance with representation (3), the integrand

in interaction (2) contains terms like

ψ†
αc(r1)ψ

†
βv(r2)UC(r1 − r2)ψβv(r2)ψαc(r1)

featuring density operators ψ†
αµ(r)ψαµ(r) and related to

the direct Coulomb interaction between an electron and
a hole. Valley excitons are bound states that are formed
as a result of this direct interaction:

|αk〉 =
∑

q

Φqa
†
αc,qaαv,q−k|GS〉 (4)

for excitons with wave-vector k and energy (1). Here
|GS〉 is the ground state, whereas excitonic state (4) is a
linear combination of band electron-hole pair states with
the momentum-space wave function Φq. For the contin-
uum excitonic states in the effective mass approximation
(1), the wave vectors q in Eq. (4) are assumed to be mea-
sured relative to the position of band edges (Kα points)
in the respective valleys and are small. One immediately
recognizes the known relationship

∑

q Φq =
√
Vφ(0) that

is employed below. Here V is the system volume and φ(0)
the real-space wave function of the relative electron-hole
motion for their coinciding position. We note that the
precise knowledge of the exciton wave function and the
exciton binding energy is not essential for the effects that
we focus on in this paper. We refer the reader to Ref. 22,
which summarizes and discusses several theoretical calcu-
lations of the excitons in MoS2 with a particular emphasis
on the effects the screening.
A different type of contributions to the integrand of

Eq. (2) is exemplified by expression

ψ†
αc(r1)ψ

†
βv(r2)UC(r1 − r2)ψβc(r2)ψαv(r1),

which features interband transitional density operators
like ραcv(r) = ψ†

αc(r)ψαv(r) and corresponds to the ex-
change Coulomb interaction (U exch) for the excitonic
states. These types of terms would then lead to cor-
rections to exciton energies (1) via matrix elements

U exch
αβ (k) = 〈αk|U exch |βk〉 . (5)

The interband transitional densities can be readily re-
lated to the interband electric-dipole polarization P in
the continuum description we are interested in by using
the k · p theory30,31 expansion of Bloch wave functions
in the vicinity of the conduction and valence band edges.
Restricting, for clarity, to the two bands in each valley,
the valence band functions

φαvq(r) =
1√
V
eiq·r

[

uαv (r)−
q · pα

cv

meEg
uαc (r)

]

, (6)

where Eg is the energy bandgap and pα
cv the inter-

band matrix element of the electron momentum operator.
The latter determines the admixture of the conduction-
bandedge periodic Bloch functions uαc (r) into the valence-
bandedge periodic functions uαv (r). Using Eq. (6) and the
analogous expression for the conduction band states:

φαcq(r) =
1√
V
eiq·r

[

uαc (r) +
q · pα

vc

meEg
uαv (r)

]

, (7)
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the macroscopic (over distances substantially larger than
the unit cell) averaging eliminates the periodic functions
from the consideration and emphasizes the envelope func-
tions. For the transitional charge density operator eραcv,
e.g., this results in

eραcv(r) → −∇ ·Pα
cv(r), (8)

where the macroscopic interband polarization operator

Pα
cv(r) =

1

V
∑

q1q2

a†αc,q2
aαv,q1

ei(q1−q2)r dα
cv (9)

and the (optical) interband electric-dipole transition ma-
trix element

dα
cv = −iepα

cv/meEg (10)

for electron-hole pair creation in valley α is
traditionally31 related to the momentum matrix el-
ement. The described framework applies to systems of
different dimensionalities with the proper definition of
volume V and of Cartesian coordinates in spatial vectors
r and spatial derivatives of operator ∇.
With association (8) in place, it is clear from standard

electrostatics40 that the long-range exchange Coulomb
interaction indeed corresponds to the electrostatic dipole-
dipole coupling. Matrix elements (5) can thus be di-
rectly represented by using Eqs. (9) and (4) in terms
of interacting “transition dipoles” (10). This physi-
cally attractive real-space picture can then be readily
extended to the dipole-dipole coupling mediated by the
full electromagnetic interactions including the retarda-
tion effects. The resulting intrinsic excitations, known
as exciton-polaritons, would thus take into account the
exciton-light interaction31,36,37 that is absent in the pic-
ture of Coulomb excitons derived with electrostatic in-
teractions alone. It was demonstrated41 that the dipole-
dipole calculations with the retarded fields result in the
same exciton-polaritons as arising from the more famil-
iar treatment31,37 of the interaction of Coulomb exci-
tons with transverse photons (see a schematic picture
in Fig. 1(c)). As the full electromagnetic interaction de-
pends also on the frequency (energy), it is more accu-
rate to discuss the results in terms of exciton self-energy
corrections Σ that can be used in the self-consistent cal-
culations of the exciton Green’s functions in the Dyson
equation: G = G0 +G0ΣG.
It is convenient to classify the electromagnetic inter-

actions in monolayer TMDs as intra-valley (α = β) and
inter-valley (α 6= β) couplings, in some analogy with bi-
partite lattices and molecular systems with two molecules
per unit cell.37 Consequently, the exciton Green’s func-
tions G and exciton self-energy correction Σ due to the
interactions are 2 × 2 matrices, the non-interacting G0

being just a diagonal matrix corresponding to valley ex-
citons with energies (1). Matrix elements of Σ are evalu-
ated precisely as we described above for Eq. (5) with the
understanding that the electrostatic interaction of tran-
sition dipoles can be replaced by the full interaction. We

therefore write the result in a general form that empha-
sizes this interaction:

Σαβ(E,k) =

∫

dr vαβ(r) e
ik·r. (11)

It is a function of wave-vector k but can also be a function
of energy variable E = ~ω = ~cκ implicitly present in en-
ergy density v(r) in the integrand. The energy density
vαβ(r) = |φ(0)|2 Vαβ(r) is determined by the probabil-
ity |φ(0)|2 to find the electron and hole of the exciton
at the same spatial point and by the dipole-dipole in-
teraction matrix elements Vαβ(r). For the standard 2D
Wannier-Mott excitons,31 |φ(0)|2 = 8/(πa2B); and ab ini-

tio calculations8,11,21,25 estimate the exciton Bohr radius
in monolayer TMDs as aB ∼ 1 nm. The dipole-dipole in-
teraction is of course dependent on the relative dipole po-
sition r = rr̂ and their orientations but is also a function
of the transition (“dipole oscillation”) frequency when
the retardation is taken into account. Indeed, for the
free-standing monolayers in vacuum the standard long-
range part of the interaction would acquire a form of

Vαβ(r) =
eiκr

r

{

κ2
[

(r̂ · dα
cv)(r̂ · dβ

vc)− dα
cv · dβ

vc

]

+

(

1

r2
− iκ

r

)

[

dα
cv · dβ

vc − 3(r̂ · dα
cv)(r̂ · dβ

vc)
]

}

(12)

as arising from the full electromagnetic dipole-dipole cou-
pling (in Gaussian units).40 The energy dependence of
the interaction (12) is manifest via the light vacuum
wave number κ = ω/c, it disappears in the familiar
electrostatic limit of κ → 0 (speed of light c → ∞).
The interacting α and β species in Eq. (12) are repre-
sented by the corresponding interband dipole transition
matrix elements (10) for creation, dα

cv, and annihilation,
dβ
vc, of electron-hole pairs. Both vectors r and transition

dipoles are in-plane vectors for the monolayer TMD. In
the electrostatic limit, the self-energy corrections (11)
would be reduced to (5) and become real-valued and
functions of wave vector k only. With the retarded elec-
tric fields, however, Σαβ are functions of both energy
and wave-vector variables and generally complex-valued;
they would therefore determine both the exciton disper-
sion and the decay width (decay into photons) in a self-
consistent calculation.
The in-plane interband dipole transition matrix ele-

ments dα
cv =

(

d
(α)
x , id

(α)
y

)

have a common form for both

valleys but with the opposite handedness of their circular
polarization:

d(1)x = d(1)y = d(2)x = −d(2)y = D, (13)

where we choseD as a real positive quantity. From a two-
band monolayer TMD model,4 for instance, the dipole
transition moment would be D = eat/Eg, where a is

the lattice structure constant (≃ 3.19 Å), t the near-
est neighbor hopping integral (≃ 1.10 eV) and Eg the
conduction-valence energy bandgap. A calculation based
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FIG. 1. Functional behavior of the (a) real and (b) imag-
inary parts of the intrinsic exciton-polariton self-energy as
per Eqs. (17) and (21) for a fixed value of the vacuum light
wave number κ. Red color lines are used for the longitudinal
(L) and blue for the transverse (T ) polaritons. Shown with
dashed lines are the results for a free-standing monolayer in
vacuum, and solid lines are for the monolayer on a glass-like
substrate, see text. (c) Schematically, not to scale: Disper-
sion of the longitudinal and transverse Coulomb excitons as
renormalized by the electrostatic Coulomb interaction. At the
interface between two media with different refraction indices,
Coulomb excitons would be interacting with the transverse
photons of the media, whose dispersion is shown by dashed
lines.

on the three-band model24 gives the same form, but with
a slightly different value of t.

The difference between the transition dipole moments
(13) in the two valleys translates into the difference of
inter- and intra-valley couplings (12). A direct calcula-
tion of integrals in Eq. (11) then leads42 to the follow-
ing dependence of the self-energy matrix on wave vector

k = k (cos θ, sin θ):

Σ(E,k) =

(

J0 exp(2iθ)J1
exp(−2iθ)J1 J0

)

, (14)

where the intra-valley component

J0 = −iη
(

√

κ2 − k2 + κ2/
√

κ2 − k2
)

(15)

and the inter-valley component

J1 = iηk2/
√

κ2 − k2 (16)

feature the same magnitude scale η = 2π|φ(0)|2D2. The
functional form of these components illustrates the great
qualitative distinction resulting from the retarded inter-
actions: the obtained corrections J0 and J1 are purely
imaginary above the light line, k < κ, but become purely
real (

√
κ2 − k2 → i

√
k2 − κ2) below the light line, k > κ.

As is known,36,37 this signifies the impossibility for the
intrinsic 2D exciton-polariton with k > κ to decay into
a photon due to the momentum conservation. Exciton-
polaritons with k < κ, on the other hand, exhibit the
radiative width due to such a decay – it is reflected in the
imaginary part of Σ in Fig. 1(b). Moreover this width is
greatly enhanced in comparison with localized emitters.37

Following numerical estimates in Ref. 23, magnitude η
would be assessed as ∼ 0.75 eV·Å, resulting in substan-
tial contributions to the exciton dispersion. With this
estimate, the energy unit used in panels (a) and (b) of
Fig. 1 becomes 2ηκ ∼ 1.5 meV for κ ∼ 0.01 nm−1. It is
worthwhile to stress that this value agrees well with the
intrinsic radiative linewidth of excitons in WSe2 extrap-
olated from experiments in Ref. 43.
Because of the inter-valley coupling J1, the valley ex-

citations are clearly not the eigenstates of the system.
Instead, the eigenstates are their linear combinations

Ψ± = 2−1/2

(

1
± exp(−2iθ)

)

that diagonalize matrix Σ

and yield the corresponding self-energy corrections as

Σ± = J0 ± J1 = −2iη ×
{ √

κ2 − k2, (L),

κ2/
√
κ2 − k2, (T ).

(17)

These eigenstates have, respectively, longitudinal, for
Ψ+, and transverse, for Ψ−, polarizations with respect to
polariton wave-vector k:23 for the propagation along the
x-axis, e.g., Eq. (13) shows that Ψ+ combination corre-
sponds to the transition moment ∝ (D,+iD)+ (D,−iD)
along x while Ψ− to the moment ∝ (D,+iD)− (D,−iD)
along y. The functional forms of self-energy corrections
(17) for the free-standing monolayer are shown in panels
(a) and (b) of Fig. 1 by dashed lines.
It is instructive to look at the electrostatic limit (κ→

0) of the derived corrections: the inter-valley component
(16) then becomes J1 = ηk, precisely the result derived
in Ref. 23. Importantly, the intra-valley component J0
(15) becomes equal to J1 in this limit. (This equality is
also illustrated in direct calculations with the exchange
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Coulomb interaction in Sec. IV below.) It is then clear
that, in the electrostatic limit, only the L-excitons would
acquire the additional term Σ+ = 2ηk in their dispersion
due to long-range exchange interactions, while the dis-
persion of T -excitons would remain unchanged (Σ− = 0)
as Eq. (1), see a sketch in Fig. 1(c). This of course
agrees with the basic electrostatics of transverse polar-
ization waves. One concludes that no Dirac-cone-like be-
havior takes place even in the electrostatic limit. In the
valley-centric basis this conclusion thus follows from the
simultaneous account of both inter- and intra-valley pro-
cesses as opposed to the inter-valley coupling alone that
was originally used in Ref. 23 (but see Ref. 29).

III. EXCITON-POLARITONS FROM

MACROSCOPIC MAXWELL EQUATIONS.

The results obtained in Sec. II for polaritonic eigen-
states are in agreement with the picture known for
quantum wells33 and basically reflect the fact that the
opposite-handedness in-plane susceptibilities χ1 and χ2

of the individual valleys just add up in the overall
isotropic electrodynamic response of the monolayer. The
latter is then characterized by the scalar susceptibility χ
defining the monolayer 2D current density j = −4πiωχE
induced by the in-plane electric field E. It is this cur-
rent density that enters the boundary conditions for the
macroscopic Maxwell equations determining the effects
of long-range fields on the system excitations.31,37 For
well-separated excitonic states (1), e.g., the 2D scalar
susceptibility acquires a familiar single-oscillator form

χ(ω, k) = χ0 +A/
(

ω2
0(k)− ω2 − 2iγω

)

, (18)

where χ0 is the background term due to higher-frequency
transitions and γ the phenomenological dissipation pa-
rameter. A many-oscillator form could be used instead
of (18) to include even more specifics for different TMD
monolayers as determined, e.g., from experimental data.
The macroscopic framework is versatile and can be eas-

ily applied to various environments. Here we exemplify
this by considering the model of an infinitesimally thin
planar monolayer between two non-magnetic media with
dielectric constants ε1 and ε2. One can solve for the
eigenfrequencies of the system directly. Alternatively, as
is also useful for problem of energy transfer in Sec. V, one
looks at the poles of the reflection coefficients for electro-
magnetic waves in our sandwich configuration. The 3D
setup involves not only the in-plane components of the
fields and wave vectors but also their z-components per-
pendicular to the planar interface. With the boundary
conditions of the polarizable interface monolayer,44 one
easily derives the reflection coefficient amplitudes for p-
and s-polarized waves as (ω, k)-dependent

r(p) =

(

ε2
kz2

− ε1
kz1

− 4πiχ

)(

ε2
kz2

+
ε1
kz1

− 4πiχ

)−1

(19)

and

r(s) =
(

kz1 − kz2 + 4πiκ2χ
) (

kz1 + kz2 − 4πiκ2χ
)−1

.
(20)

The normal components kzi = (εiκ
2−k2)1/2 of the waves

in the respective media appear, as usual,45 related to the
in-plane wave number k for given frequency ω = cκ. The
in-plane component of the electric field in a p-polarized
wave is along the in-plane wave vector k whereas in an
s-polarized wave they are perpendicular to each other.
Hence, the poles of Eq. (19) determine the dispersion and
decay of the L-polaritons while poles of Eq. (20) those of
the T -polaritons. Writing the pole equations in the form
of

− 1

χ
= −4πi×

{

(ε1/kz1 + ε2/kz2)
−1
, (L),

κ2/(kz1 + kz2), (T ),
(21)

one recognizes that the functional dependence in the
r. h. s. of Eq. (21) reduces to that in Eq. (17) for the free-
standing monolayer. It is also clear that with the neg-
ligible dissipation and screening due to higher-frequency
transitions, −1/χ ≃ 2ω0(ω−ω0(k))/A becomes just pro-
portional to the self-energy corrections in the vicinity
of the resonance, ω ≃ ω0. The derivation with the ef-
fective dipole-dipole interactions thus fully agrees with
the macroscopic electrodynamics result, and we obtain
A = 2ω0η/π~ by comparing Eqs. (17) and (21). Note
that the screening by the surrounding media can sub-
stantially affect the exciton radius and binding energy
thereby reducing “the strength” A of the resonance (18);
the corresponding evaluations of exciton binding are out-
side of our scope in this paper.
Panels (a) and (b) of Fig. 1 illustrate the differences in

the behavior of self-energy corrections for two systems:
the symmetric sandwich with ε1 = ε2 = 1 (a free stand-
ing monolayer) and and the asymmetric sandwich with
ε1 = 1 and ε2 = 2.25 (glass-like substrate), as follows
from Eq. (21). It is transparent that in the symmet-
ric case, the T -polariton branch exhibits splitting at the
light cone, k → κ, as consistent with the divergence of
the radiative decay rate (17) at k → κ − 0. Qualita-
tively differently for the asymmetric sandwich, there is
no divergence in the decay rate and the dispersion of the
T -polariton branch is continuous. Figure 1(b) also shows
the extension of the region of the radiative decay: po-
laritons with κ < k <

√
ε2κ can now decay into photons

that propagate only in the substrate. Beyond that re-
gion, however, the intrinsic (without scattering effects)
polaritons become non-radiative and, conversely, cannot
be directly excited by plane-wave photons incident on the
monolayer from the infinity – the situation similar to the
excitation of surface waves like surface plasmons.36,37,45

IV. INTER- AND INTRAVALLEY EXCHANGE

COULOMB INTERACTIONS.

While we already discussed the exchange Coulomb
corrections to exciton dispersion in Secs. II and III as
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the electrostatic limit of the full electromagnetic inter-
actions, it is instructive to compare the inter- and in-
travalley contributions to the monolayer excitons via the
direct evaluation of the exchange Coulomb effects (5).
The setup for the calculation was provided in Sec. II.
Using Eqs. (4), (6), (7) and (10), the exchange matrix
elements are straightforwardly calculated in the macro-
scopic (long-range part of the interaction) limit as

U exch
αβ (k) = UC(k)|φ(0)|2(k · dα

cv)(k · dβ
vc)/e

2, (22)

where the 2D Fourier-transform

UC(k) =

∫

dr eik·rUC(r).

For the uniformly screened Coulomb interaction,
UC(k)/e

2 = 2π/εk.
With assignment (13) of the transition dipole matrix

elements, one immediately finds that for the intravalley
processes, α = β,

(k · dα
cv)(k · dβ

vc) = k2D2.

For the intervalley matrix elements, α 6= β, one derives

(k · dα
cv)(k · dβ

vc) = k2D2 exp(±2iθ),

depending on α. Thus, the energy correction matrix (22)
acquires the form of Eq. (14), where

J0 = J1 = ηk/ε. (23)

As already mentioned above, this is precisely the elec-
trostatic limit of full electromagnetic couplings (15) and
(16), where the dielectric constant ε = 1 (the electro-
static limit of the case considered in Sec. III would lead
to (23) for ε1 = ε2 = ε).
The direct evaluation of the exchange corrections con-

firms that the intravalley processes are as important for
the resulting dispersion of excitons as the intervalley pro-
cesses are. The basic electrostatics tells us that there are
no macroscopic charge densities associated with trans-
verse polarization waves (polarization P perpendicular
to wave vector k), hence there should be no electro-
static corrections to the T -exciton energies. In the valley-
centric framework, this necessitates J0 = J1 as indeed
derived in calculations.

V. APPLICATION TO ENERGY TRANSFER.

While photons cannot couple to non-radiative modes,
the direct excitation of such modes is possible by the
near electromagnetic fields, a particularly well-known ex-
ample being the excitation of surface plasmons. This
may be accomplished, e.g., with special optical geome-
try setups36,37,45 or via resonance energy transfer (ET)
from proximal quantum emitters such as molecules or

1.8 1.85 1.951.9 2.0
100

101

102

103

hω  (eV)

Γ

Γ0
substrate

ε2

ε1=1

monolayer χh

FIG. 2. Acceleration of the decay rate Γ of a randomly ori-
ented electric dipole emitter such as a quantum dot in the
vicinity of the monolayer on a glass-like substrate as com-
pared to the spontaneous decay rate Γ0 in vacuum. The data
computed with Eq. (24) are shown as a function of the emit-
ter frequency ω and for different distances h to the interface:
5 nm (black lines), 10 nm (red) and 20 nm (blue). Solid lines
display results for the nearly dissipationless excitons (γ = 0.1
meV), dashed lines are for the dissipation parameter γ = 25
meV. These illustrative calculations were done with the model
parameters 4πχ0 = 2 nm, 4π~2A = 0.25 eV2

·nm in Eq. (18)
and ~ω0 = 1.9 eV, M0 = me in Eq. (1).

quantum dots.45–47 It should be noted that ET from 0D
emitters to (quasi) 2D absorbers has been of increas-
ing theoretical and experimental interest, including or-
ganic and inorganic semiconductors,48 graphene49 and
MoS2

38,39 (see also references therein). As ET provides
a new decay channel, it is thus manifested experimentally
in the acceleration of the observed emitter’s photolumi-
nescence decay.
Using the macroscopic electrodynamics formalism de-

veloped for such applications,45,47 the decay rate Γ of the
randomly-oriented electric-dipole emitter in the medium
with dielectric constant ε1 at distance h from the planar
interface (see the sketch in Fig. 2) is derived45 as

Γ/Γ1 = 1 + (1/2k31)Re

∫ ∞

0

(k dk/kz1) e
2ikz1h

×
(

(2k2 − k21)r
(p) + k21r

(s)
)

, (24)

where Γ1 is the spontaneous decay rate in the uniform
medium and k21 = ε1κ

2. The integration in Eq. (24)
over all values of the in-plane wave-vectors k signifies
that the near-fields of the emitter are included. Figure
2 illustrates the results computed with Eq. (24), where
the reflection coefficients (19) and (20) were used as ap-
propriate for the geometry sketched in the figure. The
analysis shows that a very large effect observed in Figure
2 is predominantly due to the excitation of L-polaritons
(related to poles of r(p)), similar to a very efficient exci-
tation of surface plasmons by ET;46,47 the dispersion of
the peak with distance h is also clearly seen.
With numerical estimates used in Sec. II one would ob-

tain 4π~2A ∼ 1.1 eV2·nm for the resonance strength A
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in Eq. (18). Keeping in mind a possible screening by the
substrate, the illustration in Fig. 2 was computed with a
more moderate value of the parameter A, its larger values
would lead to even faster ET into the monolayer. It is
worth pointing out that ET via the excitation of exciton-
polaritons takes place already with the vanishing dissipa-
tion parameter γ → 0. Figure 2 however also shows how
the narrower polariton peaks are spread by the exciton
damping. Excitation of TMD monolayer polaritons via
high efficiency ET from neighboring emitters might be
attractive for various optoelectronic applications.38,39,50

The acceleration of decay of quantum dot excitons due
to ET into monolayer and multilayer MoS2 has been re-
cently observed38,39 experimentally.

VI. FINAL REMARKS.

The main discussion in this paper has been focussed on
the effects of long-range electromagnetic interactions on
the properties of intrinsic exciton-polaritons in TMDs.
We have shown that these effects result in the generic
behavior characteristic of excitons in 2D systems with
the isotropic in-plane macroscopic polarizability. While
TMDs are specific in the nature of their valley-centric
basis for bare excitons with the opposite-handed circular
polarization, the proper account of intra- and interval-
ley long-range interactions “restores” the overall isotropic
macroscopic response. Thanks to the substantial exciton
binding, TMDs appear attractively positioned to study
the dynamics of excitons as enabled by both the electron-
hole motion and the long-range electromagnetic interac-
tions.
While the choice of the “natural” exciton basis is not

consequential for the effects that we discussed here, it
may become important for the appropriate treatment of
other types of interactions. In particular, it is understood
that various scattering and dephasing processes such as
due to polariton interactions with phonons and defects
can significantly affect the observable optical properties
of real TMDs. The important issue of exciton decoher-
ence is recognized43 and will likely continue to be actively
explored. The availability of high-quality TMD samples
should assist in the studies of the intrinsic properties at
low temperatures.
As we discussed in Sec. II, the long-range spatial co-

herence of 2D exciton-polaritons within the light cone
is expected to result in their shortened radiative life-
times. The observations of picosecond-scale decay of
photoluminescence39 may be already indicative of a high
degree of coherence but even subpicosecond intrinsic ra-
diative lifetime was deduced from extrapolation of the
experimental data.43 That extrapolated intrinsic radia-
tive linewidth ∼ 1 meV agrees well with our estimates
for the radiative linewidth of polaritons in Sec. II. The
low-temperature studies of the radiative decay may con-
tribute to assessing the polariton dispersion: Just as with
the quantum well polaritons, their thermalization can
lead to a specific temperature dependence of the radiative
lifetime. With the substantial contribution to polariton
dispersion in TMDs from the long-range interactions we
discussed, that temperature dependence would deviate
from the dependence resulting from the purely parabolic
exciton dispersion.51 A more direct experimental anal-
ysis of the subtleties of the exciton-polariton dispersion
and decay exemplified in Fig. 1 should be achievable with
experiments involving angle-resolved reflectivity and res-
onance photoluminescence, similar to experiments em-
ployed in Ref. 32 that uncovered the formation of cavity
polaritons with MoS2.

The dispersion of excitons well beyond the light cone
is essentially driven by electrostatic interactions and ex-
pected to be less sensitive to the long-range spatial
coherence. The experimental techniques developed to
study various surface exciton polaritons,52 such as, e.g.,
attenuated total reflection, should prove to be useful.
The macroscopic electrodynamics framework that we dis-
cussed in this paper would provide the connection to
such experiments. Finally, detailed studies of energy
transfer from neighboring quantum emitters into TMD-
containing structures as a function of different emitter
frequencies, distances, and substrates could also be used
for quantification of exciton and polariton properties.
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