
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Majorana fermions at the edge of superconducting islands
R. S. Akzyanov, A. L. Rakhmanov, A. V. Rozhkov, and Franco Nori

Phys. Rev. B 92, 075432 — Published 21 August 2015
DOI: 10.1103/PhysRevB.92.075432

http://dx.doi.org/10.1103/PhysRevB.92.075432


Majorana fermions at the edge of superconducting islands

R.S. Akzyanov,1, 2, 3 A.L. Rakhmanov,1, 2, 3, 4 A.V. Rozhkov,1, 2, 4 and Franco Nori4, 5

1Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 Russia
2Institute for Theoretical and Applied Electrodynamics,

Russian Academy of Sciences, Moscow, 125412 Russia
3All-Russia Research Institute of Automatics, Moscow, 127055 Russia

4CEMS, RIKEN, Saitama, 351-0198, Japan
5Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA

(Dated: July 31, 2015)

We investigate the properties of electron states localized at the edge of a superconducting island
placed on the surface of a topological insulator in a magnetic field. In such systems, Majorana
fermions emerge if an odd number of vortices (or odd multivortex vorticity) is hosted by the island;
otherwise, no Majorana states exist. Majorana states emerge in pairs: one state is localized near the
vortex core, and another at the island edge. We analyze in detail the robustness of Majorana fermions
at the edge of the island threaded by a single vortex. If the system parameters are optimized, the
energy gap between the Majorana fermion and the first excited state at the edge is of the order of
the superconducting gap induced on the surface of the topological insulator. The stability of the
Majorana fermion state against a variation of the gate voltage and its sensitivity to the magnetic
field allows one to experimentally distinguish the edge Majorana fermion from conventional Dirac
fermions.

PACS numbers: 71.10.Pm, 03.67.Lx, 74.45.+c

I. INTRODUCTION

The possible realization of Majorana fermion states in
condensed matter physics is attracting considerable in-
terest in recent years1–8. This is partly due to the non-
abelian anyonic statistics of Majorana fermions, allow-
ing the realization of topologically-protected quantum
gates9. Topological quantum computation requires the
braiding of anyons10. Majorana braiding might be real-
ized by the controllable manipulation of the pairwise in-
teraction between separate Majorana fermions11–13. The
decoherence caused by the tunneling between Majorana
fermions sets an upper limit of the time on the elementary
operation, while the energy of the excited states deter-
mines the lower time limit of the elementary operation14.
Many attempts have been performed to find Majorana
fermions in different systems. Recently, possible obser-
vations of Majorana fermions in quantum nanowires15,16

and atom chains17 were reported.

The interface between a topological insulator and an
s-wave superconductor (SC) is a promising system for
the possible realization of Majorana fermions.18–22 Such
proximity-induced superconductivity is a mixture of s
and p-wave correlations.18,23 Being topologically equiv-
alent to the p-wave superconductivity, it supports Ma-
jorana fermions.24 However, specific features of this su-
perconducting state, in particular, quasiparticle linear
dispersion on the surface of the topological insulator,
are of importance for the structure and robustness of
the Majorana state and requires adequate analysis. Ma-
jorana fermions may emerge at the vortex core in the
proximity-induced superconducting region on the sur-
face of the topological insulator. However, the mini-
gap separating the Majorana fermion and the Caroli-de

Gennes-Matricon (CdGM) levels in the Abrikosov vor-
tex core25,26 is very small (about 10−3 K). In order to
increase the robustness of the Majorana state, Ref. 21
proposed to make a hole in the superconducting layer to
pin the vortex and to remove the CdGM levels. These
ideas were further elaborated in Ref. 27.
Majorana fermions could also localize near boundaries

of the superconducting region. However, such states
have attracted much less attention than the Majorana
fermions near the vortex core. In Refs. 3,28 it has been
shown that the edge Majorana fermion localizes at the
interface between p-wave superconductor and a topologi-
cally trivial insulator if odd number of vortices penetrates
superconductor. Edge Majorana modes were studied the-
oretically29 in a finite-size heterostructure made of a SC,
a ferromagnetic insulator, and semiconductor with strong
spin-orbit coupling. It has been argued in Refs. 30,31
that Majorana fermions can arise at the edge of a semi-
finite SC placed on the surface of a topological insulator
in a magnetic field.
Significant progress with making superconducting is-

lands on the surface of insulators or metals has been
achieved in recent years. Observations of vortices and
multivortices in the Pb superconducting islands37–39 and
regular structures of the Nb superconducting islands40

have been reported. These systems are of special inter-
est for possible implementation of the Majorana fermion
surface codes for topological quantum computations41,42.
In our previous works21,27 we investigated the Majo-

rana fermion in the core of the vortex pinned by a hollow
channel in s-wave superconductor placed on the top of
topological insulator. This channel removes CdGM lev-
els in the core of the vortex in s-wave superconductor
making Majorana fermion robust21.
In this paper we consider different system: thin cylin-
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FIG. 1: (Color online) Proposed experimental setup for the
detection of edge Majorana fermions. A superconducting
(SC) island of radius R (blue) is placed on top of a topological
insulator (yellow). An external magnetic field is perpendic-
ular to the interface. The black circle at the center of the
superconducting island represents a vortex.

drical s-wave superconducting island of radius R placed
on the infinite surface of a topological insulator in a trans-
verse magnetic field B (see Fig. 1). If the island traps a
vortex, two Majorana fermions are induced, one at the
vortex core in the center of the island and the other at
the island edge.
This paper studies the Majorana states localized near

the edge of a superconducting island. Edge Majorana
states exist only if the vorticity l threading the island is
odd, and disappear if l is even or zero. The energy split-
ting between edge and vortex core Majorana fermions
decays exponentially, when increasing the radius of the
island. We will demonstrate that the edge Majorana
fermion is robust: the gap between the Majorana fermion
state and the edge excited state is of the order of the in-
duced superconducting gap. This makes the edge Majo-
rana state promising for experimental observation, and,
possibly, manipulation.
The presentation below is organized as follows. In

Sec. II we derive the Bogolyubov-de Gennes equations
for our system. In Sec. III we investigate modes with
zero energy for different number of vortices in the island.
In Sec. IV the system with a single vortex is considered.
In Sec. V the obtained results are discussed, and conclu-
sions are presented.

II. BOGOLYUBOV-DE GENNES EQUATIONS

A. Microscopic model

Our system is shown in Fig. 1. It consists of a thin
cylindrical superconducting island of radius R placed on
the surface of a topological insulator. The entire het-
erostructure is in a magnetic field perpendicular to the
topological insulator surface.
To study the microscopic properties of such a system

we will use the formalism of Ref. 19. The Hamiltonian
can be written as

H = HTI +HSC + T + T †, (1)

where HTI describes the topological insulator (TI), HSC

describes the s-wave superconductor (SC). The term T
accounts for the tunneling from the TI to the SC, while
T † represents the opposite processes: tunneling from the
SC to the TI. The corresponding Bogolyubov-de Gennes
equations are (after setting h̄ = e = c = 1)

HTIψTI + T †ψSC = ωψTI, (2)

HSCψSC + TψTI = ωψSC. (3)

The terms HTI, and HSC can be written as 4×4 matrices
in the Nambu basis

HTI = [iv(σ · ∇r)− U(r)]τz + v(σ ·A)τ0,

HSC = −
[

EF+
(∇R − iAτz)

2

2m

]

τz (4)

+ ∆′(R)τx+∆′′(R)τy ,

and T = τzT (R− r). In these equations, R = (x, y, z)
is a point in the bulk of the SC, r = (x, y) is a point
on the surface of the TI, σj , τj are the spin and charge
Pauli matrices, ∆′,∆′′ are the real and imaginary parts
of the order parameter in the s-wave superconductor, v
is the Fermi velocity of the electrons on the surface of
the TI, EF is the Fermi energy in the SC, U(r) is a gate
voltage applied to control the Fermi level in the TI, and
A is the vector potential of the magnetic field. The wave
functions ψTI, SC are four-component spinors

ψTI, SC = [u↑, u↓, v↓,−v↑]T . (5)

It is easy to check that H satisfies the following charge-
conjugation symmetry condition

{H,Ξ} = 0,

Ξ = σyτyK, (6)

where K is the complex conjugation operator. Conse-
quently, for every eigenstate ψ of the Hamiltonian H
with a non-zero eigenenergy ω 6= 0, an eigenstate Ξψ
with eigenenergy −ω exists. The latter symmetry is ro-
bust: small disorder does not destroy this property.

B. Effective Hamiltonian

In this subsection we will derive the effective descrip-
tion for the wave function of the electrons on the surface
of the TI. To this end we exclude ψSC from Eqs. (2)
and (3) to obtain

(HTI +Σ)ψTI = ωψTI, (7)

Σ = T †(ω −HSC)
−1T. (8)

We are interested in the bound states with energies lying
within the superconducting energy gap, |ω| < |∆|. In this
case, the self-energy matrix Σ was calculated in Refs. 19,
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21. For the low-lying electron states with wave vectors k
near the Dirac cone apex M in the Brillouin zone of the
TI, k ≈ M, the self-energy is equal to

ΣM,ω = λ
∆τx − ωτ0
√

|∆|2 − ω2
− δUτz , (9)

where τ0 is the 2 × 2 unit matrix. This expression for
Σ is independent of A. Such an approximation is valid
for weak magnetic fields, which is assumed to be the case
everywhere in this paper. The parameter λ has the di-
mension of energy. It characterizes the transparency of
the interface between the TI and the SC: when λ ∼ EF

(λ ≪ EF), the barrier is transparent (non-transparent).
The value δU = O(λ) is the shift of the chemical poten-
tial of the TI due to doping by the carriers coming from
the SC.
Using Eq. (9) we can rewrite the Bogolyubov-de Gen-

nes equation (7) in the form

HeffψTI = ωψTI, (10)

where the effective Hamiltonian Heff equals to

Heff = [iṽ(ω)(σ · ∇r)− Ũ(ω)]τz + ṽ(ω)(σ ·A)τ0

+ ∆̃′(ω)τx + ∆̃′′(ω)τy . (11)

The renormalized parameters of the effective Hamilto-
nian are

ṽ(ω) =
v
√

|∆|2 − ω2

√

|∆|2 − ω2 + λ
, (12)

Ũ(ω) =
(U + δU)

√

|∆|2 − ω2

√

|∆|2 − ω2 + λ
, (13)

∆̃(ω) =
∆λ

√

|∆|2 − ω2 + λ
. (14)

It is also convenient to define the renormalized coherence
length:

ξ̃(ω) =
v
√

|∆|2 − ω2

∆λ
= ξ

√

|∆|2 − ω2

λ
. (15)

If the Hamiltonian parameters are independent of r,
then the eigenstates of the effective Hamiltonian obey the
inequality |ω| > ∆TI, where the quantity ∆TI satisfies the
following equation:

∆TI

λ
=

√

∆−∆TI

∆+∆TI
. (16)

The physical meaning of ∆TI is the proximity-induced
superconducting gap on the surface of the TI.

C. Equations for the effective wave function

Further, we assume that the island radius R is much
larger than the SC coherence length ξSC .

R≫ ξSC (17)

We are looking for solutions of Eq. (10) which correspond
to bound states. The energies ω of such eigenstates are
smaller than the proximity-induced gap ∆TI, in Eq. (16).
If an Abrikosov vortex with vorticity l is trapped in the
island, the order parameter ∆(r) can be expressed as

∆(r) = |∆(r)| exp (−ilθ) , (18)

where r and θ are the polar coordinates, and |∆(r)| →
|∆|, when r ≫ ξ. If the island radius R is large, R ≫ ξ̃,
|∆(r)| can be approximated as

|∆(r)| = |∆|Θ(R− r), (19)

where Θ(r) is the Heaviside step function. In the geom-
etry shown in Fig. 1, the vector potential can be written
as Az = Ar = 0, Aθ = A(r). This choice of the vector
potential corresponds to the magnetic field

Hz =
1

r

d(rA)

dr
. (20)

Let us introduce a spinor F

ψTI = exp[−iθ(lτz − σz)/2 + iµθ]Fµ(r),

Fµ = (fµ
1 , f

µ
2 , f

µ
3 ,−fµ

4 )
T . (21)

Here µ is the total angular momentum of an eigenstate.
The transformation Eq. (21) is well-defined only when

j = µ+
l + 1

2
(22)

is an integer. In other words, when the number of vortices
l is odd (even), the angular momentum µ is an integer
(half-integer).
Substituting Eqs. (11), (14), and (21) in Eq. (10) we

derive

iṽ

(

d

dr
+
2µ+ l + 1

2r
−A(r)

)

fµ
2 +|∆̃|fµ

3 −(ω+Ũ)fµ
1=0,

iṽ

(

d

dr
− 2µ+ l − 1

2r
+A(r)

)

fµ
1 −|∆̃|fµ

4 −(ω+Ũ)fµ
2=0,

iṽ

(

d

dr
+
2µ− l + 1

2r
+A(r)

)

fµ
4 +|∆̃|fµ

1 −(ω−Ũ)fµ
3=0, (23)

iṽ

(

d

dr
− 2µ− l − 1

2r
−A(r)

)

fµ
3 −|∆̃|fµ

2 −(ω−Ũ)fµ
4=0.

Equations (23) have the following symmetries: (i) µ↔
−µ, f4 ↔ if1, f3 ↔ if2, Ũ ↔ −Ũ , and (ii) A(r) ↔
−A(r), f1 ↔ f2, f3 ↔ −f4, l ↔ −l, µ↔ −µ. Therefore,
we can consider further only µ,A(r) ≥ 0.
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III. ZERO-ENERGY SOLUTIONS

If ω, Ũ = 0, the system of Eqs. (23) decouples into two
sets of equations

iṽ

(

d

dr
− 2µ+ l − 1

2r
+A(r)

)

fµ
1 − |∆̃|fµ

4 = 0,

iṽ

(

d

dr
+

2µ− l + 1

2r
+A(r)

)

fµ
4 + |∆̃|fµ

1 = 0, (24)

and

iṽ

(

d

dr
+

2µ+ l + 1

2r
−A(r)

)

fµ
2 + |∆̃|fµ

3 = 0,

iṽ

(

d

dr
− 2µ− l − 1

2r
−A(r)

)

fµ
3 − |∆̃|fµ

2 = 0. (25)

The parameter |∆̃| is zero outside the SC island area ac-
cording to Eqs. (19) and (14). It is also zero at the center
of the vortex core. In this paper we are mainly interested
in the states localized at the edge of the island and the
details related to the states in the vortex core are not of
importance here. Then, for simplicity, we approximate
the vortex core of the vortex with vorticity l by a cylin-
drical hole with a radius about the coherence length ξ̃.

A. System without vortices

Let us assume first that there are no vortices in the
island. The magnetic field localizes a zero mode near the
edge of the island. However, we show that this mode is
not a robust Majorana fermion.

In the absence of vortices, the SC order parameter ∆ is
non-zero in the SC island and the solutions of Eqs. (24)
and (25) which are regular at r = 0 can be expressed in
terms of the modified Bessel functions Im(x)

f1=C1 exp



−
r
∫

0

A(r′)dr′



Iµ−1/2

(

λr

v

)

,

f4=−iC1 exp



−
r
∫

0

A(r′)dr′



Iµ+1/2

(

λr

v

)

,

f2=C2 exp





r
∫

0

A(r′)dr′



Iµ+1/2

(

λr

v

)

,

f3= iC2 exp





r
∫

0

A(r′)dr′



Iµ−1/2

(

λr

v

)

. (26)

Outside the island, where ∆̃ = 0, the solution of Eqs.

(24) and (25) becomes

f1 = A1 exp



−
r
∫

0

A(r′)dr′



 rµ−
1
2 ,

f4 = A4 exp



−
r
∫

0

A(r′)dr′



 r−
1
2−µ,

f2 = A2 exp





r
∫

0

A(r′)dr′



 r−µ− 1
2 ,

f3 = A3 exp





r
∫

0

A(r′)dr′



 rµ−
1
2 . (27)

The functions f2 and f3 diverge when r → +∞; then,
A2 = A3 = 0 or f2 = f3 = 0. Matching solutions at
r = R, one completes the derivation of the wave function.

These eigenfunctions correspond to the ω = 0 Landau
level, whose states are weakly corrected to account for
the presence of the superconducting island. They are
not Majorana fermion states, and a weak perturbation
of the Hamiltonian may shift their eigenenergies away
from zero value.

B. System with vortices

In this subsection we study a system with vortices.
Since we are mainly interested in edge states and a rel-
atively small SC island, we assume that the magnetic
flux captured in the SC island forms a multivortex with
vorticity l and further assume that the SC order param-
eter in this vortex behaves like a Heaviside step func-
tion ∆̃(r) = ∆̃Θ(r − ξ̃). This simplification neglects
the CdGM states inside the superconductor, and thus, it
can significantly affect the Majorana state localized near
the vortex core. However, the edge-localized Majorana
fermion is fairly insensitive to the details at the center of
the island, because its wave function decays quickly away
from the edge.

Under these assumptions, the solutions of Eqs. (24)
and (25) outside of the island r > R, and inside of the

vortex core r < ξ̃, can be expressed as

f1 = C1 exp



−
r
∫

0

A(r′)dr′



 rµ+
l−1
2 ,

f4 = C4 exp



−
r
∫

0

A(r′)dr′



 r
l−1
2 −µ, (28)
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and

f2 = C2 exp





r
∫

0

A(r′)dr′



 r−µ− l+1
2 ,

f3 = C3 exp





r
∫

0

A(r′)dr′



 rµ−
l+1
2 ,

where Ci are constants (for r < ξ̃ these constants may be
different from the constants at r > R). The functions f2
and f3 diverge when r → ∞, and also f2 diverges when
r → 0. Then, as it follows from Eqs. (25), a regular
solution exists only if f2 = f3 = 0 in the whole space.
Inside the SC island a wave function can be expressed

as a sum of two distinctly dissimilar solutions of Eq. (24).
A solution of the first type is localized near the vortex
core:

f1=C
′
2 exp



−
r
∫

0

A(r′)dr′



 r
l
2Kµ−1/2

(

λr

v

)

,

f4= iC
′
2 exp



−
r
∫

0

A(r′)dr′



 r
l
2Kµ+1/2

(

λr

v

)

. (29)

Here C′
1,2 are constants, andKn(x) is the modified Bessel

function. Since Kn diverges at x = 0, the function f4 can
be normalized only if µ < (l+1)/2. Using the symmetry
between positive and negative µ, one can generalize this
inequality for arbitrary µ:

|µ| < l + 1

2
. (30)

If µ violates this condition, then Eq. (29) does not define
a valid eigenstate.
Unlike Eq. (29), which describes eigenfunctions local-

ized at r = 0, a solution of the second type grows toward
the edge of the island: for r < R one can write

f1=C
′
1 exp



−
r
∫

0

A(r′)dr′



 r
l
2 Iµ−1/2

(

λr

v

)

,

f4=−iC′
1 exp



−
r
∫

0

A(r′)dr′



 r
l
2 Iµ+1/2

(

λr

v

)

, (31)

where In is the modified Bessel function of the second
kind. Outside the island (r > R) the eigenfunction is
defined by Eq. (28). Most of the wave function weight
is localized away from the island center. The value of r,
where the weight is concentrated, grows as |µ| increases.
In the limit |µ| → ∞, the wave function is virtually un-
affected by the presence of a superconducting island at
the origin. Thus, for large |µ| the eigenstates described
by Eq. (31) become indistinguishable from the states be-
longing to the ω = 0 Landau level of the Dirac-Weyl
electrons.

Majorana fermion states correspond to µ = 0 solutions.
In finite systems these states appear in pairs. In our
case, one Majorana fermion is localized near the origin
and another is localized at the edge of the island. Inside
the island their wave functions are given by Eq. (29) and
Eq. (31). Outside the island, Eq. (28) must be used.

To demonstrate the “Majorana nature” of the µ = 0
solutions, let us calculate the first-order corrections to
the energies of the states Eq. (31) caused by a non-zero,

but small, Ũ :

δωlµ = ŨClµ2πG, (32)

G=

∫

r>R

drrlRe
−2

r∫

0

A(r′)dr′
(

[ r

R

]2µ

−
[ r

R

]−2µ
)

+

∫

r<ξ

drrlRe
−2

r∫

0

A(r′)dr′
(

[

r

ξ

]2µ

−
[

r

ξ

]−2µ
)

+

∫

ξ<r<R

drrl+1e
−2

r∫

0

A(r′)dr′
(

I2µ−1/2

(

λr
v

)

I2µ−1/2

(

λR
v

)−
I2µ+1/2

(

λr
v

)

I2µ+1/2

(

λR
v

)

)

,

where Clµ are wave function normalization constants.
For states localized near the vortex core of the vortex,
we have a similar result with the modified Bessel func-
tions Iµ±1/2 replaced by the modified Bessel functions
Kµ±1/2.

It follows from Eq. (32) that, if µ = 0, the correc-
tion vanishes identically. Moreover, one can demonstrate
that the µ = 0 states are invariant under the action of
the charge-conjugation operator Ξ, Eq. (6). Thus, these
eigenstates are topologically-protected mixtures of elec-
tron and hole states.

For all other values of µ this correction is nonzero.
Thus, the zero-energy states with µ 6= 0 are not
topologically-protected from the local perturbations of
the chemical potential. In particular, the robustness of
the zero-energy modes against variations of the gate volt-
age may be used to distinguish Majorana states from
conventional Dirac fermions.

Finally, we would like to remind that, since µ is an
integer only for odd l, see Eq. (22), we must have an odd
number of vortices on the island to generate Majorana
fermion states.

IV. SINGLE VORTEX

In this section we study a system with a single vor-
tex, l = 1, which is the simplest in terms of a possible
experimental realization. We start with the case Ũ = 0.
According to Eqs. (31) the wave function of the zero-
energy state with µ = 0 localized near the vortex core
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is

ψv = Bve
−iπ4 e

−
r∫

0

A(r′)dr′

e
−

r∫

0

∆̃(r′)
ṽ

dr′







i
0
0
−1






, (33)

where we used the explicit expression for the modified
Bessel function of half-integer order. For the edge zero-
energy eigenstate, the wave function is [see Eqs. (29)]

ψe = Bee
−iπ4 e

−
r∫

0

A(r′)dr′

e

r∫

0

∆̃(r′)
ṽ

dr′







1
0
0
−i






. (34)

Here Bv and Be are normalizing coefficients, which we
choose real. Applying the particle-hole-conjugation op-
erator Ξ, we obtain that Ξψv(e) = ψv(e) by direct calcu-
lations. Hence, ψv and ψe are Majorana fermion wave
functions.

A. Zero-mode splitting

The hybridization between the vortex core and the
edge Majorana fermions can, in general, split the degen-
erate zero level. The splitting is zero in the case Ũ = 0
(see also Ref. 14). If Ũ 6= 0, the degeneracy is lifted, and
Majorana fermions at the vortex core and at the edge
form the two usual Dirac states. The wave functions
of these states can be written as ψ± = (ψv ∓ iψe)/2.
These functions satisfy the particle-hole symmetry of the
Bogolyubov-de Gennes equations, Ξψ+ = ψ−. If we de-
note the splitting energy as 2E+, then, the wave function
ψ+ corresponds to E+, while ψ− corresponds to −E+.

Let us assume that Ũ is small. The first-order contribu-
tion to the energy splitting becomes

E+=Ũ〈ψ+|τz |ψ+〉. (35)

It is reasonable to assume that the applied magnetic
field is smaller than the upper critical field, that is,
lb ≫ ξ̃, where lb is the magnetic length, which satisfies
lb = B−1/2, in the units used here. In this case we can
neglect the effect of the magnetic field on the wave func-
tions near the vortex core.25 Further, if the SC island is
not large:

R ≪ lb, (36)

then, using Eqs. (33), (34) and (35) we derive an estimate
for the energy shift E+ in the form

E+ ∝ − Ũ lb

ξ̃(0)
exp

[

−R/ξ̃(0)
]

. (37)

One can now see that Majorana fermion states are robust
against chemical potential variations if the radius of the
SC island is large, in the sense that

R ≫ ξ̃(0) =
v

λ
. (38)

This condition suggests that the growth of the tunneling
parameter λ improves the isolation of the two Majorana
fermions from each other, which is a desirable property
for reliable Majorana state detection.

B. Excited states

Now we calculate the energies of the excited states
localized near the SC island edge, assuming that both
Eq. (36) and Eq. (38) are valid, and Ũ = 0. It is implied
for simplicity that the magnetic field penetrates the is-
land uniformly, so, A(r) = r/2l2b . In this paper, the
states localized near the vortex core21,26,27 are not dis-
cussed, because, when the inequality Eq. (38) is valid,
the vortex core states do not mix with the edge states,
and may be neglected.
When ω 6= 0, Ũ = 0, l = 1, and ∆̃ = 0, the system

Eq. (23) decouples. As a result, for r > R we have two
independent systems of equations: one for the electron
components f1,2, another for the hole component f3,4:

iṽ

(

d

dr
+
µ+ 1

r
− r

2l2b

)

fµ
2−ωfµ

1 = 0,

iṽ

(

d

dr
−µ

r
+

r

2l2b

)

fµ
1 −ωfµ

2 = 0,

iṽ

(

d

dr
+
µ

r
+

r

2l2b

)

fµ
4 −ωfµ

3 = 0, (39)

iṽ

(

d

dr
−µ− 1

r
− r

2l2b

)

fµ
3 −ωfµ

4 = 0.

Note that after the transformation fµ
4 → if−µ

1 and

fµ
3 → if−µ

2 , the first two equations and the second two
equations exchange places. Thus, we can solve only the
equations for f1,2. Substituting f2, one derives for f1:

d2fµ
1

dr2
+
1

r

d fµ
1

dr
+fµ

1

(

µ+ 1

l2b
−µ2

r2
− r2

4l4b
+
ω2

ṽ2

)

=0. (40)

Solutions of the latter equation can be expressed in terms
of the Tricomi confluent hypergeometric functions, tra-
ditionally denoted32 as U(a, b, z) (do not confuse it with
the shift of the chemical potential U = U(r), which is a
function of a single variable). As a result we have

fµ
1 = iArµ exp

(

− r2

4l2b

)

U

(

−ω
2l2b
2ṽ2

, µ+ 1,
r2

2l2b

)

,

fµ
2 =

1

2
Arµ exp

(

− r2

4l2b

)

U

(

1− ω2l2b
2ṽ2

, µ+ 2,
r2

2l2b

)

. (41)

If r ≫ l2bω/ṽ, these wave functions decay as follows:

fµ
1 = iC exp

(

− r2

4l2b

)

, fµ
2 = C

l2bω

rṽ
exp

(

− r2

4l2b

)

; (42)

consequently, they are normalizable. The second linear-
independent solution to Eq. (40) diverges when r → ∞,
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thus, it is not included. Near the edge (r ≈ R) we can
approximate the functions in Eq. (41) as

fµ
1 = iCJµ

(ωr

v

)

, fµ
2 = CJµ+1

(ωr

v

)

, (43)

if the condition lbω/ṽ ≫ 1 is satisfied. Later, we will show
that this condition is similar to the initial assumption
lb ≫ R. The asymptotic behavior given by Eq. (43) may
be guessed from Eq. (40). Indeed, near the island edge,
r >∼ R, the terms r2/(4l4b) and (µ+1)/l2b are much smaller
than the remaining two, and may be omitted. After this
simplification, equation (40) transforms into the Bessel
equation.
In the region r < R, we can neglect the effect of the

vector potential since R≪ lb. We introduce the following
linear combinations21

Xµ
1 = ifµ

1 + fµ
4 , Xµ

2 = ifµ
1 − fµ

4 ,

Y µ
1 = ifµ

2 + fµ
3 , Y µ

2 = ifµ
2 − fµ

3 , (44)

where X1,2 obey the differential equations:

d2Xµ
1

dr2
+

1

r

dXµ
1

dr
−
(

1

[ζ(ω)]2
+

∆̃

ṽr
− µ2

r2

)

Xµ
1 = 0,

d2Xµ
2

dr2
+

1

r

dXµ
2

dr
−
(

1

[ζ(ω)]2
− ∆̃

ṽr
+
µ2

r2

)

Xµ
2 = 0, (45)

where ζ(ω) =
ṽ

√

|∆̃|2 − ω2

, (46)

and Y1,2 can be found according to the relations:

Y µ
1 =

iṽ

ω

(

dXµ
1

dr
− ∆̃

ṽ
Xµ

1 − µ

r
Xµ

2

)

,

Y µ
2 =

iṽ

ω

(

dXµ
2

dr
+

∆̃

ṽ
Xµ

2 − µ

r
Xµ

1

)

. (47)

As it follows from Eqs. (23), which are regular at r = 0,
the solutions for X1,2 can be expressed in terms of the
Whittaker functions32

Xµ
1,2 =

C1,2√
r
Mα1,2,µ

(

2r

ζ(ω)

)

. (48)

where α1,2 = ∓ |∆̃|

2
√

|∆̃|2 − ω2

, (49)

Matching functions fi at r = R and using asymptotic
Eqs. (43), we obtain a transcendental equation for the
eigenenergies ω of the sub-gap excited states:

(

M ′
α1,µ

ζMα1,µ
+

M ′
α2,µ

ζMα2,µ
− µ+ 1/2

R
+
ωJµ+1

ṽJµ

)

×
(

M ′
α1,µ

ζMα1,µ
+

M ′
α2,µ

ζMα2,µ
+
µ− 1/2

R
− ωJµ−1

ṽJµ

)

=

=

(

M ′
α1,µ

ζMα1,µ
−

M ′
α2,µ

ζMα2,µ
− ∆̃

ṽ

)2

. (50)
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FIG. 2: (Color online) Normalized energy of the first ex-
cited state (µ = 1 and n = 0) as a function of the normal-
ized island radius R/ξ for different barrier transparencies λ,
BR2 = R2/l2b ≪ 1, and according to Eq. (16), λ = 20∆
corresponds to ∆TI ≈ ∆, ∆TI ≈ 0.75∆, if λ = 2∆; and
∆TI ≈ 0.54∆, if λ = ∆.

FIG. 3: (Color online) Normalized energy split E+, Eq. (37),
between edge and vortex Majorana fermions as a function of
the normalized island radius R/ξ for different barrier trans-
parencies λ = ∆ and 2∆, shift of the Fermi level U + δU =
0.1∆, and different magnetic fields

√
BR = R/lb = 0.003

(black) solid line, R/lb = 0.01 (red) dashed line, and R/lb =
0.03 (olive) dash-dotted line.

In this expression the Whittaker functions Mα,µ(z) are
taken at z = 2R/ζ(ω), the Bessel functions Jα(z) at
z = ωR/v, and the prime means differentiation over z:
M ′

α,µ(z) = dMα,µ(z)/dz. An equation similar to Eq. (50)
was derived in Ref. 21, and later corrected in Ref. 27.

Each solution of Eq. (50) for the excited states can
be characterized by a pair of quantum numbers: orbital
number µ and principal number n. A similar classifica-
tion scheme was used in Refs. 21,25. Our numerical anal-
ysis shows that the lowest excited state, localized near the
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edge, corresponds to µ = 1 and n = 0. The energy of
the first excited state ω01 as a function of R is plotted
in Fig. 2 for different values of the barrier transparencies
λ/∆.
As one can see from this figure, the function ω01(R) de-

creases when the island radius R increases. This function
has a plateau at low R when the excited state approaches
the edge of the continuous spectrum, that is, when ω01

is close to ∆TI. The numerical results at large R/ξ and
λ >∼ ∆ can be approximated by the ‘particle-in-the-box’
formula

ω01 ≃ 3π

4
∆

(

ξ

R

)

≃ 2.35
v

R
. (51)

It follows from the results shown in Fig. 2 that the energy
gap between the first excited state and the Majorana
fermion is of the order of the energy gap ∆ in the SC if
λ >∼ ∆ and R ≤ 10ξ. Thus, it is not necessary to have
an ideal barrier between the TI and SC for a reasonable
robustness of the Majorana fermion. For example, if the
island radius is R = 7ξ and λ = 2∆, we obtain ω10 ≃
0.3∆, which is much larger than the CdGM level spacing
∼ ∆2/EF for the vortex core states25 (here EF is the
Fermi level of the SC). The SC island radius R ∼ 5ξ is
optimal for the stability of the Majorana state if λ >∼ ∆.
In Fig. 3 we show the dependence of the energy

split E+, Eq. (37), between edge and vortex Majorana
fermions as a function of the island radius R/ξ for dif-
ferent barrier transparencies and magnetic fields. Com-
parison of the results shown in Figs. 2 and 3 demon-
strates that the splitting between two Majorana states is
small (E+ ≪ ∆) and the Majorana state is rather stable
(ω01 ≈ 0.3− 0.4∆) under realistic values of parameters.

V. DISCUSSION

Below we discuss possible generalizations of our con-
clusions beyond the constrains assumed in the previous
sections, as well as connections of our results to that of
other workers.
We study the Majorana fermion near the edge of the

s-superconductor island on the top of the topological in-
sulator. In our case, the edge is a boundary between
the 2D proximity-induced superconductivity and gapless
surface of the topological insulator.
One of the important parameters of the system studied

is the island size. The applied magnetic field induces a
vortex in the SC island and localizes a Majorana state
near the island edge. However, if the island radius is
comparable to the length scale ξ̃(0) = v/λ or ξSC , the
stability of the Majorana state deteriorates: first, due to
the interaction of the edge and core Majorana fermions
and, second, due to tunneling of the CdGM excited states
to the edge. Therefore, in a small island there arises
a rather peculiar picture of the CdGM states.33 Thus,
the condition (38) is necessary for the existence of well-
defined Majorana fermions in the system.

An island of large radius may affect the distribution of
the magnetic field in its vicinity. For our calculations we
assumed that the magnetic field is uniform. This is true if
R is much smaller than the effective London penetration
depth λeff in the SC island: R ≪ λLeff. However, even
if this condition is violated, our results survive, provided
that the magnetic field is not too strong

BR2 = R2/l2b ≪ 1, (52)

that is, the magnetic flux through the area of the island
is smaller than the flux quantum.
The latter inequality is the condition ensuring the va-

lidity of our results. The main non-perturbative effect of
the magnetic field is the stabilization of a vortex in the
island, while the inhomogeneity of the magnetic field in
the range r ≪ lb may be studied perturbatively. Indeed,
the generation of Majorana states at the vortex core and
the edge depends on the parity of the vorticity quantum
l, and is completely unaffected by the details of the mag-
netic field distribution.
Moreover, it can be shown that the relative correc-

tion to the energy of the first excited state due to total
screening of the magnetic field from the interior of the
island is of the order of Rξ̃/l2b . To evaluate such a cor-
rection δω01, we assume that the magnetic field vanishes
for r < R. Then, following the procedure presented in
the previous section we find

δω01 =
ṽ

2l2b

R
∫

0

2πr2dr ψ†iσyψ

∞
∫

0

2πrdr ψ†ψ

< ∆̃

(

Rξ̃

l2b

)2

(53)

∼ ω01
R2

l2b

ξ̃

R
≪ ω01,

if the conditions Eq. 52 and λ >∼ ∆ are valid. For a large

island R≫ ξ̃, this correction to the energy is small even
if the magnetic field is quite strong R ∼ lb.
The case of stronger magnetic field or larger SC is-

land, R/lb ≫ 1, requires a separate consideration. How-
ever, as before, Majorana fermion may exist only when
the island hosts a vortex. This statement is quite natu-
ral since the vorticity affects the quantization condition
Eq. (22) of µ. As a result, Majorana fermions can exist
only if the number of vortices is odd34. In addition, for
each Majorana fermion, its partner must exist because
the fermion parity must be conserved. In the case of a
singly-connected SC island the only possibility is to have
one Majorana fermion near the island edge and another
Majorana fermion near the vortex core, because two Ma-
jorana fermions located in the same edge form a Dirac
fermion.
In Refs. 30,31 the authors consider a semi-finite SC is-

land on top of a TI in a transverse magnetic field. The
Majorana fermion is delocalized at the edge between the
SC and the TI. In such a geometry, the condition of
single-valuedness of the wave functions Eq. (22) becomes
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a momentum quantization rule. If momentum quantiza-
tion is ignored, then the Majorana fermion can exist at
the edge of the SC even in the case of zero vorticity. This
is just an unphysical artifact of using an infinite sample.

One of the major driving forces behind the develop-
ment of Majorana solid state research is the possibility of
performing topological quantum computation. To be us-
able in such a setup, the Majorana fermion must be well
separated from non-topological excitations. We demon-
strated that the energy of the first excited state localized
at the edge could be as large as a fraction of the super-
conducting gap, see Fig. 2. The time of an elementary
braiding operation must be much less than the decoher-
ence time9 caused by the hybridization of the edge and
vortex Majorana fermions. In our system, such decoher-
ence time increases exponentially with the radius of the
island, see Eq. (37).

In addition to the excitations pinned at the island
edge, there are non-Majorana states localized at r > R.
These are the Landau levels which we briefly discussed in
Sec. III B. Such states with large values of µ are pushed
away from the island by the centrifugal force. As a conse-
quence, they cannot affect the Majorana state. At small
µ, however, their wave functions can reach the island
edge. Fortunately, the Landau levels are separated from
each other by a gap of the order of ∆B ∼ v/lB. Thus,
at not-too-weak magnetic fields and finite U these states
are shifted from the zero energy by an amount ∼ ∆B.

Scanning tunneling microscopy (STM) might be a use-
ful tool for investigating Majorana fermions35,36. In STM
experiments, a Majorana fermion could manifest itself as
a robust zero-bias peak. A detailed analysis of the STM
spectroscopy of the edge Majorana fermions in the pres-
ence of vortices is done in Ref. 31. The stability of the
zero-bias peak should be checked against variations of the
chemical potential or the gate voltage, to distinguish the
Majorana fermions from Dirac fermions, as discussed in
Section III.

When the magnetic field is varied, the strength of the
zero-bias conductance on the island edge should oscillate
when the number of vortices changes. These oscillations
could be an additional proof of the existence of Majo-
rana fermions. Observations of several vortices and mul-
tivortices in superconducting Pb nano-islands were re-
ported.37,38 Thus, measuring zero-bias peak oscillations
as a function of the vorticity is a realizable experimen-
tal task. The coordinate dependence of |ψ|2 for the edge
and core Majorana states are shown in Fig. 4. The edge
Majorana fermion penetrates in the island at the dis-
tance ξ̃ and outside the island at the distance lb. With
the decrease of the magnetic field (and the growth of the
magnetic length) the peak value in |ψ|2 for the edge Ma-
jorana state decreases and if B → 0 the edge Majorana
fermion becomes delocalized. Since the density of states
is proportional to |ψ|2, such a behavior can be observed
as a zero-peak in STM measurement. Note, that the
STM measurement could also reveal the zero-peak split-
ting due to overlapping of the wavefunctions of the edge

FIG. 4: (Color online) The value |ψ|2, which is proportional
to the local density of states, as a function of radial position:
(red) dashed line for the vortex Majorana fermion and (blue)
dashed-dotted line for the edge Majorana fermion. The local
density of states may be measured by the STM. (In the figure
the value of |ψ|2 for the edge Majorana fermion is multiplied
by 100.) Solid line (green) line shows the proximity-induced
superconducting order parameter ∆(r)/∆0, which vanishes
when r > R, here ∆0 is the bulk value of ∆ and R = lb = 5ξ.

and vortex Majorana fermions in small islands R ∼ ξ̃
or due to the close localization of two superconducting
islands.

For numerical estimates, let us consider Tc = 10 K and
∆ = 1.76Tc ≈ 2 meV for a BCS-type superconductor.
Assuming that λ = 2∆ ≈ 4 meV, then, ∆ = ∆̃ and ξ =
2ξ̃. If we take the radius of the island R = 7ξ, then, the
energy of the first excited state becomes ω01 ≃ 0.3∆ ≃
5K. To evaluate the possible radius of the SC island we
should estimate the value of the coherence length ξ =
v/∆, which depends on the Fermi velocity on the surface
of the TI. In Ref. 43 it was reported that v = 5.0 ×
107 cm/s for the surface of Bi2Se3 in vacuum, then, ξ ≈
200 nm for the value of the gap chosen here. In Ref. 44 it
was obtained that v = 107 cm/s on the interface between
Bi2Te3 and a nanoribbon, and then, ξ ≈ 40 nm. If so,
then the appropriate value of R is of the order of several
hundred nm. However, it has been reported in Ref. 45
that the Fermi velocity on the surface of Bi2Te3 can have
a much lower value, v = 3 × 105 cm/s, and then, ξ ≈
1.2 nm and R could be of the order of several nm, which
might be of the order of or lower than the coherence
length ξSC in the bulk of the SC island. The case R <∼
ξSC is not optimal for the stability of the edge Majorana
fermion because CdGM states in the vortex core in the
bulk of the SC can affect the edge states.

To conclude, we studied the electronic properties of
a superconducting island in a magnetic field placed on
the surface of a topological insulator. Majorana states
arise only if a vortex with odd vorticity exists in the su-
perconducting island. Non-topological excitations in our
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structure are separated from the Majorana fermion by a
significant gap, provided that the parameters are suitably
chosen. A Majorana state may be detected in an STM
experiment as a zero-bias peak, which is stable against
variations of the gate voltage. The zero-bias conductance
should oscillate as a function of the magnetic field. We
here estimate the optimal parameters for the experimen-
tal study of Majorana fermions in our system.
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30 R. P. Tiwari, U. Zülicke, and C. Bruder, Majorana

Fermions from Landau Quantization in a Superconduc-

tor and Topological-Insulator Hybrid Structure, Phys. Rev.
Lett. 110, 186805 (2013).
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