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We propose a quantum electronic device based on a strained graphene nanoribbon. Mechanical
strain, internal exchange field and spin-orbit couplings (SOCs) have been exploited as principle
parameters to tune physical properties of the device. We predict a remarkable zero-field topological
quantum phase transition between the time-reversal-symmetry broken quantum spin Hall (QSH)
and quantum anomalous Hall (QAH) states, which was previously thought to take place only in
the presence of finite magnetic field. We illustrate as intrinsic SOC is tuned, how two different
helicity edge states located in the opposite edges of the nanoribbon exchange their locations. Our
results indicates that the pseudomagnetic field induced by the strain could be coupled to the spin
degrees of freedom through the SOC responsible for the stability of a QSH state. The controllability
of this zero-field phase transition with strength and direction of the strain is also demonstrated.
Our prediction offers a tempting prospect of strain, electric and magnetic manipulation of the QSH
effect.

PACS numbers: 73.22.Pr,73.43.Cd,75.50.Pp,61.48.Gh,77.65.Ly

I. INTRODUCTION

New classes of matter, such as quantum spin Hall
and quantum anomalous Hall states, have been the-
oretically predicted and experimentally observed in
topological insulators1–4, HgTe-CdTe quantum wells5–8,
graphene9–12 and beyond graphene systems: silicene13,14,
two-dimensional germanium13,15, and transition metal
dichalcogenides (TMDCs)16,17. Both the QSH and QAH
states possess topologically protected edge states at the
boundary, where the electron backscattering is forbidden,
offering a potential application to electronic devices to
transport current without dissipation1,5,16,18. However,
the QSH and QAH states are essentially two very differ-
ent states of matter. The QSH is characterized by a full
insulating gap in the bulk and helical gapless edge states
where opposite spin counter-propagate at each bound-
ary protected by time-reversal symmetry (TRS)5–10,13,18.
Whereas in the case of QAH, the helical gapless edge
states are replaced by chiral gapless edge states where
one of the spin channels is suppressed, because of broken
TRS1,2,19. Therefore, to realize topological a quantum
phase transition (QPT) from the QSH to QAH states,
what one needs is to apply a perturbation which can
break the TRS20. To reach this goal, an external mag-
netic field is a potential solution. From the application
point of view, however, an internal exchange field (EX)
which leads to the majority spin band being completely
filled while the minority spin band being empty, provides
a more attractive alternative way1,11,21,22. As known, the
strain-induced pseudomagnetic field BS leads to Landau
quantization and edges states that circulate in opposite
directions23,24. Thus, without breaking TRS, the strain
can induce the gap in the bulk and pseudo-helical gapless
edge states. Therefore, strain, EX and SOC can be used

as versatile tools to trigger topological QPTs21,25. This
motivates us to propose a remarkable way in which SOC
strength, uniaxial mechanical strain and EX, instead of
external magnetic field, are utilized to realize this QPT
in graphene nanoribbons (GNRs).

FIG. 1. Schematic representation of a zigzag GNR (ZGNR)
device, deposited on SiO2. Electrical current is controlled
between S and D using (VSD) bias. The uniaxial strain is
applied along either directions indicated by the arrows. The
Rashba SOC strength could be tuned by top (VT ) and bottom
(VG)voltages.

II. THEORETICAL MODEL

The system is schematically illustrated in Fig. 1 and
described by the following tight-binding Hamiltonian,

H =−
∑
〈i,j〉

ti,jc
†
i cj +

2i√
3
λso

∑
〈〈i,j〉〉

c†i~γ · (~dkj × ~dik)cj (1)

+ iλR
∑
〈i,j〉

c†i êz · (~γ × ~dij)cj +M
∑
i

c†iγzci.
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Here, c†i (ci) is the π-orbital creation (annihilation) oper-
ator for an electron on site i, where the spin index on the
electron operators has been suppressed, dij is a lattice
vector pointing from site j to site i, ~γ is a vector whose
components are the Pauli matrices and êz is a unit vec-
tor along the z-direction. <> (<<>>) runs over all the
nearest (next-nearest) neighbor sites. The first term is
the nearest neighbors hopping term on the honeycomb
lattice with hopping amplitude ti,j . The second term
denotes the intrinsic SOC with coupling strength λso

18,
predicted to be rather small in pristine carbon structures
due to the low atomic number of carbon atoms. How-
ever, recent experiments have demonstrated that it can
be enhanced up to three orders of magnitude, which is
about 17 meV by the proximity effect to TDMCs26, with
no drastic modification of the structure of the graphene,
or by adding adatoms27, such as covalently bonding hy-
drogen atoms to the graphene lattice28. The third one
represents the Rashba SOC with strength λR

29, whose
values ranging from 13-225 meV have been experimen-
tally reported on different setups30–32. The last term
corresponds to the EX with strength M , that might
be achieved by magnetic atom doping in the graphene
lattice33 or due to proximity effect by coupling the
graphene to ferromagnetic insulators34, such as a thin
film BiFeO3 for which an estimate of the exchange field
predicts a value of 70 meV35.

The uniaxial strain may be induced either by an
external stress applied to the GNR in a particular
direction36,37 or by a substrate due to deposition of
graphene on top of other materials38–40. The strain mod-
ified distances between carbon atoms are described by
~dsi = (I + ε)~di, with ~di (i=1, 2, 3) the unstrained vectors

for nearest-neighbors, I is the identity matrix and ε is
the strain tensor defined as41,

ε = ε

(
cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ
(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)
(2)

where ν = 0.165 is the Poisson’s ratio value known
for graphite41, θ is the direction of strain and ε is the
strain modulus. Then, the hopping term is affected
by the strain through ti,j = ti = te−3.37(d

s
i/a−1), with

t = 2.7eV41 being the unstrained hopping parameter and
a is the C-C distance. We define the direction as θ = 0
when it is parallel to the zigzag chain and θ = π/2, when
it is along armchair direction, as shown in Fig. 1. Before
proceeding to the GNR cases, we can make an analysis
in the bulk graphene by performing a Fourier transfor-
mation of Eq. 1, resulting in a 4× 4 Hamiltonian matrix

H(~k). In the low energy limit, we expand the momentum

at the vicinity of the Dirac points, ~k = ηK + ~q, where
K = (Kx,Ky) are the strain-shifted Dirac points ob-

tained by using the condition K ·
(
~ds1 − ~ds2

)
= cos−1(t23−

t21−t22/2t1t2), with η=±1 related to the two valleys42 and
~q = (qx, qy) is a small crystal momentum around ηK.
Notice that the permutation of dsi=1,2,3 and ti=1,2,3 also
satisfies the previous relation to obtain the strain-shifted
Dirac points. We can write the full Hamiltonian in the

basis of {ΨA(ηK, ↑),ΨA(ηK, ↓),ΨB(ηK, ↑),ΨB(ηK, ↓)}†
as

H(~q) =

(
tso +MSz f + tR
f∗ + t∗R −tso +MSz

)
, (3)

where f , tso and tR are the strain dressed hopping,
intrinsic- and Rashba- SOCs, respectively given by21

f = −{t1[1− i(1 + ε22)qy − iε12qx]e−i2ηθ1 (4)

+ t2[1 + i/2(ε12 +
√

3(1 + ε11))qx + i/2(
√

3ε21 + 1 + ε22))qy]eiηθ
+
3

+ t3[1 + i/2(ε12 −
√

3(1 + ε11))qx − i/2(
√

3ε21 − 1− ε22))qy]eiηθ
−
3 }1s,

tso = det [I + ε] ηλso{2 sin (2θ2)− 4 sin (θ2) cos (3θ1)}Sz,

tR = λR{[−i(1 + ε22)e−2iηθ1 − (
√

3ηε21 sin θ2 − i(1 + ε22) cos θ2)eiηθ1 ]Sx

+ [iε12e
−2iηθ1 + (

√
3η(1 + ε11) sin θ2 − iε12 cos θ2)eiηθ1 ]Sy}.

Here, εij are the matrix elements of the strain ten-
sor ε, 1s is the identity matrix, Sz is the Pauli
spin matrix in the real spin subspace, det [I + ε] =
(1−ε11)(1−ε22)−ε21ε12, θ1 = 1/2 [ε12Kx + (1 + ε22)Ky],

θ2 =
√

3/2 [(1 + ε11)Kx + ε21Ky] and θ±3 =

1/2
[
(ε12 ±

√
3(1 + ε11))Kx ± (

√
3ε21 ± 1± ε22)Ky

]
.

In a special case in which there is vanishing strain, i.e.,

ε→ 0 and (Kx,Ky) = (η4π/3
√

3, 0), with a set as unity
for simplicity, our expression of the Hamiltonian reduces
to the well-known and expected result, as obtained in
Ref. 11. The band gap at the shifted Dirac points, is
then given by:

∆K = ∆K′ = |−2φso+
√
M2 + |φR1|2+

√
M2 + |φR2|2|,

(5)
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where we have defined: φso = det [I + ε]λso{2 sin (2θ2)−
4 sin (θ2) cos (3θ1)}, φR1 = R1 − iR2 and φR2 = R∗1 −
iR∗2, with R1 = λR[−i(1 + ε22)e−2iηθ1 − (

√
3ηε21 sin θ2 −

i(1+ε22) cos θ2)eiηθ1 ] and R2 = λR[iε12e
−2iηθ1 +(

√
3η(1+

ε11) sin θ2 − iε12 cos θ2)eiηθ1 ]. For systems with mirror
symmetry, λR becomes zero. Then we obtain ∆K =
∆K′ = 2| − φso + M |, from which the critical exchange

field M
(s)
C = φso can be straightforwardly derived.

To identify the topological properties of the Dirac gap
and study the origin of QAH, we have also calculated the
Berry curvature Ωnxy(kx, ky) of the nth bands using the
Kubo formula

Ωnxy(kx, ky) = −
∑
n′ 6=n

2Im〈Ψnk|vx|Ψn′k〉〈Ψn′k|vy|Ψnk〉
(ωn′ − ωn)2

,

(6)
where ωn = En/~ with En the energy eigenvalue of the
nth band and vx(y) = ~−1∂H/∂kx(y) is the Fermi velocity

operator. The Chern number C can be calculated by43

C =
1

2π

∑
n

∫
BZ

d2kΩnxy, (7)

where the summation is taken over the occupied states
below the Fermi level and the integration is done over the
first Brillouin zone. As the Berry curvatures are highly
peaked around the Dirac points K and K′44, then a low
energy approximation can be used in the calculation of
the Chern number21,45. In the low energy, we calculate
the Chern number using the following equation,

C =
1

2π

∑
K,K′

∑
n=1,2

∫ ∞
−∞

dqxdqyΩnxy(qx, qy). (8)

In the above integral, a momentum cutoff is set around
each valley for which the Chern number converges.

III. RESULTS

Fig. 2 (a) plots energy band-gap ∆ between the con-
duction and valence bands of graphene as a function of
EX for different values of λR/λso. In the regime of λso
comparable to λR (λR < 2

√
3λso) and EX, the band gaps

at either K or K ′ for unstrained bulk graphene can be
well described by ∆K = ∆K′ = |

√
M2 + 9λ2R + M −

6
√

3λso|11. Hence, for a given λR, the gap first decreases
with increasing EX and then closes when EX reaches a

critical value, MC =
√
3λso

4

[
12−

(
λR
λso

)2]
, as shown by

circles in Fig. 2 (a)-(b). After that, as EX is further
increased, the gap reopens, accompanied by a change
of the Chern number C as demonstrated by the color-
change of the correspondent line3,11,19,21,35. Therefore, a
QPT between QSH to QAH occurs at a critical exchange
field MC . After thoroughly understanding the fate of
the TRS-broken QSH phase in zero-strain graphene, we
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FIG. 2. (a) Energy band gap ∆K (∆K = ∆K′) as a function
of exchange field M for graphene with four different values of
Rashba SOC strength λR/λso for ε=0 and (b) ∆K versus uni-
axial strain ε applied along θ = 0 and θ = π/2 for a strained
graphene with λR/λso = 2.59 and M/t = 0.023. QSH (blue
lines) and QAH (red lines) phases are characterized by Chern
numbers C=0 and 2, respectively. The circles indicate the
critical point at which the phase transition occurs.

move our attention to strained graphene. We found that
the band gap as well as the critical point are strongly
affected by the applied mechanical strain field. For in-
stance, in the absence of the Rashba SOC, the critical

value Ms
C of strained graphene is given by M

(s)
C = φso,

where φso is the strain-dressed intrinsic SOC strength.
In comparison with MC , we notice that the critical point
is shifted by strain, as shown in Fig. 2 (b). Notice that
at M = MC , highlighted by the red circle, is no longer
the value for the critical point for strained graphene, be-
cause no phase transition occurs at this point. Although
the strain widens the bulk gap monotonically in the case
of strain along the direction θ = π/2, the closing and
reopening phenomenon; and consequently a phase tran-
sition between QSH and QAH; is found for the strain
applied along θ = 0 direction.

If the mirror symmetry about the graphene-plane is
preserved, then the intrinsic SOC which opens gaps
around Dirac points is the only allowed spin dependent
term in the Hamiltonian. Otherwise, if the mirror sym-
metry is broken, then a Rashba term is allowed, which
mixes spin-up and spin-down states around the band
crossing points. Besides, Rashba SOC pushes the va-
lence band up and the conduction band down, reducing
the bulk gap. Following Ref. 19, we present our results
for the ZGNR in Fig. 3, that shows the effects of intrinsic-
and Rashba- SOCs and EX upon the band structure of
the ZGNR. Notice in Fig. 3 (a) that the interplay be-
tween intrinsic- and Rashba- SOCs, partially lifts the de-
generacies of both bulk- and edge- state, breaks particle-
hole symmetry and pushes the valence band up. In turn,
the presence of the EX breaks the TRS and lifts the
Kramer’s degeneracy of electron spin, pushing the spin-
up (spin-down) bands upward (downward), as shown in
Fig. 3 (b). In strong contrast with Fig. 3 (b), the
presence of Rashba SOC and EX induces coupling be-
tween edge and bulk states which significantly modifies
the group velocity of edge states, as shown in Fig. 3 (c).
The combined effects of intrinsic, Rashba SOCs and EX
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FIG. 3. Band structure of ZGNR with intrinsic- and Rashba-
SOC terms (a), intrinsic SOC and EX (b), Rashba SOC and
EX (c), and intrinsic- and Rashba- SOCs and EX (d). The
Fermi level is assumed to be above zero, as indicated by the
dashed horizontal line, and thus has four intersections with
the conduction bands. This gives rise to four edge currents
on the ribbon edges. The following parameters are used: (a)
λso = 0.06t, λR = 0.20t; (b) λso = 0.06t, M = 0.20t; (c)
λR = 0.20t, M = 0.20t; (d) λso = 0.06t, λR = 0.20t and
M = 0.20t for the ZGNR with width W = 48. The arrows
represent the major components of spin.

are shown in Fig. 3 (d), which are in agreement with re-
sults reported in Ref. 19 (see for instance Fig 2). Notice
that the Fermi level enters into the valence band and the
energies of some edge modes are smaller than the valence
band maximum.

The intrinsic SOC can be strongly enhanced by impu-
rity (adatom) coverage on the surface of graphene, that
produces strong lattice distortions46. In this context, one
may ask how the quantum phase transition in a graphene
ribbon changes as the intrinsic SOC is tuned. Follow-
ing the discussion of Ref. 19, the effects of strain fields
are shown in Fig. 4 (with a similar representation to
the one introduced in Ref. 19) with parameters W=48,
λR = 0.20t, M = 0.20t and uniaxial strain ε = 0.10 along
θ = 0. The left panel of Fig. 4 shows the effects of intrin-
sic SOC on the energy spectrum of a ZGNR. The Fermi
level is set at EF = 0.05t. The corresponding edge state
probability distributions across the width of the nanorib-
bon, for each of the four edge states indicated by A, B,
C and D are shown in the middle panel. Schematic di-
agrams of charge current distributions on the edges of
ZGNR are illustrated in the right panel. To determine
the edge current direction, I = −|e|vx (indicated by the
arrow), the electron group velocity vx = ∂E(k)/∂kx has
been calculated19. In the case of weak intrinsic SOC,
at the ribbon boundaries, the edge states pair A and
D would form a single handed loop (in the sense that

FIG. 4. Energy spectrum of ZGNR with W = 48, λR = 0.20t,
M = 0.20t, ε = 0.10 and θ = 0, for (a) λso = 0.035t and
(d) λso = 0.055t, respectively. The Fermi level E = 0.05t
corresponds to four different edge states, as indicated by A,
B, C, and D. The corresponding probability distributions |ψ|2
across the width of the ribbon, and diagrams of charge current
distributions are shown in the middle (b)-(e) and right panels
(c)-(f), respectively. The arrows indicate the current flux.

the turning point is at infinity along the ribbon length),
meanwhile there is the formation of another loop with
opposite handedness, which is formed by the edge states
pair B and C. Both edge states A and B, consequently IA
and IB , are located at the same edge, as indicated in Fig.
4 (c). Thus the chirality of the current loop due to the
A and D edge states would produce a Chern number of
(C1 = ±1) which is the same as that of current loop owing
to B and C edge states. Since the system is akin to two
integer quantum Hall subsystems, its Chern number C is
equal to (C1 = +1)⊕(C2 = +1), i.e., C = (+1)+(+1) = 2
or (C1 = −1) ⊕ (C2 = −1), with C = (−1) + (−1) = −2.
Therefore, the ZGNR with a weak intrinsic SOC is in
the QAH phase. For a ZGNR with strong intrinsic SOC,
however, one can notice that the edge states pair A and
C are located on the same edge, while the B and D edge
states are in the opposite edge, as shown in Fig. 4 (f).
Due to handedness of the current loop of edge states A
and D, the Chern number would give a contribution of
(C1 = −1), and the pair B and C, which has an oppo-
site handedness, produces a Chern number of (C2 = +1).
Since the ZGNR is composed of these two integer quan-
tum Hall subsystems, its Chern number (C) is obtained
by (C1 = +1) ⊕ (C2 = −1), i.e., C = (+1) + (−1) = 0.
Therefore, the GNR is in the TRS broken QSH phase.

To understand the QPT and show intuitively how it
takes place, we follow Ref. 19 and introduce the aver-
age value of the position 〈y〉n, as a parameter to label
the angular momentum of the current. It is defined as:
〈y〉n =

∑
i yi|ϕn(yi)|2, where n represents the edge states
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at the Fermi level and i is the site index along the width of
ribbon. We chose the origin of y-axis at the lower bound-
ary of the ribbon. Fig. 5 (a) shows the average values
〈y〉n of edge states as a function of λso in the ribbon with
the width W = 48, λR = 0.20t, M = 0.20t, ε = 0.10 and
θ = 0, where n = A,B,C and D, respectively. The direc-
tion and magnitude of a group velocity are indicated by
the direction and length of an arrow, respectively. When
the intrinsic SOC is vanishing, the Rashba SOC and EX
are dominant, A and B are on the same boundary of
the ribbon, and thus both 〈y〉A and 〈y〉B → 0. So do C
and D, but are localized at the other edge of the ribbon,
thus 〈y〉C and 〈y〉D → W . The system is in the QAH
phase. When the λso increases, however, three different
topological phases are found. In the regime of small λso
(0.03t < λso < 0.04t), the positions of the edge states are
only very slightly shifted. With increasing λso, the states
A and D become delocalized, swiftly moving to the cen-
ter of the ribbon from different boundaries owing to the
edge- and bulk- states coupling. In the regime of large λso
(λso > 0.05), the locations of state A and D have been
exchanged. Since the group velocity of state A is opposite
to D, the exchange of their locations results in a change of
chirality. Therefore, the system is in the QSH phase. It
is worthy to point out that owing to the finite-size (finite-
width) effect, the edge states are not exactly localized at
the two boundaries. Remarkably, a similar behavior is
also presented in Fig. 5 (b) in which 〈y〉 versus strain is
plotted. At first glance, it seems to be hard to under-
stand this exotic behavior. But, recalling the discussion
of phase transition in bulk graphene, one can logically
speculate that this is a manifestation of strain induced
QPT between QSH and QAH states in the ZGNR. This
strain induced QSH state shares many emergent prop-
erties similar to the usual zero-strain QSH effect. We
notice that with realistic values for uniaxial strain the
critical value for the spin-orbit coupling is reduced by a
factor between 10-20%. Thus, the combination of strain
and appropriate substrates, show a promising direction
to realize the phase transition in current settings.

To seek the controllable topological QPTs induced ei-
ther by strain, EX; or intrinsic SOC, or any of their com-
binations, the phase diagrams in which the phase is char-
acterized by the difference in the average value of position
〈y〉C and 〈y〉A, defined as 〈y〉AC = 〈y〉C - 〈y〉A, are con-
structed, as shown in Fig. 6. Fig. 6 (a) and (b) plot the
phase diagrams of ε versus λso for θ = 0 and θ = π/2,
respectively. It is trivial to notice that if 〈y〉AC ∼= 0, the
edge states A and C are localized at the same bound-
ary, corresponding to a QSH phase, as indicated by blue.
Otherwise, if 〈y〉AC ∼= W , the system is in the QAH
phase, as marked by red. The other values of 〈y〉AC cor-
respond to delocalized state A. Notice that both strength
and direction of the strain change considerably the phase
diagram. In the regime of small intrinsic SOC, the GNR
lies in the QAH state. The critical λcso at which topolog-
ical QPT occurs depends strongly on both the strength
and direction of the strain. The larger the strain, the

FIG. 5. (a) Average values 〈y〉 of edge states versus λso in
ZGNR, subjected to a strain with ε = 0.10 and θ = 0. (b) 〈y〉
as a function of strain with θ = 0 for λso = 0.05t. W = 48,
λR = 0.20t and M = 0.20t are used in the computations.
Vertical axis is the Fermi velocity VF modulus. The arrows
point in the directions of band velocities and their lengths
present the magnitudes of VF .

FIG. 6. Phase diagrams (strain vs intrinsic SOC) of a ribbon
with W = 48, λR = 0.20t, M = 0.20t, characterized by a
difference in the average value of position between mode A
and C, defined as 〈y〉AC= 〈y〉C - 〈y〉A, for θ = 0 (a) and
θ = π/2 (b), respectively.

smaller the λcso is required to reach the QSH state. In
addiction, the strain drives the GNR from the QAH into
QSH states for a given λcso. It is also noted that in the
case of θ = π/2, when the λcso changes in the boundary
between the QSH and QAH states, the correspondent
critical value of ε varies faster than that for θ = 0.

The underlying physics of the strain tuned phase di-
agram is as follows. It is well established that uniaxial
mechanical strain does not break the sublattice symme-
try, but rather deforms the Brillouin zone, such as, the
Dirac cones located in graphene at points K (K ′) being
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shifted in the opposite directions41,47. This is reminis-
cent of the effect of pseudomagnetic field BS induced by
the strain on charge carriers, i.e., accumulating charge in
place where the BS is maximum. Because the BS does
not break TRS, the strain will not have any direct ef-
fect on the spin degrees of freedom of the electrons, even
though it couples with sublattice pseudospin. Therefore,
at first glance, it seems that the strain only induces a
renormalization of the energy scales. Actually, this is not
true for graphene with SOC. Since SOC couples the spin
and the momentum degrees of freedom of the carriers,
the BS could affect real spin of an electron through the
SOC. Therefore, a strong pseudomagnetic field should
lead to Landau quantization and a QSH state due to op-
posite signs of BS for electrons in valleys K (K ′). In
this context, the strain enhances the carrier localization
and pushes the edge states much closer to the boundaries
of the ribbon. Hence, the QSH state could be stabilized
by the strain. Finally, it is worthwhile to argue that
since inter-valley scattering requires a large momentum
transfer48, it is strongly suppressed in wide ZGNRs in
which we are interested.

IV. CONCLUSION

In summary, a zero-field topological QPT between
QSH and QAH states in GNRs is reported in the pres-
ence of internal EX, uniaxial strain, intrinsic and Rashba
SOCs. Both strength and direction of the strain can be
exploited to tune the λcso at which the phase transition
takes place. The pseudomagnetic field induced by the
strain couples the spin degrees of freedom through SOC,
enhances the carrier localization in edge states, stabilizes
and even leads to formation of a QSH state. Rashba-SOC
and EX, on the other hand, break inversion- and TRS of
the graphene, respectively. In the regime of small SOC
and EX, they only induce an instability of the QSH state.
The large Rashba-SOC or EX, however, can even lead the
QSH state to be destroyed, producing the QAH states.
Our results offer a tempting prospect of strain, electric
and magnetic manipulation of the QSH effect, with po-
tential application in topological quantum devices within
the context of dissipationless electronics.
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Appendix A: Equation of motion of an electron in
strained graphene

1. Strained graphene

In the pristine (unstrained) graphene, as usual, the
Hamiltonian which describes the hopping of an electron
in a site Ai to its nearest-neighbors in Bj with probability
ti,j is given by,

H0 = −
∑
〈i,j〉

ti,j (|Ai〉 〈Bj |+ |Bj〉 〈Ai|) (A1)

where the sum is made about the three nearest neighbors.
For convenience, the site energy which is on Fermi level
is set to zero. The vectors connecting a type A to type

B sites are defined by ~d1 = −aŷ, ~d2 =
√
3
2 a
(
x̂+ 1√

3
ŷ
)

and ~d3 =
√
3
2 a
(
−x̂+ 1√

3
ŷ
)

, as shown in Fig. 7(a). We

expand single particle wave functions as follows

|Ψ〉 =
1√
N

∑
n

ei
~k·~Rn

[
ΨA(~k) |An〉+ ΨB(~k) |Bn〉

]
.

(A2)

where ~Rn is the position of a site-n, ~k is electron mo-

mentum, ΨA(~k) and ΨB(~k) are coefficients. Utilizing
~Rn′ − ~Rn = ~dl, Schrödinger’s equation can be cast into
two coupled equations:

EΨA(~k) = f ·ΨB(~k)

and

EΨB(~k) = f∗ ·ΨA(~k), (A3)

where the geometric form factor is given by

f = −
3∑
l

tl e
i~k·~dl = −t

[
e−ikya + 2cos

(
kxa
√

3

2

)
eikya/2

]
.

Based on above calculation, one can straight forwardly
derive the matrix form of the Schrödinger’s equation:

E

(
ΨA(~k)

ΨB(~k)

)
=

(
0 f
f∗ 0

)(
ΨA(~k)

ΨB(~k)

)
(A4)

In a strained graphene, the distance vectors are mod-

ified by uniaxial strain as ~dsl = (I + ε)~dl
41, where l =

1, 2, 3. They are given by

~ds1 = −aε12x̂− (1 + ε22)aŷ

~ds2 =
a

2

[
(1 + ε11)

√
3 + ε12

]
x̂+

a

2

[√
3ε21 + (1 + ε22)

]
ŷ

~ds3 =
a

2

[
−(1 + ε11)

√
3 + ε12

]
x̂+

a

2

[
−
√

3ε21 + (1 + ε22)
]
ŷ.

(A5)
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FIG. 7. Schematic diagrams of the nearest (a) and next near-
est neighbours (b), and interatomic distance vectors (c) in a
graphene.

Besides, the three hopping parameters tl are also altered
by the strain, as discussed in the main text. They are
determined by tl = te−3.37(d

s
l /a−1). Then the geometric

factor fs of the strained graphene is altered which can be

calculated by fs =
∑3
l tl e

i~k·~dsl . Taking into account the
strain dressed hopping parameters and form factor, the
correspondent equations of motion of an electron in the
strained graphene can be obtained through substituting
f in Eq. (A3) by fs.

fs =− t1e[−iε12kxa−i(1+ε22)kya]

−t2ei{[
√
3(1+ε11)+ε12]kx+[(1+ε22)+

√
3ε21]ky} a

2

−t3ei{[−
√
3(1+ε11)+ε12]kx+[(1+ε22)−

√
3ε21]ky} a

2 (A6)

2. Strained graphene with intrinsic SOC

The pristine graphene with intrinsic SOCs can be well
described by the following Hamiltonian:

H = H0 +Hso. (A7)

The second term in the Eq. (A7) is intrinsic SOC Hamil-
tonian. It can be evaluated by a summation over the
next nearest-neighbors, as follows,

Hso =
2i√

3
λso

∑
〈〈i,j〉〉

∑
σ,σ′

|Ai, σ〉~γ · (~dkj × ~dik) 〈Aj , σ′|+ h.c.,

(A8)

where λso is intrinsic SOC strength, <<>> runs over
all the next-nearest neighbor sites as shown in Fig. 7(b)

and ~dkj × ~dik is a product of interatomic distances which
represents an electron hopping from a i-site to a j-site
through a k-site atom, as shown in Fig.7(c). Perform-
ing the summation and other algebra calculations, one
derives the equations of motion as,

EΨA(~k, σ) = f ·ΨB(~k, σ)− λso · fso · χΨA(~k, σ),

and

EΨB(~k, σ) = f∗ ·ΨA(~k, σ) + λso · fso · χΨB(~k, σ) (A9)

where

fso = 4 sin

(
kx
√

3

2
a

){
cos

(
ky

3

2
a

)
− cos

(
kx
√

3

2
a

)}

and χ = +1, for σ =↑ or χ = −1, for σ =↓. One
can straightforwardly derive the matrix form of the
Schrödinger’s equation:

E


ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)

 =

−ϕso 0 f 0
0 ϕso 0 f
f∗ 0 ϕso 0
0 f∗ 0 −ϕso




ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)


(A10)

where ϕso = λso · fso.
In strained graphene, since C-C atomic distances are

altered by applied strain, so does the product ~dkj × ~dik.
Taking into account the strain dressed interatomic dis-
tances and hopping parameters, the equations of motion
of an electron in the strained graphene with intrinsic SOC
become

EΨA(~k, σ) = fs ·ΨB(~k, σ)− λso · fsso · χΨA(~k, σ)

and

EΨB(~k, σ) = f∗s ·ΨA(~k, σ) + λso · fsso · χΨB(~k, σ)
(A11)

where the form factor of the strained graphene with in-
trinsic SOC is governed by

fsso = i · det(I + ε)

3∑
l=1

ξ(l)
(
ei
~k·~dl − e−i~k·~dl

)
, (A12)

with the pseudo-spin ξ(l) = +1, when l = 1, 3 and ξ(l) =
−1 for l = 2.

3. Strained graphene with Rashba SOC

The breakdown of mirror symmetry induces the
Rashba spin-orbit coupling. The Hamiltonian of a pris-
tine graphene with Rashba SOC is well described by,

H = H0 +HR. (A13)

The second term in the Eq. (A13) is Rashba SOC Hamil-
tonian. It can be evaluated by the following expression

HR = i
∑
〈i,j〉

∑
σσ′

[|Ai, σ〉 (~uij · ~γ) 〈Bj , σ′|+ h.c.] , (A14)

where ~uij = −λR

a ẑ× ~dij and ẑ is unit vector along z-axis.
Then the correspondent equations of motion turn out to
be:

EΨA(~k, ↑) = f ·ΨB(~k, ↑)− λR · fR1 ·ΨB(~k, ↓)
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and

EΨB(~k, ↑) = f∗ ·ΨA(~k, ↑) + λR · fR2 ·ΨA(~k, ↓) (A15)

where the form factors of the graphene with Rashba SOC
are defined by

fR1 = i

{
e−iky3a/2 + 2cos

(
kx
a0
2
− 2π

3

)}
eiky

a
2

(A16)

fR2 = i

{
eiky3a/2 + 2cos

(
kx
a0
2

+
2π

3

)}
e−iky

a
2 .

(A17)

In analogy, we can deduce another set of coupled equa-

tions for ΨA(~k, ↓) and ΨB(~k, ↓). After that, the matrix
form of the Schrödinger’s equation can be written as

E


ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)

 =

 0 0 f ϕR1

0 0 ϕ∗R2 f
f∗ ϕR2 0 0
ϕ∗R1 f∗ 0 0




ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)


(A18)

where was made ϕR1 = λR · fR1 and ϕR2 = λR2 · fR2.
In the strained graphene with Rashba SOC, the cor-

responding Schrödinger’s equation can be obtained by
making the following substitutions: f → fs, fR1 → fsR1

and fR2 → fsR2. Here the form factors of the strained
graphene with Rashba SOC are defined by

fsR1 =− i

a
·

3∑
l=1

[
ei
~k·~dsl

(
dsly + idslx

)]
,

fsR2 =
i

a
·

3∑
l=1

[
ei
~k·~dsl

(
dsly + idslx

)]
, (A19)

with ~dsli being the component of ~dsl vector along the i-
direction with i = x, y.

4. Strained graphene with exchange field

Considering the pristine (unstrained) graphene sub-
jected to an exchange field, one may write

H = H0 +HM . (A20)

The second term in the Eq. (A20) is exchange Hamilto-
nian which is described by the following expression,

HM = M

N∑
i

{|Ai, σ〉 γz 〈Ai, σ|+ h.c.} (A21)

with strength M . The equations of motion is given by

EΨA(~k, σ) = f ·ΨB(~k, σ) +MσΨA(~k, σ),

EΨB(~k, σ) = f∗ ·ΨA(~k, σ) +MσΨB(~k, σ). (A22)

We can also derive the matrix form of the Schrödinger’s
equation as

E


ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)

 =

M 0 f 0
0 −M 0 f
f∗ 0 M f
0 f∗ f∗ −M




ΨA(~k, ↑)
ΨA(~k, ↓)
ΨB(~k, ↑)
ΨB(~k, ↓)

 .

(A23)
In the strained graphene, the correspondent

Schrödinger’s equation can be obtained by doing a
substitution of f by fs.

5. Strained graphene with SOCs and exchange field

With all effects together in the pristine (unstrained)
graphene, the Hamiltonian now reads

H = H0 +Hso +HR +HM . (A24)

Thus, the equation of motion is given by

EΨA(~k, σ) =f ·ΨB(~k, σ)− [λso · fso −Mσ] ·ΨA(~k, σ)

− λR · fR1 ·ΨB(~k,−σ), (A25)

EΨB(~k, σ) =f∗ ·ΨA(~k, σ) + [λso · fso +Mσ] ·ΨB(~k, σ)

+ λR · fR2 ·ΨA(~k,−σ). (A26)

The matrix form of the correspondent Hamiltonian with
eigenvectors

(ΨA(~k, ↑),ΨA(~k, ↓),ΨB(~k, ↑),ΨB(~k, ↓))† (A27)

reads

H =

M − ϕso 0 f ϕR1

0 −M + ϕso ϕ∗R2 f
f∗ ϕR2 M + ϕso f
ϕ∗R1 f∗ f∗ −M − ϕso

 .

(A28)
In the strained graphene, the correspondent

Schrödinger’s equation can be obtained by doing
following substitutions: f → fs, fso → fsso, fR1 → fsR1

and fR2 → fsR2.

Appendix B: Equation of Motion of an Electron in
Strained GNR

In order to write the Hamiltonian for a GNR with
zigzag edges, we must consider a unit cell m and label
each zigzag chain with parameter n. The whole Hamil-
tonian have the same general form of Eq. A24. But the
specific expression of each term in the Hamiltonian is
different with its partner of the pristine graphene, given
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by

H0 =−
N∑
m,n

∑
σ,σ′

{t1 |A,m, n, σ〉 〈B,m, n− 1, σ′|+

+ t2 |A,m, n, σ〉 〈B,m+ 1/2, n, σ′|+
+t3 |A,m, n, σ〉 〈B,m− 1/2, n, σ′|+ h.c} . (B1)

As mentioned before, t = 2.7eV for unstrained graphene.
The intrinsic SOC is

Hso =

2iλso√
3

N∑
m,n

∑
σ,σ′

{
|Am, n, σ〉~γ · (~dskj × ~dsik) 〈Am+1, n, σ

′|

|Am, n, σ〉~γ · (~dskj × ~dsik) 〈A,m+ 1/2, n− 1, σ′|+

|Am, n, σ〉~γ · (~dskj × ~dsik)
〈
Am+1/2, n+ 1, σ′

∣∣+
|Am, n, σ〉~γ · (~dskj × ~dsik)

〈
Am−1/2, n+ 1, σ′

∣∣+
|Am, n, σ〉~γ · (~dskj × ~dsik) 〈Am−1, n, σ′|+

|Am, n, σ〉~γ · (~dskj × ~dsik)
〈
Am−1/2, n− 1, σ′

∣∣+ h.c
}

(B2)

with distance vectors modified by strain ~dskj , shown in
Eq. A5. The Rashba SOC reads

HR =i

N∑
〈m,n〉

∑
σσ′

[
|Am, n, σ〉 (~un(n−1) · ~γ) 〈Bm, n− 1, σ′|+

+ |Am, n, σ〉 (~um(m+1/2) · ~γ)
〈
Bm+1/2, n, σ

′∣∣+
+ |Am, n, σ〉 (~um(m−1/2) · ~γ)

〈
Bm−1/2, n, σ

′∣∣+ h.c
]

(B3)

where ~u was modified to

~un(n−1) = −λR
a
ẑ × ~dsn(n−1);

~um(m+1/2) = −λR
a
ẑ × ~dsm(m+1/2); (B4)

~um(m−1/2) = −λR
a
ẑ × ~dsm(m−1/2).

The EX term now is given by

HM = M

N∑
m,n

∑
σ

{|Am, n, σ〉 (~γ · ẑ) 〈Am, n, σ|+ h.c.} .

(B5)

The wavevector now includes the periodicity of the unit
cell

|Ψ〉 =
1√
M

N∑
m,n

∑
σ

ei
~k·~Rm

{
ΨA(~k, n, σ) |Am, n, σ〉+

β(~k, n, σ) |Bm, n, σ〉
}
.

(B6)

where ~Rm = m~a0 and ~Rsm = (I+ε)~Rm are the quantized
distance among atoms in the absence and presence of
strain, with ~a0 =

√
3ax̂. Inserting this single-particle

wavefunction into the Schrödinger equation, we obtain
the following two equations of motion,

EΨA(~k, n, σ) = −
[
β(~k, n, σ)

(
t2e

iω + t3e
−iω)

+ t1β(~k, n− 1, σ)
]

+ 2χλsodet(I + ε){
sin (ω)

[
α(~k, n− 1, σ) + α(~k, n+ 1, σ)

]
− sin (2ω)α(~k, n, σ)

}
− iλRχ {[−ρ1cos(ω)

+
√

3ρ2sen(ω)
]
β(~k, n,−σ) + ρ1β(~k, n,−σ)

}
+ χMα(~k, n, σ)) (B7)

and

EΨB(~k, n, σ) = −
[
α(~k, n, σ)

(
t2e

iω + t3e
−iω)

+ t1α(~k, n+ 1, σ)
]
− 2χλsodet(I + ε){

sin (ω)
[
β(~k, n− 1, σ) + β(~k, n+ 1, σ)

]
− sin (2ω)β(~k, n, σ)

}
+ iλRχ {[−ρ1cos(ω)

−
√

3ρ2sen(ω)
]
α(~k, n,−σ) + ρ1α(~k, n,−σ)

}
+ χMβ(~k, n, σ)) (B8)

where

ω =
a0
2
{(1 + ε11)kx + ε21ky};

ρ1 = 1 + ε22 + iε12;

ρ2 = 1 + ε11 − iε21.
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