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The observation of extensive fractional quantum Hall states in graphene brings out the possibility
of more accurate quantitative comparisons between theory and experiment than previously possible,
because of the negligibility of finite width corrections. We obtain accurate phase diagram for dif-
ferently spin-polarized fractional quantum Hall states, and also estimate the effect of Landau level
mixing using the modified interaction pseudopotentials given in the literature. We find that the
observed phase diagram is in good quantitative agreement with theory that neglects Landau level
mixing, but the agreement becomes significantly worse when Landau level mixing is incorporated
assuming that the corrections to the energies are linear in the Landau level mixing parameter λ.
This implies that a first order perturbation theory in λ is inadequate for the current experimental
systems, for which λ is typically on the order of or greater than one. We also test the accuracy of the
composite-fermion theory and find that it is very accurate for the states of the form n/(2n+ 1) but
for the states at n/(2n− 1) the results are sensitive to the lowest Landau level projection method.
An earlier prediction of an absence of spin transitions for the n/(4n + 1) states is confirmed by
more rigorous calculations, and new predictions are made regarding spin physics for the n/(4n− 1)
states.

PACS numbers: 73.43.Cd, 71.10.Pm

I. INTRODUCTION

A longstanding issue in the field of the fractional quan-
tum Hall effect (FQHE)1 has been that the quantitative
agreement between theory and experiment is less precise
than what one would expect. It is possible to obtain
very accurate numbers for many quantities of interest
from the composite fermion (CF) theory2–4. Detailed
comparisons have been carried out for activations gaps5,
collective mode dispersions6, and spin-polarization phase
transitions3. In all cases, the measured numbers are gen-
erally consistent with those predicted by theory, but the
agreement is worse than that suggested by the accuracy
of the theory as determined from comparisons with exact
diagonalization results3,7–9. It is believed that the devi-
ation arises from corrections due to effects extraneous to
the FQHE physics, such as finite quantum well width,
Landau level (LL) mixing and disorder, which are sub-
stantial and hard to deal with in a quantitative manner.

The observation of FQHE in graphene10–16 provides a
unique opportunity in this context, because finite width
corrections are essentially absent in graphene. Further-
more, as noted by Peterson and Nayak17, unlike in GaAs
quantum wells, in the n = 0 LL of graphene, LL mix-
ing does not produce any effective three body interac-
tion (which incorporates the breaking of particle-hole
symmetry), but only corrections to the pairwise inter-
action. One might therefore expect smaller corrections
due to LL mixing in graphene than in GaAs. The FQHE
in graphene may thus provide an opportunity for bet-

ter quantitative comparisons between theory and exper-
iments, and a better appreciation of our understanding
of the role of LL mixing.

The spin polarization transitions provide some of the
most precise tests of the quantitative accuracy of the
FQHE theory, for several reasons. First, it is a ther-
modynamic measurement (as opposed to the excitation
energies of charged or neutral modes), and therefore is
likely to be less susceptible to the presence of disorder.
Second, the critical Zeeman energy where a transition be-
tween two differently spin polarized FQHE states occurs
provides a direct measure of the rather small Coulomb en-
ergy differences between the two states, and thus enables
a detailed and exceedingly sensitive test of our quanti-
tative understanding of the FQHE. Finally, there is an
extensive amount of experimental phenomenology asso-
ciated with the spin physics. Phase transitions as a func-
tion of the Zeeman energy have been measured in various
semiconductor based two-dimensional systems18–33, and
recently also in graphene by Feldman et al.14.

Hoping to obtain a better comparison between the-
ory and experiment, we have determined the spin-
polarization phase diagram as accurately as possible for
an ideal two-dimensional system in the n = 0 LL. (These
results apply to graphene as well as to narrow GaAs
quantum wells, because in the limit of zero thickness, the
LL wave functions are identical for the two.) We perform
large scale exact diagonalization studies of various FQHE
states for this purpose. This also allows us to determine
the quantitative accuracy of the CF theory2,3,34,35. We
also estimate the effect of LL mixing by modifying the
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pseudopotentials according to Ref.17. Our conclusions,
briefly, are as follows.

From exact diagonalization calculations, we have ob-
tained essentially the exact theoretical phase diagram of
the spin polarization of FQHE states without allowing for
LL mixing (see blue crosses in Fig. 1). We find that it is in
excellent agreement with the experimental phase diagram
in graphene (see dots in Fig. 1). The agreement between
theory and experiment becomes significantly worse when
LL mixing is included to linear order in the LL mixing
parameter λ using the pseudopotentials of Ref. 17. This
suggests that the current experimental systems are out-
side the linear regime, which is not surprising given that
λ is typically of order 1 and often much larger (e.g. 2.2
for suspended graphene). This is relevant to the issue
of whether the Pfaffian or the anti-Pfaffian state36–38 at
ν = 1/2 in the second LL is selected by LL mixing, which
has received much attention recently17,39–43.

The allowed spin polarizations for various FQHE states
at n/(2n±1) and their energy ordering are correctly pre-
dicted by the CF theory. The mean-field model in which
composite fermions are treated as free particles at an ef-
fective magnetic field3,35,44 remains satisfactory, and we
obtain a precise estimation for the CF mass. We also
carry out quantitative tests of the CF theory, which are
extremely precise because the critical Zeeman energies
depend on very small energy differences between differ-
ent states, and even a slight error in the energy can lead
to large corrections in the critical Zeeman energies. For
the fractions ν = n/(2n+1), calculations based on Jain’s
wave functions2 predict the critical Zeeman energies with
15% accuracy, which can be further improved by the
method of CF diagonalization that incorporates Lambda
level (ΛL) mixing, where a ΛL refers to a CF Landau
level in an effective magnetic field. For the states at
ν = n/(2n−1), the results depend sensitively on the low-
est Landau level (LLL) projection method. In particular,
the treatment with Jain-Kamilla (JK) projection3,45,46

underestimates the critical Zeeman energies by a factor
of 2-3 (i.e., relatively overestimates the energies of the
non-fully spin polarized states). This is not an intrinsic
deficiency of the CF theory but rather a technical issue,
as can be seen from the fact that the “Hard-Core pro-
jection” introduced previously in Ref. 8 produces very
accurate states for ν = n/(2n − 1). (This projection is
presently not amenable to calculations for large systems.)

For completeness, we have also considered the states
of composite fermions with four vortices attached. A
previous prediction47 of the absence of spin transitions
for the n/(4n + 1) states is confirmed by more rigorous
calculations. Here the states remain spontaneously spin
polarized even in the absence of a Zeeman energy. Spin
transitions are possible for the 4CF FQHE state at ν =
n/(4n− 1), and we estimate the critical Zeeman energies
for the prominent transition.

II. FQHE IN GRAPHENE

The physics of graphene differs from that of GaAs in
two important aspects: the dispersion of electrons is lin-
ear and there are four Dirac cones. The linear dispersion
of Dirac fermions leads to LLs which have a cyclotron en-
ergy of sgn(n)

√
2|n|~vF /`, where vF is the Fermi veloc-

ity and ` is the magnetic length and n is any integer48,49.
(This is to be contrasted from GaAs or other conven-
tional semiconductors wherein electrons have a parabolic
dispersion and LLs which have a cyclotron energy given
by ~ωc(n + 1/2), where n is a non-negative integer and
ωc is the cyclotron energy. ) Also, the LL wave func-
tions are two component wave functions, corresponding
to two sublattices of graphene. In general this leads to
different interaction pseudopotentials50–52 than in sys-
tems with parabolic dispersion. However, it turns out
that the electron wave functions as well as the interac-
tion pseudopotentials in the n = 0 LL of graphene are
identical to those in the LLL of GaAs.

The second difference is that each LL of graphene has
four bands, which arise from the valley and spin degrees
of freedom, while GaAs has two bands from the spin de-
gree of freedom. Within each band, the physics of FQHE
in the n = 0 LL is identical in the two systems, apart from
corrections due to finite width and LL mixing. Much
work has been done toward understanding the origin of
the lifting of various degeneracies53–56, but we will as-
sume below that all bands are well separated. This as-
sumption is justified for the experiments with which we
compare our results.

We refer the reader interested in further information to
an extensive literature on the physics of Dirac fermions
in a magnetic field48,49.

III. PHASE DIAGRAM OF SPINFUL CF
STATES

A good qualitative and semiquantitative theoretical
understanding of these transitions has been obtained in
terms of integer or fractional quantum Hall effect of
spinful composite fermions8,44,47,57–65, which successfully
predicts the allowed spin polarizations at all of these
filling factors and also provides an estimate of the the
critical Zeeman energy where transitions between them
occur. While these quantitative estimates are a good ze-
roth order approximation, their accuracy has not been
carefully evaluated in the past.

The FQHE state at ν = n/(2pn± 1) maps into integer
quantum Hall effect (IQHE) state of composite fermions
with n filled Λ levels, where a composite fermion is de-
fined as a bound state of an electron and 2p vortices.
For spinful composite fermions, the CF filling is writ-
ten as n = n↑ + n↓, where n↑ and n↓ are the num-
ber of filled spin-up and spin-down ΛLs. The different
states will be denoted as (n↑, n↓), and we will use the
convention n↑ ≥ n↓ without loss of generality. One
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FIG. 1: (color online) Spin phase diagram showing the critical Zeeman energies for transitions of the fractional quantum Hall
states at the filling factor ν = n/(2n ± 1). We define κ = EZ/EC, where EZ is the Zeeman splitting and EC = e2/εl is the
Coulomb energy. The crosses show the results from exact diagonalization (assuming zero thickness), the dots from JK wave
functions, and squares are fits from the free-CF model (see text). The blue, red and green colors indicate transition from
(n, 0)→ (n−1, 1), (n−1, 1)→ (n−2, 2) and (n−2, 2)→ (n−3, 3) respectively. We note that the exact diagonalization results
for the spin transitions at ν = 4/7 and ν = 4/9 are obtained using results extrapolated from only two finite systems, and may
therefore be less accurate.

can list all possible states and their spin polarization
γ = (n↑ − n↓)/(n↑ + n↓). For example, for 2/5 and 2/3,
which both map into n = 2 of composite fermions, we
have a fully spin polarized state (2, 0) (with γ = 1) and
a spin singlet state (1, 1) (with γ = 0). To take another
example, 6/13 and 6/11 map into n = 6, where we have
four possible states (6, 0), (5, 1), (4, 2) and (3, 3), with
γ = 1, 2/3, 1/3, and 0, respectively. One expects at
most one transition at 2/5 and 2/3 and three at 6/13
and 6/11. The possible states and spin polarizations of
other fractions can be similarly enumerated.

The CF theory also identifies the flux values where
these states occur in the spherical geometry3. These are
the flux values at which our calculations below are car-
ried out. All our calculations are performed in the spher-
ical geometry, where the ground states have total orbital
angular momentum L = 0 and a total spin S that can
be ascertained by the CF theory. We will assume the
ideal limit of zero thickness and neglect LL mixing and
disorder. In quoting the energies below, we include the
electron-background and background-background inter-
action. The density for a finite system (in the spherical
geometry) depends on the number of particles N and is
slightly different from its thermodynamic limit. To elim-
inate this effect we use the density corrected energy66

E
′

N = (2Qν/N)1/2EN for extrapolation to the thermo-
dynamic limitN−1 → 0, where the integer 2Q is the mag-
netic flux (in units of φ0 = hc/e) to which the electrons

are subjected. All energies quoted below are the ther-
modynamic limits of the per particle density corrected
energies limN→∞E

′

N/N .

To avoid clutter, we give only give the spin-polarization
phase diagram in the main text. All of the individual
numbers as well as extrapolations are given in various
tables and figures in Appendix A.

A. Exact diagonalization

We first obtain the extrapolated values of energies of
the variously polarized states at fractions of the form
n/(2n± 1). These include the largest systems for which
exact diagonalization can currently be performed (see
Appendix A for Hilbert space dimensions). For filling
factors 4/7 and 4/9, the extrapolated values are obtained
with only two points and thus must be treated with cau-
tion, but we have chosen to include them because linear
extrapolation in 1/N has been found to be quite accu-
rate for other systems as well. Once we have the energies,
we obtain the critical Zeeman energies by setting the en-
ergy difference of the two successive states (n↑, n↓) and
(n↑ − 1, n↓ + 1) to zero:

[δ(n↑,n↓) − δ(n↑−1,n↓+1)]
e2

ε`
− 1

n
EZ = 0 (1)
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where we have used δ(n↑,n↓) to denote the thermodynamic
limit of the per particle density correct background sub-
tracted energy of the state (n↑, n↓). This gives

κ :=
EZ

e2/(ε`)
= n[δ(n↑,n↓) − δ(n↑−1,n↓+1)] (2)

where ε is the dielectric constant of the host material
and ` =

√
~c/eB is the magnetic length. The resulting

critical energies are shown by the blue crosses in Fig. 1.

B. Free CF model

We ask to what extent the results may be interpreted
in a model that treats composite fermions as free particles
with an effective mass35, which has been used routinely
to analyze the experimental data14,19,23. The interaction
energy between electrons is modeled in terms of the CF
cyclotron energy, defined as

~ω∗c = ~
eB∗

m∗pc
= ~

eB

(2pn± 1)m∗pc
≡ α

2pn± 1

e2

ε`
(3)

where m∗p is the CF mass. (The subscript is to remind
us that this mass is the “polarization mass” of compos-
ite fermions,44 which is the relevant mass for the spin-
polarization phase transitions. This is to be distinguished
from the mass defined from the activation gap35.) The
CF mass is often quoted in units of the electron mass in
vacuum, me:

m∗p
me

=
1

α

~Ωc
e2/ε`

(4)

where Ωc = eB/mec is the cyclotron frequency of elec-

tron in vacuum. The CF mass behaves as m∗p ∼
√
B and

for the parameters of GaAs, we have

m∗p/me = (0.026/α)
√
B[T ]. (5)

An immediate qualitative prediction of the free-CF
model is that the interaction energies increase with the
degree of spin polarization. This has been found to be the
case for all states of the form n/(2n±1). [As seen below,
this is not the case for n/(4n + 1).] At a more quanti-
tative level, the free-CF model predicts that the critical
Zeeman energy for the transition between (n↑, n↓) and
(n↑ − 1, n↓ + 1) is given by

1

n
[n↑ − n↓ − 1]~ω∗c −

1

n
EZ = 0 (6)

which gives

κ = α
n↑ − n↓ − 1

2pn± 1
(7)

We have found that the best fit for the critical Zeeman
energies calculated here is provided by αn/(2n+1) = 0.056

and αn/(2n−1) = 0.050. A single value of α gives a slightly
less satisfactory fit, implying a weak filling factor depen-
dence for the CF mass. Nonetheless, the free-CF model
works reasonably well. We note that the CF polarization
mass m∗p for the reverse flux attached states is about 10%
higher than that for parallel flux attached states.

C. Microscopic theory

The wave function for the (n↑, n↓) state at n/(2pn±1)
state is given by

Ψ n
2pn+1

= PLLLΦnJ
2p = PLLLΦn↑Φn↓J

2p (8)

and

Ψ n
2pn−1

= PLLL[Φn]∗J2p = PLLL[Φn↑Φn↓ ]
∗J2p (9)

where

J =
∏

1≤j<k≤N

(zj − zk) (10)

is the Jastrow factor, zi is the coordinate of the ith elec-
tron, Φn↑ (Φn↓) is the Slater determinant wave function
for n↑ (n↓) filled LLs of electrons, and PLLL denotes LLL
projection. In this section we shall restrict ourselves to
the case of p = 1 and consider higher values of p in the
subsequent section. Three schemes have been employed
for LLL projection, which result in slightly different LLL
projected wave functions. (i) “Direct projection” will re-
fer to the method considered in Refs. 7 and 8, wherein
the product wave function is expanded into Slater de-
terminant and only the part strictly in the LLL is re-
tained. This method can be implemented for relatively
small systems (less than 10 particles). (ii) In the “Hard-
Core projection” of Ref. 8, one writes the wave function
as

ΨHard−Core
n

2n+1
= J PLLLΦnJ (11)

ΨHard−Core
n

2n−1
= J PLLL[Φn]∗J (12)

As the name implies, this method explicitly builds cor-
relations such that the wave function vanishes when par-
ticles of opposite spin coincide. This method also re-
lies on expansion into Slater determinant basis and can
be implemented only for small systems. (iii) The most
widely used projection method is the so-called JK pro-
jection, which has the advantage that it does not require
expansion into Slater determinant basis and thus can be
evaluated for very large systems. This method has been
used extensively to make quantitative predictions for var-
ious quantities. The details of the JK projection method
have been outlined in the literature3,45,46 and will not
be repeated here. We will refer to the resulting wave
functions as JK wave functions, to distinguish them from
wave functions obtained by other projections7,8,67.
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ν system % error in energy

N 2Q state JK Direct Hard-Core

2/3 8 11 (1,1) 0.75 - 0.04 (Ref. [8])

2/3 8 12 (2,0) 0.13 0.02 (Ref. [8]) -

2/5 8 16 (2,0) 0.01 0.01 (Ref. [67]) -

3/5 8 13 (2,1) 0.29 - 0.05 (Ref. [8])

3/5 9 16 (3,0) 0.03 0.01 (Ref. [8]) -

TABLE I: Percent error in the energy of the CF wave func-
tion obtained from different projection methods for several
finite systems for which the exact results are known. The
last column gives results from Direct projection for fully spin
polarized states and from Hard-Core projection for the non-
fully spin polarized state. (For the fully spin polarized states,
Direct and Hard-Core projections give essentially the same
energies8.) The systems correspond to N particles on the
surface of a sphere subjected to a total flux of 2Qhc/e. The
filling factors and the state are shown.

The results from the JK projection are also shown
in Fig. 1. For the “parallel flux-attached” states at
n/(2n+1), the JK wave functions underestimate the crit-
ical Zeeman energies (also given previously in Ref. 44)
by ∼ 15%. As a result, the α ≈ 0.056 is lower, and the
CF effective mass is higher, by ∼15 % compared to the
values from exact diagonalization. For the “reverse-flux
attached” states at n/(2n − 1), the JK wave functions
underestimate the critical Zeeman energies by a factor of
two to three. These results bring out the limitations of
the JK projection method for the reverse-flux attached
states.

From our current study as well as the previous
results7,8 (reproduced in Table I) we find that: the Hard-
Core projection produces very accurate energies for fully
as well as non-fully spin polarized states at n/(2n+1) and
n/(2n − 1); the JK and the Direct projections produce
accurate results for fully polarized states at n/(2n + 1)
and n/(2n− 1) and also for non-fully polarized states at
n/(2n+ 1); the JK and Direct projections are somewhat
less accurate for non-fully polarized states at n/(2n− 1).
It is easy to see why the JK / Direct projection under-
estimates the critical Zeeman energies: its deficiency is
that it does not eliminate configurations in which spin-up
and spin-down particles are coincident, and thus overes-
timates the energies of non-fully spin polarized states by
a larger amount than for the fully spin polarized states,
thus resulting in an underestimation of the critical Zee-
man energies. It is unclear why the JK and Direct pro-
jections work better for the non-fully polarized states at
n/(2n+ 1) than those at n/(2n− 1).

It is in principle possible to improve the accuracy of the
results within the JK projection scheme by the method
of composite fermion diagonalization (CFD)68, in which
one can obtain more accurate energies by allowing some
Λ level mixing. (ΛL mixing is to be distinguished from
LL mixing.) We allow Λ level mixing by including CF
excitons in the basis. A CF exciton is defined as a pair

FIG. 2: Schematic representation of the CF basis functions
used for CF diagonalization study of the 2/(4p + 1) spin-
singlet FQHE state. Panel (a) shows the “unperturbed” state.
At the first order approximation, CF diagonalization allows
hybridization of the state in (a) with the states in (b), (c) and
(d) to obtain a new ground state with lower energy than the
unperturbed state in (a). Successive mixing with higher and
higher excitations produces better ground states.

of CF particle and CF hole, where a CF particle is a
CF in the lowest unoccupied Λ level and a CF hole is a
missing CF from the top most occupied Λ level. Note
that a single CF exciton does not change the ground
state energy. This is easy to see since a CF hole car-
ries an orbital angular momentum one smaller than the
CF particle with which it forms the exciton. Therefore
the smallest angular momentum that a CF exciton can
have is 1. Hence addition of the ground state (L = 0)
and CF exciton angular momentum produces states with
L ≥ 1. Therefore, we need a minimum of two CF exci-
tons to improve the ground state. For example in Fig.
2 we show the excitations we considered to improve the
ν = 2/(4p + 1) spin-singlet state. The Hilbert space
grows very quickly with the number of excitons included
in the basis for CFD, so we restrict ourselves to at most
two excitons. Among the wave functions shown above,
the fully polarized ones are extremely accurate, so this
procedure of including two CF excitons in the basis of
CFD only marginally improves the ground state energy
of the fully polarized state. However for the unpolar-
ized states the improvement is substantial, evidenced by
the fact that for the spin-singlet states the energies im-
prove by around 10%. The method of CFD produces a
critical Zeeman energy that is within ∼3% of the exact
value. We have carried out similar first order CFD cal-
culations for many of the states considered in this work.
These results are shown in the Appendix A and are la-
beled as “CFD”. We have found CF diagonalization to
be impractical for the reverse-flux attached n/(2pn − 1)
states for technical reasons. (For states involving reverse
flux attachment, the projected state is obtained as an
alternating sum of elementary symmetric polynomials of
high degree; see Ref. 62. To avoid the loss of significant
digits we have to use software emulated multiple preci-
sion floating point numbers. The number of Monte Carlo
steps to obtain the overlap and interaction matrices for
CFD with reasonable accuracy is beyond our reach.)
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IV. COMPARISON WITH EXPERIMENTS IN
GRAPHENE

Fig. 3 shows a comparison between the critical values
of κ obtained from exact diagonalization (blue crosses)
with the measured ones. The results for graphene are
taken from Feldman et al.14. The value of κ depends
on the product εg where ε is the dielectric function and
g is the Landé g factor, for which we have taken the
values ε = 3.0 and g = 2.0 for graphene in the figure.
An excellent agreement between the measured and the
theoretical values is evident. We stress, however, that we
have not yet included effects of LL mixing, which will be
the topic of the next section.

For completeness, Fig. 3 also shows critical Zeeman en-
ergies measured in other systems, taken from Padman-
abhan et al. (AlAs quantum well)28 and Du et. al19

(GaAs-AlGaAs heterojunction). In all cases, the critical
values of κ as well as their filling factor dependences are
roughly consistent with theory. The difference between
the critical values of κ in graphene and in heterojunction
samples is somewhat surprising, because the heterojunc-
tion samples also correspond to a very small thicknesses.
We believe that part of the difference might result from
the fact that Feldman et al. varied κ by changing the
density, whereas Du et al.19 accomplished that by tilting
the magnetic field. We believe that high parallel fields in
the latter experiments may cause additional corrections
which have not been considered.

A. corrections due to LL mixing in graphene

We next come to the effect of LL mixing. The strength
of LL mixing is measured by a parameter λ, which is
defined as the ratio of the Coulomb to the cyclotron
energy69. For massive electrons (e.g., in GaAs) λ =
(e2/ε`)/~Ωc, where Ωc = eB/mbc is the cyclotron fre-
quency, with mb being the electron band mass. For
parameters appropriate for GaAs, namely ε ≈ 12.5
and mb ≈ 0.067me, we have λ ≈ 2.52/

√
B[T], which

depends on the magnetic field and falls in the range
λ = 0.5 − 1.3 for the experimentally relevant fields
B = 4− 25 T. For massless Dirac electrons in graphene,
λ = (e2/ε`)/(~vF/`) = e2/(~εvF) is essentially the
graphene fine-structure constant, independent of mag-
netic field. One obtains λ ≈ 2.2 for suspended graphene,
λ ≈ 0.9 for graphene on SiO2, λ = 0.5− 0.8 for graphene
on BN69,70.

We estimate the corrections due to LL mixing in the
following manner. The effect of LL mixing can be incor-
porated into a LLL problem by modifying the interaction,
by adding a “correction” term Vcorr that contains two-,
three- and higher body interaction terms. The correc-
tions to the first few pseudopotentials of Vcorr have been
evaluated in the literature17,69,71 in a perturbative treat-
ment to linear order in λ. We estimate the correction to
the ground state energies by evaluating the expectation

value of Vcorr with respect to the unperturbed ground
state. We note that for the n = 0 graphene LL, no three
body terms are induced. This method is expected to be
valid for sufficiently small values of λ.

The technical details are as follows, where we include
three-body interaction for completeness although it is not
included in our calculations below. For each FQHE state
of interest, we evaluate the probability of occupation of
various pair and triplet states, from which it is straight-
forward to evaluate the correction to the energy using
the two- and three-body pseudopotentials of Vcorr. To
obtain the occupation amplitudes, we have computed by
exact diagonalization a sequence of finite size Coulomb
ground state vectors, labeled by N and 2Q = N/ν − σ
(where σ is the “shift” dependent on ν and γ). For each
vector, we then calculated the series of pair and triplet

(K = 2 and 3) amplitudes P
(K)
ν,γ;N (s,m) for all possible

pair and triplet spins (s = 0 and 1 for K = 2; s = 1/2
and 3/2 for K = 3) and the leading relative angular mo-
menta (even m = 0, 2, . . . , 8 for K = 2 and s = 0; odd
m = 1, 3, . . . , 9 for K = 2 and s = 1; m = 1, 2, 3 for
K = 3 and s = 1/2; m = 3, 5, 6, 7, 8, 9 for K = 3
and s = 3/2), as expectation values of the corresponding
model K = 2 and 3 body pseudopotentials V (K)(s,m).
Owing to their regular size dependence, each amplitude
was then reliably extrapolated by a linear regression as
a function of 1/N to the limit of an infinite system to

obtain P
(K)
ν,γ (s,m) = lim1/N→0 P

(K)
ν,γ;N (s,m).

The maximum feasible dimension of about 4 × 109

meant that for simple fractions we have data for many
system sizes (e.g., for ν = 2/3: N ≤ 28 for the polarized
phase and N ≤ 14 for the unpolarized phase). However,
for the more complex fractions such as ν = 4/7 and 4/9
we only have data for two sizes, with the smaller size
suffering from the “aliasing” problem (e.g., for ν = 4/9:
N = 16 and 20 for the polarized phase, N = 10 and
14 for the partially polarized phase, and N = 8 and 12
for the unpolarized phase). The results for these systems
are therefore less reliable. The fractions n/(2n± 1) with
n ≥ 5 are not amenable to exact diagonalization studies.

The extrapolated amplitudes were then convoluted
with the effective pair and triplet LL mixing pseudopo-

tentials V
(K)
corr (s,m) derived in Ref. 69 (see Tables III

and IV of that article) to give LL mixing corrections
∆εν,γ in the “linear” regime. In this regime, the ef-
fect of LL mixing is estimated perturbatively, to the
first order in λ. Our estimates of LL mixing correc-
tions to the ground state energy per particle are given per
unit of λ, separately for each filling factor and spin po-

larizarion: ∆εν,γ/λ =
∑
K;s,m P

(K)
ν,γ (s,m)V

(K)
LLmix(s,m),

with the sums running over all spins and over the lead-
ing angular momenta for which the pseudopotentials are
available69 (however, since m corresponds to an average
K = 2 body distance or K = 3 body area, both K = 3
sums (for s = 1/2 and 3/2) ought to be limited to the
same mmax = 3.).

(It should also be mentioned, that alternative meth-



7

FIG. 3: (color online) This figure compares the theoretical phase diagram with the experimentally measured one in graphene
(taken from Feldman et al.14, shown by green dots), GaAs (taken from Du et al.19, shown by black squares) and AlAs systems
(taken from Padmanabhan et al.28, shown as red or blue triangles). The theoretical values (blue crosses) are from exact
diagonalization at zero thickness and zero LL mixing. (We note that the blue crosses for the spin transitions at ν = 4/7
and ν = 4/9 are obtained using results extrapolated from only two finite systems.) For AlAs there is data available at two
different densities: the blue downward triangle corresponds to n = 5.5× 1011 cm−2 while the red upward triangle corresponds
to n = 5.0× 1011 cm−2.

ods for including LL mixing are in principle possible.
For example, one can attempt diagonalization of the N -
electron Hamiltonian in an expanded Hilbert space, in-
cluding cyclotron-excited configurations with some occu-
pation of higher Landu levels.40,72 However, we have not
found this method feasible for the present problem.)

The modified critical values of κ for λ = 1 are shown
in the tables in the Appendix A for ν = 2/3, 3/5, 4/7,
2/5, 3/7 and 4/9. A comparison with the experimental
values is shown in Fig. 4 where in the experimental data
was obtained by assuming gε = 6. A better agreement
between the theoretical and experimental results can be
obtained by choosing the value of gε = 16, but this value
seems implausible. Therefore we come to the conclusion
that theory substantially overestimates the effect of LL
mixing. There may be several possible origins for this.

First, the correction to the interaction has been calcu-
lated to linear order in λ perturbatively, and is thus valid
only so long as the correction to the energy remains lin-
ear in λ. It is possible that λ = 2.2 is outside the linear
regime. We have also assumed that the wave functions
themselves are not significantly modified by LL mixing.
This should be the case for small λ but may not be valid
for λ = 2.2. Finally, we have included corrections only
for pseudopotentials up to a given relative angular mo-
mentum. The quantitative errors due to such an ad hoc
truncation are not known but may be significant. We

believe that these comparisons bring out complications
associated with the theoretical treatment of the quanti-
tative effect of LL mixing.

V. COMPOSITE FERMIONS CARRYING FOUR
VORTICES

It was predicted in Ref. 47 that the spin physics of the
FQHE states at n/(4n+1), described in terms of compos-
ite fermions carrying four vortices (4CFs), is qualitatively
different from that at n/(2n± 1). Calculations based on
the JK wave functions indicated that the fully spin polar-
ized state (n, 0) at n/(4n+ 1) is the ground state even at
zero Zeeman energy, and consequently there are no spin-
polarization phase transitions. The failure of the free-CF
model was interpreted in Ref. 47 in terms of a Bloch fer-
romagnetism for composite fermions, caused by a large
exchange interaction that dominates their CF-cyclotron
energy and favors the fully polarized state even in the
absence of the Zeeman energy.

We have seen above that the JK projection overesti-
mates the energies of the non-fully spin polarized state
by a larger amount than of the fully spin polarized states.
One may therefore ask if the result in Ref. 47 is an arti-
fact of the JK projection scheme. Furthermore, the spin
physics at n/(4n − 1) has not been investigated so far.
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FIG. 4: (color online) This figure compares the experimental phase diagram in graphene (taken from Feldman et al.14, shown
by green dots) with the theoretical phase diagram (blue crosses) including corrections from LL mixing, assuming that the
correction remains linear in λ. The data of Feldman et al.14 assumes gε = 6.0. The theoretical estimates were obtained with
λ = 2.2, which corresponds to the suspended graphene samples of Feldman et al.14. (We note that the blue crosses for the spin
transitions at ν = 4/7 and ν = 4/9 are obtained using results extrapolated from only two finite systems.)

Are these states also always fully spin polarized?
We have investigated these questions both by exact

and CF diagonalizations for some of these fractions. For
2/9 FQHE state, exact diagonalization results are incon-
lusive but both the JK wave function and CF diagonal-
ization (see Fig. 5) find that the fully spin polarized
state has lower energy, thus confirming absence of any
spin-polarization phase transition. The same is true for
the 3/13 and 4/17 FQHE states wherein both the JK
wave function and CF diagonalization find the state with
larger spin polarization to be lower in energy than the
state with a smaller spin polarization (see Fig. 5). We
have also studied the first meaningful member of the Jain
sequence n/(4n− 1), namely 2/7. Here, the calculations
based on the JK wave functions as well as exact diago-
nalization show that the spin singlet state has a slightly
lower energy (see Fig. 5), giving κ2/7 = 0.0013(3) (ex-
act).

For the 2pCF states with p > 1, one can perform the
JK projection slightly differently as:

Ψ n
2pn+1

= J2p−2PLLLΦnJ
2 (13)

Ψ n
2pn−1

= J2p−2PLLL[Φn]∗J2 (14)

Because these wave functions apparently build better
short distance correlations, one may expect them to
have lower energies than their counterparts in Eqs. (8)
and (9). Contrary to this expectation we find that at
ν = n/(2pn + 1) the wave functions in Eq. 13 in gen-
eral have slightly higher energies for finite systems than

those in Eqs. 8, as seen in Fig. 6. (We note that for
states restricted to two Λ levels, the wave functions of
Eq. 13 and Eq. 8 are identical.). In contrast, for states
at ν = n/(2pn − 1) we find that the ground state ener-
gies obtained from the wave functions in Eq. 14 are lower
than those obtained from Eq. 9 (see Fig. 7). Therefore,
for states at ν = n/(2pn+1) with p > 1 we quote energies
obtained from Eqs. (8) while for states at ν = n/(2pn−1)
we quote energies obtained from Eq. 14.

VI. CONCLUSIONS

The critical Zeeman energies where transitions be-
tween differently spin polarized states occur are a direct
measure of the energy difference between the states, and
thus serve as a very sensitive test of the quantitative ac-
curacy of the theory of the FQHE. These critical Zee-
man energies are in general subject to corrections due
to finite thickness of the quantum well and also Landau
level mixing. In GaAs both effects are present, and it
is not straightforward to disentangle their contributions,
although progress has been made in experiments that
study the effect systematically as a function of the quan-
tum well width25. Because graphene has negligible finite
thickness corrections, this gives an opportunity to obtain
an accurate test of the CF theory, and also to gain insight
into our understanding of the role of LL mixing17.

We have evaluated accurate spin-polarization phase di-
agram for the FQHE for an ideal two-dimensional system
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FIG. 5: (color online) Thermodynamic extrapolation of the Coulomb ground state energies at ν = 2/7 (top left panel), 2/9 (top
right panel), 3/13 (bottom left panel) and 4/17 (bottom right panel). The energies are obtained from exact diagonalization
(“exact”), JK wave functions (“JK w.f.”) or CF diagonalization (“CFD”).

FIG. 6: Comparison of the LLL Coulomb ground state en-
ergies obtained from wave functions of Eq. 8 (black squares)
and Eq. 13 (red squares) for fully polarized states at 3/13
(left panel) and 4/17 (right panel). The former gives better
energies and is used for the results in Tables III to VIII.

FIG. 7: Comparison of the LLL Coulomb ground state en-
ergies obtained from wave functions of Eq. 9 and Eq. 14 for
states with reverse flux attachment. The latter gives better
energies, and is used to obtain the energies shown in Tables
III to VIII.

confined to the LLL with no LL mixing and no disorder.
We have also evaluated corrections due to LL mixing, as-
suming that these are linear in the parameter λ. We find
that the experimental results of Feldman et al.14 are in

excellent agreement with theory that neglects LL mix-
ing. Somewhat unexpectedly, if we include LL mixing in
a linear approximation, the agreement becomes signifi-
cantly worse, indicating that the amount of LL mixing
in experiments is too large to be captured by a first or-
der perturbative treatment. These results underscore our
lack of a quantitative understanding of the effect of LL
mixing on various quantities.

We have shown that the critical Zeeman energies are
well captured in terms of an effective mass model of com-
posite fermions. We have shown that the CF states with
Jain-Kamilla projection produce the correct energy or-
dering for these states, and are fairly accurate for the
“parallel flux attached” states at ν = n/(2n+1), produc-
ing the critical Zeeman energies with better than ∼15%
accuracy. In contrast, for the “reverse flux attached”
states at ν = n/(2n − 1) the JK projection obtains the
correct energy ordering of the states but obtains the crit-
ical Zeeman energies that are off by a factor of two to
three. For these states, the Hard-Core projection method
is very accurate but difficult to implement for large sys-
tems.
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ν state N 2Q S dimension

2/3 (2,0) 28 42 14 1,521,967,986

2/3 (1,1) 14 20 0 280,934,870

2/5 (2,0) 18 41 9 3,546,374,322

2/5 (1,1) 12 27 0 2,211,680,688

3/5 (3,0) 24 41 12 3,546,374,322

3/5 (2,1) 14 23 3 383,215,178

3/7 (3,0) 18 37 9 386,905,330

3/7 (2,1) 11 22 2.5 17,969,272

4/7 (4,0) 20 37 10 386,905,330

4/7 (3,1) 14 25 5 55,975,102

4/7 (2,2) 12 21 0 114,153,021

4/9 (4,0) 20 39 10 1,438,058,853

4/9 (3,1) 14 27 5 186,301,264

4/9 (2,2) 12 23 0 336,012,314

TABLE II: Dimension of the Hilbert space of the largest sys-
tems for which exact diagonalization results were obtained in
this work. We show the dimension of states in the L = 0
and relevant S sector for several values of (N, 2Q) at various
filling factors.
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Appendix A: Results

In this Appendix, we give the results for the individ-
ual systems used in obtaining the extrapolated energies
shown in the main text. The tables below give ener-
gies obtained from three methods. One is exact diago-
nalization in the spherical geometry. These results are
obtained by the Lanczos method. In Table II we give
the dimensions of the full lowest Landau level Hilbert
space for the largest system size at various filling fac-
tors considered in this work. These are the dimensions
for the L = 0 and the relevant S sector. The results
labeled “JK w.f” are obtained from Jain’s CF wave func-
tions using the JK projection method while those labeled
“CFD” are obtained by the method of composite fermion
diagonalization68. In Fig. 8 we show the thermodynamic
extrapolation of the ground state energies from finite size
calculations of different spin polarized states at various
filling factors in the lowest Landau level. Tables III, IV,
V, VI, VII and VIII show the thermodynamic energies
obtained from these extrapolations and the critical Zee-
man energies for the spin transitions. In these tables we
also show the corrections obtained from LL mixing for
the LL mixing parameter value λ = 1.

Appendix B: Projections with reverse flux
attachment

We follow the JK method of projecting a CF wave
function to the lowest Landau level. We use the
spherical geometry73; ui = cos(θi/2)eiφi/2 and vi =
sin(θi/2)e−iφi/2 are spinorial coordinates on the sphere.
First one factorizes the Jastrow factor in Eq. 10,

J =
∏
i

Ji, (B1)

Ji =
∏
j 6=i

(uivj − ujvi), (B2)

Then each Ji is attached to the elements of a col-
umn of the Slater Φn determinant, and the projection
is performed in each element individually. The Slater
determinant is composed of monopole harmonics74,75

YQ,n,m(u, v), where Q is the effective monopole strength
for composite fermions, n is their Λ-level index and m
is the value of the z-component of the orbital angu-
lar momentum operator. Projection of a single elec-
tron wave function turns YQ,n,m(ui, vi) into an operator

ŶQ,n,m(ui, vi) that acts on the corresponding factor Ji.
If 2p flux quanta are bound to each electron, p > 1,

there one can follow two approaches. First, by Eqs. (13)
and (14), 2p − 2 powers of J are moved outside of the

LLL projection. Then ŶQ,n,m acts on Ji. Second, if by
Eqs. (8) and (9) the complete Jastrow factor is within the

scope of PLLL, ŶQ,n,m acts on Jpi . For parallel flux at-
tachment, the projected wave functions given in Refs. 45,
46 and 3 are applicable in both approaches. For reverse
flux attachment (Q < 0), Davenport and Simon62 gave
an efficient method to obtain the projected wave func-
tions. Because they implemented it explicitly only for
p = 1, here we give, for completeness, LLL projection
details for p = 2 for Q < 0.

For p = 2 and Q < 0, we have

ŶQ,n,m(ui, vi)J
2
i ∝

n∑
s=0

(−1)s

(
n

s

)(
2|Q|+ n

|Q|+m+ s

)
usiv

n−s
i (∂ui

)|Q|+m+s(∂vi)
|Q|−m+n+sJ2

i (B3)

On the other hand,

Ji =

∏
j 6=i

N−1∑
t=0

(−1)teitv
N−1−t
i uti, (B4)

where

eit = et,N−1

(
u1
v1
, . . . ,

ui−1
vi−1

,
ui+1

vi+1
, . . . ,

uN
vN

)
, (B5)

et,M (x1, . . . , xM ) =

{ ∑
0<i1<···≤iM xi1 . . . xim if t ≤M

0 otherwise

(B6)
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ν (2,0) (1,1) κ

exact JK w.f. CFD exact JK w.f. CFD exact JK w.f. CFD

2/3 -0.51829(2) -0.5176(1) -0.52704(4) -0.5217(2) - 0.0175(1) 0.0065(17) -

2/3 (with LL mixing) -0.61469(16) - -0.62969(10) - - 0.0300(5) - -

2/5 -0.43298(3) -0.43277(2) -0.43287(2) -0.43935(1) -0.43839(2) -0.43902(3) 0.0127(1) 0.0113(1) 0.0123(1)

2/5 (with LL mixing) -0.46870(10) - -0.47932(17) - - 0.0212(5) - -

2/7 -0.38185(9) -0.38140(6) -0.38249(8) -0.38188(6) - 0.0013(3) 0.0010(2) -

2/9 -0.34314(18) -0.34274(2) -0.34299(6) -0.34319(25) -0.34221(2) -0.34256(2) 0.0001(9) - -

2/11 - -0.31331(2) - -0.31329(2) - -0.0002(3) -

2/13 - -0.29087(1) -0.29133(16) - -0.29019(1) -0.29047(3) - -

TABLE III: Lowest Landau level Coulomb interaction energies (in units of e2/ε`) obtained from a thermodynamic extrapolation
of results on the spherical geometry for various spin polarized states [denoted by (n↑, n↓)] states at ν = 2/(4p±1). The energies
are obtained from exact diagonalization (“exact”), JK wave functions (“JK w.f.”) or CF diagonalization (“CFD”). Also shown
are the critical Zeeman energies for spin transitions between the successive states. For EZ/(e

2/ε`) > κ, the higher polarized
state is favored over the lower polarized one. In this as well as the following tables, the energy corrections obtained from LL
mixing are quoted for the value of the LL mixing parameter λ=1.

ν (3,0) (2,1) κ

exact JK w.f. CFD exact JK w.f. CFD exact JK w.f. CFD

3/5 -0.49742(1) -0.4967(3) -0.50366(2) -0.4995(1) - 0.0187(1) 0.0081(12) -

3/5 (with LL mixing) -0.57710(25) - -0.58873(46) - - 0.0349(14) -

3/7 -0.44236(2) -0.4423(1) -0.44237(1) -0.44800(2) -0.44710(1) -0.44748(4) 0.0167(2) 0.0144(1) 0.0154(2)

3/7 (with LL mixing) -0.484663(13) - -0.49628(59) - - 0.0349(14) -

3/11 - -0.3738(1) - -0.37352(7) - - - -

3/13 - -0.34839(3) -0.34844(1) - -0.34771(5) -0.34794(2) - - -

3/17 - -0.30924(7) - -0.30873(6) - - - -

TABLE IV: Same as in Table III but for states at ν = 3/(6p± 1).

ν (4,0) (3,1) (2,2)

exact JK w.f. CFD exact JK w.f. CFD exact JK w.f. CFD

4/7 -0.48842(0) -0.4875(7) - -0.49370(0) -0.4904(3) - -0.49495(0) -0.4908(2) -

4/7 (with LL mixing) -0.56161(0) - - -0.57177(0) - -0.57432(0) -

4/9 -0.44771(0) -0.44750(1) -0.44770(10) -0.45241(0) -0.45155(1) -0.45184(3) -0.45382(0) -0.45275(2) -0.45288(6)

4/9 (with LL mixing) -0.49303(0) - - -0.50256(0) - -0.50531(0) -

4/17 - -0.35123(1) -0.35125(2) - -0.35062(1) -0.35097(6) - -0.35053(1) -0.35051(1)

TABLE V: Same as in Table III but for states at ν = 4/(8p±1). An underbar indicates that the thermodynamic extrapolation
was done using only two systems, indicating that the results are less reliable.

ν κ1 κ2

exact JK w.f. CFD exact JK w.f. CFD

4/7 0.0211(0) 0.012(4) - 0.0050(0) 0.002(1) -

4/7 (with LL mixing) 0.0406(0) - - 0.0102(0) - -

4/9 0.0188(0) 0.0162(1) 0.0166(5) 0.0057(0) 0.0048(1) 0.0042(4)

4/9 (with LL mixing) 0.0381(0) - - 0.0110(0) - -

TABLE VI: The two critical Zeeman energies for spin transitions between the fully polarized and partially polarized states
(κ1) and between the partially polarized and spin singlet states (κ2) at ν = 4/(8p ± 1). An underbar indicates that the
thermodynamic extrapolation was done using only two systems, indicating that the results are less reliable.
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ν (5,0) (4,1) (3,2) κ1 κ2

JK w.f. JK w.f. JK w.f. JK w.f. JK w.f.

5/11 -0.45080(1) -0.45429(2) -0.45563(4) 0.0175(2) 0.0067(3)

TABLE VII: Same as in Table III but for states at ν = 5/(10p± 1). Also shown are the two critical Zeeman energies for spin
transitions between the fully polarized (5,0) and partially polarized (4,1) states (κ1) and between the partially polarized (4,1)
and partially polarized (3,2) states (κ2).

ν (6,0) (5,1) (4,2) (3,3) κ1 κ2 κ3

JK w.f. JK w.f. JK w.f. JK w.f. CFD JK w.f. JK w.f. JK w.f. CFD∗

6/13 -0.45316(2) -0.45627(10) -0.45757(1) -0.45800(7) -0.45820(10) 0.0186(7) 0.0078(7) 0.0026(5) 0.0038(7)

TABLE VIII: Same as in Table III but for states at ν = 6/(12p ± 1). Also shown are the three critical Zeeman energies for
spin transitions between the fully polarized and partially polarized (5,1) states (κ1); between the partially polarized (5,1) and
partially polarized (4,2) states (κ2) and between the partially polarized (4,2) and spin-singlet states (κ3). The ∗ for the CFD
value of κ3 indicates that only the spin-singlet energy was calculated using CFD; for the partially polarized (4,2) state, the
zeroth order CF energy was used.
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FIG. 8: Extrapolation of the lowest Landau level Coulomb ground state energy to the thermodynamic limit for different spin
polarized states at various filling factors.
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Here, et,m are elementary symmetric polynomials.
Thus, when evaluating Eq. B3, the key step is

(∂ui
)|Q|+m+s(∂vi)

|Q|−m+n+s

∏
j 6=i

uj

2

×

(
N−1∑
t=0

(−1)teitv
N−1−t
i uti

)(
N−1∑
r=0

(−1)reirv
N−1−r
i uri

)

=

∏
j 6=i

uj

2
N−1∑
t=0

(−1)teit

N−1∑
r=0

(−1)reir×

(∂ui)
|Q|+m+s(∂vi)

|Q|−m+n+sv
2(N−1)−t−r
i ut+ri

=

∏
j 6=i

uj

2
N−1∑
t,r=0

(−1)t+reite
i
r×

(2(N − 1)− t− r)!v2(N−1)−t−r−(|Q|−m+n−s)
i

(2(N − 1)− t− r − (|Q| −m+ n− s))!
×

(t+ r)!u
t+r−(|Q|+m−s)
i

(t+ r − (|Q|+m− s))!
. (B7)

The summation in Eq. B7 must be restricted as

t+ r ≥ |Q|+m+ s, (B8)

t+ r ≤ 2(N − 1)− (|Q| −m+ n+ s). (B9)

The elementary symmetric polynomials stated above
can be calculated iteratively using the following Newton’s
identity76:

em,N (x1, x2, · · · , xN ) =
1

m

m∑
r=1

(−1)r+1pr,N (x1, x2, · · · , xN )

× em−r,N (x1, x2, · · · , xN ) (B10)

where pr,N is the power-sum polynomial defined as:

pr,N (x1, x2, · · · , xN ) =

N∑
i=1

xri (B11)

We also note another iterative identity of the symmetric
polynomials:

em,N−1(x1, x2, · · · , xj 6=i · · · , xN ) = em,N (x1, x2, · · · , xN )

− xiem−1,N−1(x1, x2, · · · , xj 6=i · · · , xN )

The above two identities can be used in conjunction with
each other to create an efficient routine to store the com-
plete set of symmetric polynomials eit. A word of caution
is due here: the above quantities tend to suffer from nu-
merical precision errors. To get around this problem, we
store all the numerical values to high precision.

We also give the projection formula for p = 1 correcting
a typo in Ref. 62:

ŶQ,n,m(ui, vi)Ji ∝
(∏
j 6=i

uj

) n∑
s=0

(−1)s
(
n

s

)(
2|Q|+ n

|Q|+m+ s

)
×

N−1−(|Q|−m+n−s)∑
t=|Q|+m+s

(−1)teit
t!

[t− (|Q|+m+ s)]!
u
t−(|Q|+m)
i ×

[N − 1− t]!
[N − 1− t− (|Q| −m+ n− s)]!

v
N−1−t−(|Q|−m)
i

(B12)
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J. K. Jain, ArXiv e-prints (2014), 1406.4042.
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