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Injecting spin-polarized carriers into semiconductor lasers provides important opportunities to
extend what is known about spintronic devices, as well as to overcome many limitations of con-
ventional (spin-unpolarized) lasers. By developing a microscopic model of spin-dependent optical
gain derived from an accurate electronic structure in a quantum well-based laser, we study how
its operation properties can be modified by spin-polarized carriers, carrier density, and resonant
cavity design. We reveal that by applying an uniaxial strain it is possible to attain a large birefrin-
gence. While such birefringence is viewed as detrimental in conventional lasers, it could enable fast
polarization oscillations of the emitted light in spin-lasers which can be exploited for optical com-
munication and high-performance interconnects. The resulting oscillation frequency (> 200 GHz)
would significantly exceed the frequency range possible in conventional lasers.

PACS numbers: 42.55.Px, 78.45.+h, 78.67.De, 78.67.Hc

I. INTRODUCTION

Both spin-lasers and their conventional (spin-
unpolarized) counterparts share three main elements:
(i) the active (gain) region, responsible for optical
amplification and stimulated emission, (ii) the resonant
cavity, and (iii) the pump which injects (optically or
electrically) energy/carriers. The main distinction
of spin-lasers is a net carrier spin polarization (spin
imbalance) in the active region which, in turn, can lead
to crucial changes in their operation, as compared to
their conventional counterparts. This spin imbalance
is responsible for a circularly polarized emitted light, a
result of the conservation of the total angular momentum
during electron-hole recombination.1

The experimental realization of spin-lasers2–19 presents
two important opportunities. They provide a path to
practical room temperature spintronic devices with dif-
ferent operating principles, not limited to magnetoresis-
tive effects which have enabled tremendous advances in
magnetically-stored information.20–24 This requires revis-
iting the common understanding of material parameters
for desirable operation,25 as well as a departure from
more widely studied spintronic devices, where only one
type of carriers (electrons) plays an active role. In con-
trast, since semiconductor lasers are bipolar devices, a
simultaneous description of electrons and holes is crucial.
On the other hand, the interest in spin-lasers is not

limited to spintronics as they may extend the limits of
what is feasible with conventional semiconductor lasers.
It was experimentally demonstrated that injecting spin-
polarized carriers already leads to noticeable differences
in the steady-state operation.4–6 The onset of lasing is
attained for a smaller injection, lasing threshold reduc-
tion, while the optical gain differs for different polariza-
tions of light, leading to gain asymmetry, also referred to
as gain anisotropy.5,6,8 In the stimulated emission, even
a small carrier polarization in the active region can be

greatly amplified and lead to the emission of completely
circularly polarized emitted light, an example of a very
efficient spin filtering.13

Figure 1: Bucket model for a (a) conventional and (b) spin-
laser.26 Water added to the bucket represents the carriers
and the water coming out the emitted light. Small leaks de-
pict spontaneous emission and overflowing water reaching the
large opening corresponds to the lasing threshold. In (b) the
two halves represent two spin populations (hot and cold water
in the analogy) and are filled separately. The partition be-
tween them is not perfect: spin relaxation can cause the two
populations to mix. The color code indicates conservation of
angular momentum, an unpolarized pumping (violet) is an
equal mixture of two polarized contributions (red and blue).

An intuitive picture for a spin-laser is provided by a
bucket model in Fig. 1.26,27 The uneven water levels rep-
resents the spin imbalance in the laser which implies: (i)
lasing threshold reduction – in a partitioned bucket less
water needs to be pumped for it to overfill. There are also
two thresholds (for cold and hot water).28 (ii) gain asym-
metry – an unequal amount of hot and cold water comes
out. A small spin imbalance of pumped carriers can (the
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two water levels slightly above and below the opening,
respectively) result in a complete imbalance in the polar-
ization of the emitted light (here only hot water gushes
out) and, consequently, spin-filtering. These effects are
attained at room temperature with either optical or elec-
trical injection. The latter experimental demonstration17

is a breakthrough towards practical use of spin-lasers.

Perhaps the most promising opportunity to overcome
the limitations of conventional lasers lies in the dy-
namic operation of spin-lasers, predicted to provide en-
hanced modulation bandwidth, improved switching prop-
erties, and reduced parasitic frequency modulation –
chirp.25,26,29,30 Moreover, experiments have confirmed
that in a given device a characteristic frequency of po-
larization oscillations of the emitted light can signifi-
cantly exceed the corresponding frequency of the inten-
sity oscillations.11,12,16 This behavior was attributed to
birefringence – an anisotropy of the index of refraction,
considered detrimental in conventional lasers.31

What should we then require to attain high-frequency
operation in spin-lasers? Can we provide guidance for
the design of an active region and a choice of the reso-
nant cavity? Unfortunately, to address similar questions
we cannot simply rely on the widely used rate-equation
description of spin-lasers,4,5,26,32,33 but instead we need
to formulate a microscopic description. The crucial con-
sideration is a detailed knowledge of the spectral (energy-
resolved) optical gain obtained from an accurate descrip-
tion of the electronic structure in the active region, al-
ready important to elucidate a steady-state operation of
a spin-laser.

A typical vertical geometry, the so-called vertical cav-
ity surface emitting lasers (VCSELs),31,34–36 used in
nearly all spin-lasers is illustrated in Fig. 2(a). Even
among conventional lasers, VCSELs are recognized for
their unique properties, making them particularly suit-
able for optical data transmission.36 The resonant cavity
is usually in the range of the emission wavelength, pro-
viding a longitudinal single-mode operation. It is formed
by a pair of parallel highly reflective mirrors made of
distributed Bragg reflectors (DBRs), a layered structure
with varying refractive index. The gain active (gain) re-
gion, usually consists of III-V quantum wells (QWs) or
quantum dots (QDs).7–9,26,37–39

The key effect of the active region is producing a stim-
ulated emission and coherent light that makes the laser
such a unique light source. The corresponding opti-
cal gain that describes stimulated emission, under suffi-
ciently strong pumping/injection of carriers, can be illus-
trated pictorially in Figs. 2(b) and 2(c) for both conven-
tional and spin-lasers, respectively. In the latter case it is
convenient to decompose the photon density into differ-
ent circular polarizations and distinguish that the gain is
generally polarization-dependent. If we neglect any loses
in the resonant cavity, such a gain would provide an ex-
ponential growth rate with the distance across a small
segment of gain material.34 Since both static and dy-
namic operations of spin-lasers crucially depend on their

L Lw

(c)
Pump

(b)

Pump

Figure 2: (a) (Color online) A geometry of a vertical cavity
surface emitting laser. The resonant cavity of length L is
formed between the two mirrors made of distributed Bragg
reflectors (DBRs). The shaded region represents the active
(gain) region of length LW . The profile of a longitudinal op-
tical mode is sketched. Schematic of the optical gain, g, in the
active region for a conventional (b) and spin-laser (c). With
an external pumping/injection, a photon density S increases
by δS as it passes across the gain region.40 In the spin-laser
this increase depends on the positive (+)/negative(−) helicity
of the light, S = S+ + S−.

corresponding optical gain, our focus will be to provide
its microscopic description derived from an accurate elec-
tronic structure of an active region.
After this introduction, in Sec. II we provide a theo-

retical framework to calculate the gain in quantum well-
based lasers. In Sec. III we describe the corresponding
electronic structure and the carrier populations under
spin injection, the key prerequisites to understand the
spin-dependent gain and its spectral dependence, dis-
cussed in Sec. IV. Our gain calculations in Sec. V ex-
plain how the steady-state properties of spin-lasers can be
modified by spin-polarized carriers, carrier density, and
resonant cavity design. In Sec. VI we analyze the influ-
ence of a uniaxial strain in the active region which intro-
duces a large birefringence with the resulting oscillation
frequency that would significantly exceed the frequency
range possible in conventional lasers. In Sec. VII we de-
scribe various considerations for the optimized design of
spin-lasers and the prospect of their ultrahigh frequency
operation. A brief summary in Sec. VIII ends our paper.

II. THEORETICAL FRAMEWORK

While both QWs and QDs,7–9 are used for the active
region of spin-lasers, we focus here on the QW implemen-
tation also found in most of the commercial VCSELs.36

To obtain an accurate electronic structure in the active
region, needed to calculate optical gain, we use the 8×8
k·p method.41 The total Hamiltonian of the QW system,
with the growth axis along the z direction, is

HQW(z) = Hkp(z) +Hst(z) +HO(z), (1)

where Hkp(z) denotes the k·p term, Hst(z) describes the
strain term, and HO(z) includes the band-offset at the
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interface that generates the QW energy profile. The ex-
plicit form of these different terms for zinc-blende crystals
is given in Appendix A.

Considering that common nonmagnetic semiconduc-
tors are well characterized by the vacuum permeability,
µ0, a complex dielectric function ε(ω) = εr(ω) + εi(ω),
where ω is the photon (angular) frequency, can be used
to simply express the dispersion and absorption of elec-
tromagnetic waves. The absorption coefficient describing
gain or loss of the amplitude of an electromagnetic wave
propagating in such a medium is the negative value of
the gain coefficient (or gain spectrum),31,42,43

ga(ω) = − ω

cnr

ǫai (ω) , (2)

where c is the speed of light, nr is the dominant real part
of the refractive index of the material,42 and εai (ω) is the
imaginary part of the dielectric function which generally
depends on the polarization of light, a, given by

εai (ω) = C0

∑

c,v,~k
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where the indices c (not to be confused with the speed of
light) and v label the conduction and valence subbands,

respectively, ~k is the wave vector, pa
cv~k

is the interband

dipole transition amplitude, f
c(v)~k is the Fermi-Dirac dis-

tribution for the electron occupancy in the conduction
(valence) subbands, ~ is the Planck’s constant, ω

cv~k
is

the interband transition frequency, and δ is the Dirac
delta-function, which is often replaced to include broad-
ening effects for finite lifetimes.31,44 The constant C0 is
C0 = 4π2e2/(ε0m

2
0ω

2Ω), where e is the electron charge,
m0 is the free electron mass, and Ω is the QW volume.

Analogously to expressing the total photon density in
Fig. 2, as the sum of different circular polarizations,
S = S+ + S−, in spin-resolved quantities we use sub-
scripts to describe different spin projections, eigenval-
ues of σz Pauli matrix. The total electron/hole density
can be written as the sum of the spin up (+) and the
spin down (−) electron/hole densities, n = n+ + n− and
p = p++ p−. In this convention,25,28,29 using the conser-
vation of angular momentum between carriers and pho-
tons, the recombination terms are n+p+, n−p−, while
the corresponding polarization of the emitted light de-
pends on the character of the valence band holes.45 We
can simply define the carrier spin polarization

Pα = (α+ − α−)/(α+ + α−), (4)

where α = n, p.46

Using the dipole selection rules for the spin-conserving
interband transitions, the gain spectrum,

ga(ω) = ga+(ω) + ga−(ω) (5)

can be expressed in terms of the contributions of spin up

and down carriers. To obtain ga+(−)(ω), the summation

of conduction and valence subbands is restricted to only
one spin:

∑

c

→
∑

c+(−)

and
∑

v

→
∑

v+(−)

in Eq. (3).
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Figure 3: (a) Energy band diagram with a bandgap Eg and
chemical potentials in conduction (valence) bands, µC (µV )
that in the presence of spin-polarized carriers become spin-
dependent: µC(V )+ 6= µC(V )−, unlike the rest of our analysis,
here holes are spin-polarized. (b) Gain spectrum for unpo-
larized (solid) and spin-polarized electrons (dashed curves).
Positive gain corresponds to the emission and negative gain
to the absorption of photons. The gain threshold gth, required
for lasing operation, is attained only for S− helicity of light.

To see how spin-polarized carriers could influence the
gain, we show chemical potentials, µC(V ), for a simplified
conduction (valence) band in Fig. 3(a). The spin im-
balance in the active region implies that µC(V ) will also
become spin-dependent. Such different chemical poten-
tials lead to the dependence of gain on the polarization of
light, described in Fig. 3(b). Without spin-polarized car-
riers, the gain is the same for S+ and S− helicity of light.
In an ideal semiconductor laser, g > 0 requires a popula-
tion inversion for photon energies, Eg < ~ω < (µC−µV ).
However, a gain broadening is inherent to lasers and, as
depicted in Fig. 3(b), g > 0 even below the bandgap,
~ω < Eg. If we assume Pn 6= 0 [recall Eq. (4)] and
Pp = 0 (accurately satisfied, as spins of holes relax much
faster than electrons), we see different gain curves for S+

and S−. The crossover from emission to absorption is
now in the range of (µC− − µV−) and (µC+ − µV +).
Optical injection of spin-polarized electrons is the most

frequently used method to introduce spin-imbalance in
lasers. Some spin-lasers are therefore readily available
since they can be based on commercial semiconductor
lasers to which a source of circularly polarized light is
added subsequently.4 Such spin injection can be readily
understood from dipole optical selection rules which ap-
ply for both excitation and radiative recombination.1,20

A simplified band diagram for a zinc-blende QW semi-
conductor with the corresponding interband transitions
is depicted in Fig. 4. At the Brillouin zone center, the va-
lence band degeneracy of heavy and light holes (HH, LH)
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in the bulk semiconductor is lifted for QWs due to quan-
tum confinement along the growth direction. The angu-
lar momentum of absorbed circularly polarized light is
transferred to the semiconductor. Electrons’ orbital mo-
menta are directly oriented by light and, through spin-
orbit interaction, their spins become polarized.1 While
initially holes are also polarized, their spin polarization is
quickly lost.20 Thus, as in Fig. 3(b), we assume through-
out this work Pp = 0, unless stated otherwise.

HH

LH

CB E

Eg

kxkz
LH

HH

CB

(a) (b)

1/2

-1/2

3/2 -3/2

1/2
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3/2

j=1/2

j=3/2

Figure 4: (Color online) Schematic band structure and op-
tical selection rules in zinc-blende QWs. (a) Conduction
band (CB) and valence band with heavy and light holes (HH,
LH) labeled by their total angular momentum j = 1/2 and
j = 3/2, representing the states of the orbital angular momen-
tum l = 0 and 1, respectively (Appendix A). (b) Interband
dipole transitions near the band edge of a QW for light with
positive and negative helicity, S±, between the sublevels la-
beled by mj , the projection of the total angular momentum
on the +z-axis (along the growth direction). The small ar-
rows represent the projection of spin 1/2 of the orbital part
that contributes to the transition, indicating that dipole tran-
sitions do not change spin (Appendix B).

The spin polarization of excited electrons depends on
the photon energy for S+ or S− light. From Fig. 4(b) we
can infer that if only CB-HH are involved, |Pn| → 1. At
a larger ~ω, involving also CB-LH transitions, |Pn| is re-
duced. Expressing S± ∝ Y ±1

1 , where Y m
l is the spherical

harmonic, provides a simple connection between dipole
selection rules and the conservation of angular momen-
tum in optical transitions (Appendix B).

III. ELECTRONIC STRUCTURE

For our microscopic description of spin-lasers we fo-
cus on a (Al,Ga)As/GaAs-based active region, a choice
similar to many commercial VCSELs. We consider an
Al0.3Ga0.7As barrier and a single 8 nm thick GaAs QW.47

The corresponding electronic structure of both band dis-
persion and the density of states (DOS) is shown in Fig. 5.
Our calculations, based on the k·p method and the 8×8
Hamiltonian from Eq. (1) (Appendix A), yield two con-
fined CB subbands: CB1, CB2, and five VB subbands,

labeled in Fig. 5(a) by the dominant component of the

total envelope function at ~k = 0. The larger number of
confined VB subbands stems from larger effective masses
for holes than electrons.48 These differences in the effec-
tive masses also appear in the DOS shown in in Fig. 5(b).
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Figure 5: (Color online) (a) Band structure for the
Al0.3Ga0.7As/GaAs QW for different k-directions along [100],
[010], and [110]. (b) DOS calculated from (a). The conduc-
tion band DOS is multiplied by a factor of 20 to match the
valence band scale. The bandgap is Eg = 1.479 eV (CB1-HH1
energy difference).

As we seek to describe the gain spectrum in the ac-
tive region, once we have the electronic structure, it is
important to understand the effects associated with car-
rier occupancies though injection/pumping [recall Fig. 2,
Eqs. (2) and (3)]. In Figs. 6 (a), (c), and (e) we show
both examples of injected unpolarized (Pn = 0) and spin-
polarized (Pn = 0.5) electrons as seen in the equal and
spin-split CB chemical potentials, respectively. The car-
rier population34 is given in Figs. 6(b), (d), and (f) using
the product of the Fermi-Dirac distribution and the DOS
for CB and VB for both spin projections.

IV. UNDERSTANDING THE

SPIN-DEPENDENT GAIN

From the conservation of angular momentum and
polarization-dependent optical transitions we can under-
stand that even in conventional lasers carrier spin plays a
role in determining the gain. However, in the absence of
spin-polarized carriers49 the gain is identical for the two
helicities: g+ = g−, and we recover a simple description
(spin- and polarization-independent) from Fig. 2(b). In
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Figure 6: Band structure of Fig. 5(a) with electron occu-
pancy for (a) Pn=0, (c) Pn = 0.5, and (e) Pp = 0. Carrier
population expressed as a product of DOS from Fig. 5(b) and
the Fermi-Dirac distribution of electrons for (b) Pn=0, (d)
Pn = 0.5, and (f) Pp = 0. The carrier density is fixed at
n = p = 3 × 1012 cm−2 and T = 300 K. The negative (pos-
itive) side of the x-axis represents spin down (up) electrons,
dashed lines denote chemical potentials. The CB population
is multiplied by 60 and shown in the same scale as for the VB.

our notation, g±±, the upper (lower) index refers to the
circular polarization (carrier spin) [recall Eq. (5)].

This behavior can be further understood from the
gain spectrum in Figs. 7(a) and (b), where we recog-
nize that g+ = g− requires: (i) g+− = g−+ and g++ = g−−,
dominated by CB1-HH1 (1.479 eV = Eg) and CB1-
LH1 (1.501 eV) transitions, respectively (recall Fig. 5).
No spin-imbalance implies spin-independent µC and µV

[Fig. 3(a)] and thus g±, g±+ , and g±− , all vanish the pho-
ton energy Eph = ~ω = µC − µV . Throughout our cal-

culations we choose a suitable cosh−1 broadening44 with
FWHM of 19.75 meV, which accurately recovers the gain
of conventional (Al,Ga)As/GaAs QW systems.

We next turn to the gain spectrum of spin-lasers. Why
is their output different for S+ and S− light, as depicted
in Fig. 2(b)? Changing only Pn = 0.5 from Figs. 7(a) and
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Figure 7: (Color online) Gain spectra shown as a function of
photon energy measured with respect to the energy bandgap.
Conventional laser, Pn = 0 for (a) S+ and (b) S− light po-
larization. Spin-lasers, Pn = 0.5 for (c) S+ and (d) S− light
polarizations. The carrier density n = p = 3×1012 cm−2 and
T = 300 K are the same as in Fig. 6.

(b), we see very different results for S+ and S− light in
Figs. 7(c) and (d). Pn > 0 implies that µC+ > µC−
[see Fig. 6(c)], leading to a larger recombination be-
tween the spin up carriers (n+p+ > n−p−) and thus to
a larger g+ for S+ and S− (red/dashed line) than g−
(blue/dashed line). The combined effect of having spin-
polarized carriers and different polarization-dependent
optical transitions for spin up and down recombination
is then responsible for g+ 6= g−, given by solid lines in
Figs. 7(c) and 7(d). For this case, the emitted light S−

exceeds that with the opposite helicity, S+, there is a gain
asymmetry,5,6,8 another consequence of the polarization-
dependent gain. The zero gain is attained at µC+ − µV

for spin up (red curves) and µC− − µV for spin down
transitions (blue curves). The total gain, including both
of these contributions, reaches zero at an intermediate
value. Without any changes to the band structure, a sim-
ple reversal of the carrier spin-polarization, Pn → −Pn,
reverses the role of preferential light polarization.

V. STEADY-STATE GAIN PROPERTIES

Within our framework, providing a spectral informa-
tion for the gain, we can investigate how the carrier den-
sity and its spin polarization, which can be readily mod-
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ified experimentally, can change the steady-state opera-
tion of spin-lasers. Specific to VCSELs, it is important to
examine how their laser operation is related to the choice
of a resonant cavity which defines the photon energy at
which the constructive interference takes place.
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Figure 8: (Color online) Evolution of the gain spectra with
carrier density for: (a) Pn = 0, (b) Pn = 0.1, (c) Pn = 0.5,
and (d) Pn = 1.0. In order to achieve emission, a certain
value of carrier density should be added to the system. The
second peak at Eph − Eg ∼ 150 meV is related to transitions
of CB2-HH2. Transitions of CB2-LH2 at Eph−Eg ∼ 200 meV
can be seen in the broader second peak for Pn = 1.0. The
difference between g+ and g− that arise due to spin-polarized
carriers in the system increases with Pn. For Pn = 1.0 there
is no emission of S+ polarized light, i. e., this component is
totally absorbed by the system. The diagonal arrow in Fig.
8 indicates the increase of carrier density in the curves.

Most of the QW-based lasers do not have a doped
active region and rely on a charge neutral carrier in-
jection (electrical or optical).34 Here we choose n =
p = 1, 3, 5, 7 × 1012 cm−2, and spin polarizations Pn =
0, 0.1, 0.5, 1, respectively. Electrical injection in intrin-

sic III-V QWs using Fe or FeCo allows for |Pn| ∼ 0.3 −
0.7,50–52 while |Pn| → 1 is attainable optically at room
temperature.20 In most of the spin-lasers |Pn| <∼ 0.2 in
the active region. We focus on three resonant cavity posi-
tions: c1, c2, c3 (vertical lines), defining the correspond-
ing energy of emitted photons c1 = 1.48 eV ∼ 1.479 eV
(CB1-HH1 transition), c2 = 1.5 eV ∼ 1.501 eV (CB1-
LH1 transition) and c3 = 1.52 eV (at the high energy
side of the gain spectrum).

The corresponding results are given in Fig. 8 showing
gain spectra different for S+ and S−. This gain asym-
metry, g+ 6= g−, is more pronounced at larger Pn, at
Pn = 1 there is even no S+ emission. While this trend
is expected and could be intuitively understood, there is
a more complicated dependence of the gain asymmetry,
g−(~ω) − g+(~ω) on the carrier density and the choice
of the detuning,42 the energy (frequency) difference be-
tween the gain peak and the resonant cavity position.
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Figure 9: (Color online) Gain asymmetry obtained from Fig. 8
for: (a) Pn = 0.1, (b) Pn = 0.5, and (c) Pn = 1.0. As
more carriers are added to the system, the asymmetry peak
shifts to higher energies, however, this energy region is not
necessarily in the regime of a positive gain. Gain asymmetry
as a function of carrier density for: (d) Pn = 0.1, (e) Pn = 0.5,
and (f) Pn = 1.0. Similar to the case of Figs. 9(a)-(c), the
asymmetry peaks may not correspond to positive gain.

The gain asymmetry is one of the key figures of merit
for spin-lasers and can be viewed as crucial for their
spin-selective properties, including robust spin-filtering
or spin-amplification, in which even a small Pn (few per-
cent) in the active region leads to an almost complete
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polarization of the emitted light (of just one helicity).13

Unfortunately, how to enhance the gain asymmetry, be-
yond just increasing Pn, is largely unexplored.
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Figure 10: (Color online) Gain as s function of carrier density
for: (a) Pn = 0.1, (b) Pn = 0.5, and (c) Pn = 1.0, with the
cavity choices c1, c2, and c3. Comparing: (i) solid and short-
dashed lines we can examine the spin-filtering effect, (ii) solid
and long-dashed curves we can examine the threshold reduc-
tion. The solid horizontal line indicates the gain threshold,
i.e., the losses in the cavity. To achieve the lasing, the value
of gain must be greater then the gain threshold.

To establish a more systematic understanding of a
gain asymmetry, we closely examine g−(~ω)− g+(~ω) in
Figs. 9(a)-(c) for different Pn, carrier densities, and res-
onant cavities. Increasing n, the gain asymmetry peak
shifts to higher ~ω, indicating an occupation of higher en-
ergy subbands. However, the absolute asymmetry peak
is not always in the emission region. For a desirable oper-
ation of a spin-laser we should seek a large gain asymme-
try with a positive (and a preferably large) gain. Com-
plementary information is given by Figs. 9(d)-(f) with a
density evolution of g−−g+ for different cavity positions
and Pn. Again, we see that the gain asymmetry peak
can be attained outside of the lasing region.

The results in Fig. 9 have shown a complex evolution of

the gain asymmetry with the cavity position and carrier
density. We now repeat a similar analysis for the gain
itself in Fig. 10. The gain calculated for two helicities and
unpolarized light (S+ = S−), provides a useful guidance
for the threshold reduction and the spin-filtering effect,
invoked in a simple bucket model from Fig. 1.
We first consider Pn = 0.1 which shows a behavior

with an increase in n or, equivalently, an increase in in-
jection, that could be expected from the bucket model.
The threshold value of the gain (the onset of an overflow-
ing bucket), gth, is first reached for S−, then for unpo-
larized light, a sign of threshold reduction, and the last
for S+ (a subdominant helicity from the conservation of
angular momentum and Pn > 0). Therefore there is a
spin-filtering interval of n (small, since Pn itself is small)
where we expect lasing with only one helicity. A similar
behavior appears for all the cavity choices c1, c2, and c3.
We next turn to Pn = 0.5 where c1 shows trends ex-

pected both from the bucket model an early work on
spin-lasers.4,5 An increase from Pn = 0.1 to 0.5 enhances
the threshold reduction and the spin-filtering interval.
However, different cavity positions c2 and c3 reveal a dif-
ferent behavior. There is a region where unpolarized light
S+ = S− (long dashed lines) yields a greater gain than
for S− (solid lines). For c3 the threshold is attained at
smaller n for unpolarized light than for negative helicity,
i.e., there is no threshold reduction.53 With Pn = 1.0,
the threshold reduction is only possible for c1.
These results reinforce both the possibility for a versa-

tile spin-VCSEL design by a careful choice of the resonant
cavity, but also caution that, depending on the given res-
onant cavity, the usual intuition about the influence of
carrier density and spin polarization on the laser opera-
tion may not be appropriate.

VI. STRAIN-INDUCED BIREFRINGENCE

An important implication of an anisotropic dielectric
function is the phenomenon of birefringence in which the
refractive index, and thus the phase velocity of light,
depends on the polarization of light.34 Due to phase
anisotropies in the laser cavity,54 the emitted frequen-
cies of linearly polarized light in the x- and y-directions
(Sx and Sy) are usually different. Such birefringence is
often undesired for the operation of conventional lasers
since it is the origin for the typical complex polarization
dynamics and chaotic polarization switching behavior in
VCSELs.32,55–58 While strong values of birefringence are
usually considered to be an obstacle for the polarization
control in spin-polarized lasers,6,15 the combination of a
spin-induced gain asymmetry with birefringence in spin-
VCSELs allows to generate fast and controllable oscil-
lations between S+ and S− polarizations.12,16 The fre-
quency of these polarization oscillations are determined
by the linear birefringence in the VCSEL cavity and can
be much higher than the frequency of relaxation oscilla-
tions of the carrier-photon system in conventional VC-
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SELs. This may open the path towards ultrahigh band-
width operation for optical communications.12,25,59
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Figure 11: (Color online) Band structure with uniaxial strain
in the active region for (a) εxx ∼ 0.019% and (b) εxx ∼

0.058%. The inset shows a zoom around the HH1 and LH1 in-
teraction region, where the difference between [100] and [010]
directions is more visible. The energy gap of the system is
Eg ∼ 1.4829 eV for case (a) and Eg ∼ 1.4809 eV for case (b).

In order to investigate birefringence effects in the active
region of a conventional laser, we consider uniaxial strain
by extending the lattice constant in x-direction. For sim-
plicity, we assume the barrier to have the same lattice
constant as GaAs, 5.6533 Å, in y-direction. Therefore,
both barrier and well regions will have the same exten-
sion in x-direction. For ax = 5.6544 Å we have the cor-
responding element of the strain tensor εxx ∼ 0.019%,
while ax = 5.6566 Å gives εxx ∼ 0.058%.
The effect of uniaxial strain in the band structure is

presented in Fig. 11(a) and (b) for εxx ∼ 0.019% and
εxx ∼ 0.058%, respectively. The labeling and ordering
of subbands follows the same as the one from Fig. 5(a).
Just this slight anisotropy in the x- and y-lattice con-
stants creates a difference in subbands for [100] and [010]
directions. In the inset we show the region around the
anti-crossing of HH1 and LH1 subbands, where the dif-
ference is more visible.
Besides the differences induced in the band structure,

the uniaxial strain also induces a change in the dipole se-
lection rules between Sx and Sy light polarizations, which
can be seen in the gain spectra we present in Fig. 12(a)
and 12(b) for εxx ∼ 0.019% and εxx ∼ 0.058%, respec-
tively. Reflecting the features of the band structure, we
notice for the emission region of the gain spectra that
the largest difference between gx and gy is around the

HH1 and LH1 energy regions (between c1 and c3 cav-
ity positions, approximately). In the absorption regime
(negative gain) we notice gx < gy while in the emission
regime (positive gain) we have gx > gy. This feature is
more visible in Fig. 12(b).
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Figure 12: (Color online) Uniaxial strain modification of gain
spectra for strain (a) εxx ∼ 0.019% and (b) εxx ∼ 0.058%.
The anisotropy in the lattice constants for x- and y-directions
modifies the output light polarization of the laser. Since there
are no spin-polarized carriers in the system, g+ = g−.

To calculate the birefringence coefficient in the active
region, we used the definition of Ref. 60, given by

γp(ω) = − ω

2neng

δεr(ω) , (6)

where ω is the frequency of the longitudinal mode in the
cavity, ne the effective index of refraction of the cavity
and ng the group refractive index. For simplicity, we
assume ne = ng. The real part of the dielectric func-
tion can be obtained from the imaginary part using the
Kramers-Kronig relations.42

We present the birefringence coefficient in Fig. 13(a)
and 13(b) for εxx ∼ 0.019% and εxx ∼ 0.058%, respec-
tively. We notice that this strain in the active region,
responsible for modest changes in the gain spectra, pro-
duces birefringence values of the order of 1011−12 Hz
which may be exploited to generate fast polarization os-
cillations. Furthermore, increasing the strain amount by
∼ 0.04% from case (a) to case (b), the value of γp in-
creases by approximately 3 times.61 We also included in
our calculations spin-polarized electrons and notice that
they have only a small influence in the birefringence co-
efficient. Although they slightly change |gx| and |gy|, the
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asymmetry is not affected at all for small spin polariza-
tions of 10-20%, relevant values in real devices.
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Figure 13: (Color online) Birefringence coefficient as a func-
tion of photon energy considering (a) εxx ∼ 0.019% and
(b) εxx ∼ 0.058%. Just an increase of 0.0022 Å in ax in-
creases γp by approximately 3 times. The two peaks, around
Eph − Eg ∼ 0 meV and Eph − Eg ∼ 150 meV are related to
transitions from CB1 and CB2. Transitions related to CB2
are in the absorption regime, not visible in Fig. 12.

Investigating the effect of different cavity designs, we
present the values of γp in Figs. 14(a) and 14(b) for
εxx ∼ 0.019% and εxx ∼ 0.058%, respectively. We chose
the same photon energies as for the case without birefrin-
gence assuming that the different values for the strain-
induced birefringence in the active region will not signif-
icantly affect the cavity resonance for reasons of simplic-
ity. For the two different strain types the behavior of γp
is very similar for the same resonance energy. Comparing
different cavity designs we observe that for c1, the value
of γp strongly decreases and also changes sign with the
carrier density, n. In contrast, for c2 and c3, γp is always
positive. After a slow increase with n, γp becomes flat,
and nearly independent on the carrier density.

For consistency, we have also calculated the DBR con-
tributions using the approach given by Mulet and Balle.60

For large anisotropies in the DBR, the birefringence co-
efficient is on the order of 1010 Hz, consistent with the
measurements given by van Exter et al.55 Therefore, for
the investigated strain conditions, the main contribution
to γp comes from the active region and it is a very versa-
tile parameter that can be fine-tuned using both carrier
density and cavity designs, possibly even changing its
sign and reaching carrier density-independent regions.
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Figure 14: (Color online) Birefringence coefficient as function
of the carrier density for (a) εxx ∼ 0.019% and (b) εxx ∼

0.058%. For different cavity designs the behavior of γp can
be completely different. The carrier density values where γp
changes sign in cavity c1 and the flat region in cavities c2 and
c3 are already in the lasing regime.

VII. ULTRA HIGH-FREQUENCY OPERATION

Lasers could provide the next generation of par-
allel optical interconnects and optical information
processing.34–36,62–65 The growth in communication66

and massive data centers67 will pose further limitations
on interconnects.68 Conventional metallic interconnects
used in multicore microprocessors are increasingly recog-
nized as the bottleneck in maintaining Moore’s law scal-
ing and the main source of power dissipation.65,68 Optical
interconnects can effectively address the related limita-
tions, such as the electromagnetic crosstalk and signal
distortion, while providing a much larger bandwidth.64,65

VCSELs are considered particularly suitable for short-
haul communication and on-chip interconnects.36 How-
ever, to fully utilize their potential it would be important
to explore the paths for their high-frequency operation
and achieve a higher modulation bandwidth, limited for
conventional lasers to about ∼ 50 GHz.36,69

How can we understand the frequency limitation of a
laser? Why would a higher frequency modulation lead
to a decrease in a signal to noise ratio and limit the
effective bandwidth? An accurate analogy is provided
by a driven and damped harmonic oscillator. The laser
response, just like the harmonic oscillator, is unable to
follow a high enough modulation frequency. A Lorenzian-
like frequency-dependent displacement of a harmonic os-
cillator closely matches a modulation response of a laser,
decreasing as 1/ω, above the corresponding resonance
frequency, known as the relaxation oscillation frequency,
ωR, representing a natural oscillation between the car-
riers and photons and often used to estimate the band-



10

width of a laser.34,36,71

To realize a high-speed operation in conventional lasers
requires a careful design and optimization of many pa-
rameters. Attaining a high ωR is closely related to opti-
mizing the gain which increases with n,70 but decreases
with photon density S, known as the gain compression72

which would be desirable to minimize. For a small-signal
modulation S(t) = S0 + δS(t), above the threshold,34

ω2
R ≈ vg(dg/dn)S0/τph, (7)

where vg is the group velocity of the relevant mode,
dg/dn is the differential gain at the threshold, and τph
is the photon lifetime. While ωR increases with S0, a
larger S0, through gain compression, is detrimental by
diminishing the differential gain. There are additional
factors, beyond Eq. (7), required for a high ωR, such as
minimizing the transport time for carriers to reach the ac-
tive region, achieving a high carrier escape rate into the
QW barriers, and minimizing extrinsic parasitic effects
between the intrinsic laser and the driving circuit.36,71

Introducing spin-polarized carriers offers additional
possibilities to enhance ωR, corresponding to the modu-
lation of the emitted S, beyond the frequencies attainable
in conventional lasers. In the regime of small-signal mod-
ulation, both ωR and the bandwidth have been shown to
increase with an increase of the spin-polarization of the
injected carriers, PJ ,

26,29 associated with the threshold
reduction [thus for a given injection S0 is larger than
in Eq. (7)]. Similar trends are predicted in the large-
signal modulation, but the corresponding increase of ωR

(as compared to the conventional lasers) can exceed what
would be expected based only on the threshold reduction
due to PJ 6= 0.25

Another approach to achieve a higher ωR is to use the
polarization dynamics, instead of the intensity dynamics
of the emitted light. The coupling between spin-polarized
carriers and the light polarization in birefringent mi-
crocavities corresponds to different resonant mechanisms
than governing the light intensity and thus to potentially
higher ωR. Early experiments on polarization dynamics
in VCSELs of Oestreich and collaborators have demon-
strated spin-carrier dynamics of 120 GHz.73 However,
their (Ga,In)As QW spin-lasers operated at 10 K and
required a large magnetic field for fast spin precession.

Could we attain similar ultrahigh frequencies at room
temperature without an applied magnetic field? Our
findings from Sec. VI are encouraging that indeed such an
operation could be realized by a careful design of bire-
fringent cavity properties providing frequency splitting
of the two orthogonal linearly-polarized lasing modes.
While in conventional VCSEL only one linearly-polarized
mode is emitted, injecting spin-polarized carriers leads
to the circularly-polarized emission and thus the opera-
tion of both linearly-polarized modes at the same time.
The beating between the two frequency-split linearly-
polarized modes creates polarization oscillations with fre-
quency determined by the birefringence rate, γp/π.

12,16

Strain-induced values of γp in the active region shown
in Figs. 13 and 14 are sufficiently high to exceed the
highest available frequency operation of conventional VC-
SELs. A strong spectral dependence of γp, including a
possible sign change, requires a careful analysis of the de-
tuning behavior, but also provides important opportuni-
ties for desirable operation of spin-lasers. For example, a
large γp can be achieved with a very weak dependence on
the carrier density. The feasibility of high-birefringence
rate is further corroborated by the experiments using me-
chanical strain attaining γp/π ∼ 80 GHz,74 while theo-
retical calculations suggest even γp/π ∼ 400 GHz with
asymmetric photonic crystals.75

VIII. CONCLUSIONS

Our microscopic model of optical gain is based on a
similar framework previously employed for conventional
lasers31,34,44 to simply elucidate how introducing spin-
imbalance could enable their improved dynamical opera-
tion. In contrast to the common understanding that the
birefringence is detrimental for lasers, we focus on the
regime of a large strain-induced birefringence to over-
come frequency limitations in conventional lasers.
With a goal to maximize the birefringence-dominated

bandwidth in a experimentally realized spin-laser, we
can use the guidance from the analysis of both high-
speed conventional lasers and the steady-state oper-
ation of spin-lasers to explore potential limiting fac-
tors. Future calculations should also examine the in-
fluence of a spin-dependent gain compression, Coulomb
interactions,44,76,77 an active region with multiple
QWs,36, spin relaxation20,25,78 and a careful analysis of
the optimal cavity position that would combine high (dif-
ferential) gain, high-gain asymmetry,and high γp.
While currently the most promising path to demon-

strate our predictions for ultrahigh frequency operation
is provided by optically injected spin-polarized carriers
to the existing VCSELs, there are encouraging devel-
opments for electrically injected spin-polarized carriers.
A challenge is to overcome a relatively large separation
between a ferromagnetic spin injector and an active re-
gion (> µm) implying that at 300 K recombining car-
riers would have only a negligible spin polarization.79

However, room temperature electrical injection of spin-
polarized carriers has already been realized through spin-
filtering by integrating nanomagnets with the active re-
gion of a VCSEL.17 Additional efforts focus on vertical
external cavity surface emitting lasers (VECSELs),14,15

which could enable depositing a thin-film ferromagnet
just 100-200 nm away from the active region, sufficiently
close to attain a considerable spin polarization of carriers
in the active region at room temperature.
An independent progress in spintronics to store and

sense information using magnets with a perpendicular
anisotropy80 and attaining fast magnetization reversal81

could also be directly beneficial for spin-lasers. Electri-
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cal spin injection usually relies on magnetic thin films
with in-plane anisotropy requiring a large applied mag-
netic field to achieve an out-of-plane magnetization and
the projection of injected spin compatible with the car-
rier recombination of circularly polarized light in a VC-
SEL geometry (along the z-axis, see Fig. 4). How-
ever, a perpendicular anisotropy could provide an elegant
spin injection in remanence,82–84 avoiding the technologi-
cally undesirable applied magnetic field. The progress in
fast magnetization reversal could stimulate implement-
ing all-electrical schemes for spin modulation in lasers
that were shown to yield an enhanced bandwidth in
lasers.12,16,25,26,29,85,86
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Appendix A

The versatility of the k·p method has been success-
fully used to obtain the gain spectra in conventional
lasers,31,34,35,42,44 as well as to elucidate a wealth of other
phenomena, such as the spin Hall effect, topological in-
sulators, and Zitterbewegung.87–89 Our own implementa-
tion of the k·p method in this work has been previously
tested in calculating the luminescence spectra in δ-doped
GaAs,90 confirming experimental and theoretical elec-

tronic structure for GaAs QWs,91 and (Al,Ga)N/GaN
superlattices,92 identifying fully spin-polarized semicon-
ductor heterostructures, based on (Zn,Co)O,93 as well
exploring polytypic systems consisting of zinc-blende and
wurtzite crystal phases in the same nanostructure.94,95

Before considering confined systems, it is important to
investigate the corresponding bulk crystal structure and
construct the functional form of the Hamiltonian. For
zinc-blende crystals, the bulk basis set that describes the
lower conduction and top valence bands is20,96–98

|CB ⇑〉 = |S ↑〉
|CB ⇓〉 = |S ↓〉
|HH ⇑〉 = |(X + iY ) ↑〉 /

√
2

|LH ⇑〉 = i |(X + iY ) ↓ −2Z ↑〉 /
√
6

|LH ⇓〉 = |(X − iY ) ↑ +2Z ↓〉 /
√
6

|HH ⇓〉 = i |(X − iY ) ↓〉 /
√
2

|SO ⇑〉 = |(X + iY ) ↓ +Z ↑〉 /
√
3

|SO ⇓〉 = i |− (X − iY ) ↑ +Z ↓〉 /
√
3 , (A-1)

where, compared to Fig. 4(a), we also introduce the
spin-orbit spin-split-off subbands |SO〉. Here |S〉 and
|X〉 , |Y 〉 , |Z〉 are the basis states for irreducible repre-
sentations Γ1 ∼ x2 + y2 + z2 and Γ15 ∼ x, y, z, having
an orbital angular momentum l = 0 and l = 1, respec-
tively. The single arrows (↑, ↓) represent the projection
of spin angular momentum s = 1/2 on the +z-axis while
the double arrows (⇑,⇓) represent the projection of total
angular momentum on the +z-axis. Rewriting the basis
set (A-1) in terms of the total angular momentum j and
its projection mj , |j,mj〉, we have

|CB ⇑ (⇓)〉 = |1/2, 1/2 (−1/2)〉
|HH ⇑ (⇓)〉 = |3/2, 3/2 (−3/2)〉
|LH ⇑ (⇓)〉 = |3/2, 1/2 (−1/2)〉
|SO ⇑ (⇓)〉 = |1/2, 1/2 (−1/2)〉 . (A-2)

In the basis set of Eq. (A-1), the k·p term in Eq. (1) is

Hkp =
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with elements

Q = −kx (γ̃1 + γ̃2) kx − ky (γ̃1 + γ̃2) ky − kz (γ̃1 − 2γ̃2) kz

T = −kx (γ̃1 − γ̃2) kx − ky (γ̃1 − γ̃2) ky − kz (γ̃1 + 2γ̃2) kz

S = i
√
3 [(kxγ̃3kz + kz γ̃3kx)− i (ky γ̃3kz + kzγ̃3ky)]

R = −
√
3 [(kxγ̃2kx − kyγ̃2ky)− i (kxγ̃3ky + kyγ̃3kx)]

U = Eg + kxAkx + kyAky + kzAkz

P± = (1/2
√
2) [P (kx ± iky) + (kx ± iky)P ]

Pz = (1/2) (Pkz + kzP ) , (A-4)

where γ̃1, γ̃2, γ̃3, and A, given in units of ~2/2m0, are the
effective mass parameters of the valence and conduction
bands, respectively, explicitly given below. The gap is
Eg, the spin-orbit splitting at the Γ point is ∆SO, and
P is the Kane parameter of the interband interaction,
defined as

P = −i
~

m0
〈α |pl|S〉 , (A-5)

with α = X,Y, Z and l = x, y, z.
The formulation of a bulk k·p model can vary signifi-

cantly in its complexity, the choice of the specific system,
and the number of bands included. In the description of
zinc-blende structures, usually either 6×6 or 8×8 models
are employed.97 In the first case, the information of the
valence and conduction band is decoupled, while in the
second case their coupling is explicitly included. Their
effective mass parameters are connected by

γ̃1 = γ1 − EP /3Eg

γ̃2 = γ2 − EP /6Eg

γ̃3 = γ3 − EP /6Eg

A =
1

m∗
e

−
(

Eg +
2
3∆SO

Eg +∆SO

)

EP

Eg

EP = 2m0P
2/~2 , (A-6)

where γ̃1,2,3 are used in the 8×8 model and γ1,2,3 in the
6×6 model, which can also be related to the tight-binding
parameters.91 To recover the 6×6 model from the 8×8
model, we set P = 0 in Eqs. (A-3), (A-4) and (A-6).
The strain term, Hst, takes a similar form of Eq. (A-3)

but without the Eg, ∆SO and P parameters. The matrix
elements can be written as

Qst = −av (εxx + εyy + εzz)−
b

2
(εxx + εyy − 2εzz)

Tst = −av (εxx + εyy + εzz) +
b

2
(εxx + εyy − 2εzz)

Sst = d (εyz + iεxz)

Rst = −
√
3b

2
(εxx − εyy) + idεxy

Ust = ac (εxx + εyy + εzz) , (A-7)

with av, b, and d representing the deformation potentials
for the valence band and ac for the conduction band. The
strain tensor components are given by εij (i, j = x, y, z).

In order to treat a QW system, which now lacks trans-
lational symmetry along the growth direction, we can
replace the exponential part of the Bloch’s theorem by a
generic function. This procedure is called the envelope
function approximation97 and leads to the dependence
along the growth direction of the k·p and strain parame-
ters in Hamiltonian terms Hkp(z) and Hst(z). Also, the
band-offset at the interface of different materials is taken
into account in the term HO(z)

HO(z) = diag [δV (z), · · · , δV (z), δC(z), δC(z)] , (A-8)

where δV (C)(z) describes the energy change in the valence
(conduction) band.

Under the envelope function approximation, the QW
Hamiltonian from Eq. (1) is now described by a system
of 8 coupled differential equations that does not gen-
erally have analytical solutions. We solve these equa-
tions numerically using the plane-wave expansion for the
z-dependent parameters and envelope functions. De-
tails of the envelope function approximation and plane
wave expansion for QW systems can be found in refer-
ences 94,95,98.

Appendix B

The interband dipole transition amplitude that ap-
pears in Eq. (3) is given by

pa
cv~k

=
〈

c,~k |â · ~p| v,~k
〉

, (B-1)

and for the light polarization S± we have

â =
1√
2
(x̂± iŷ) , (B-2)

and therefore

â · ~p =
px ± ipy√

2
. (B-3)

In the simplified QW of Fig. 4, we are showing the

selection rules for ~k = 0 and assuming the conduction
band as |c, 0〉 = |CB ⇑ (⇓)〉, and valence band as, |v, 0〉 =
|HH ⇑ (⇓)〉 or |v, 0〉 = |LH ⇑ (⇓)〉. Calculating the matrix
elements between these states, we obtain
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〈CB ⇑ |p±|HH ⇑〉 =

〈

S ↑
∣

∣

∣

∣

px ± ipy√
2

∣

∣

∣

∣

1√
2
(X + iY ) ↑

〉

=
1

2
〈S ↑ |px|X ↑〉 ∓ 1

2
〈S ↑ |py|Y ↑〉 , (B-4)

which is non-zero only for p−,

〈CB ⇓ |p±|HH ⇓〉 =

〈

S ↓
∣

∣

∣

∣

px ± ipy√
2

∣

∣

∣

∣

i√
2
(X − iY ) ↓

〉

=
i

2
〈S ↓ |px|X ↓〉 ± i

2
〈S ↓ |py|Y ↓〉 , (B-5)

which is non-zero only for p+,

〈CB ⇑ |p±|LH ⇓〉 =

〈

S ↑
∣

∣

∣

∣

px ± ipy√
2

∣

∣

∣

∣

1√
6
[(X − iY ) ↑ +2Z ↓]

〉

=
1

2
√
3
〈S ↑ |px|X ↑〉 ± 1

2
√
3
〈S ↑ |py|Y ↑〉 ,(B-6)

which is non-zero only for p+,

〈CB ⇓ |p±|LH ⇑〉 =

〈

S ↓
∣

∣

∣

∣

px ± ipy√
2

∣

∣

∣

∣

i√
6
[(X + iY ) ↓ −2Z ↑]

〉

=
1

2
√
3
〈S ↓ |px|X ↓〉 ∓ 1

2
√
3
〈S ↓ |py|Y ↓〉 ,(B-7)

which is non-zero only for p−.

In addition to Eqs. (B-4)–(B-7), we can conclude
that 〈CB ⇑ |p±|HH ⇓〉 = 〈CB ⇓ |p±|HH ⇑〉 = 0 and

〈CB ⇑ |p±|LH ⇑〉 = 〈CB ⇓ |p±|LH ⇓〉 = 0, independent
of the light polarization.
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