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Here we present an efficient and numerically stable procedure for compressing a correlation matrix
into a set of local unitary single-particle gates, which leads to a very efficient way of forming the
matrix product state (MPS) approximation of a pure fermionic Gaussian state, such as the ground
state of a quadratic Hamiltonian. The procedure involves successively diagonalizing subblocks of the
correlation matrix to isolate local states which are purely occupied or unoccupied. A small number of
nearest neighbor unitary gates isolates each local state. The MPS of this state is formed by applying
the many-body version of these gates to a product state. We treat the simple case of compressing
the correlation matrix of spinless free fermions with definite particle number in detail, though the
procedure is easily extended to fermions with spin and more general BCS states (utilizing the
formalism of Majorana modes). We also present a DMRG-like algorithm to obtain the compressed
correlation matrix directly from a hopping Hamiltonian. In addition, we discuss a slight variation of
the procedure which leads to a simple construction of the multiscale entanglement renormalization
ansatz (MERA) of a fermionic Gaussian state, and present a simple picture of orthogonal wavelet
transforms in terms of the gate structure we present in this paper. As a simple demonstration
we analyze the Su-Schrieffer-Heeger model (free fermions on a 1D lattice with staggered hopping
amplitudes).

I. INTRODUCTION

One of the strengths of the density matrix renormaliza-
tion group (DMRG)1,2, and tensor network states in gen-
eral, is that their power to simulate strongly correlated
systems does not require the interactions to be weak.
In fact, in fermion systems such as the Hubbard model,
DMRG is more accurate for larger interactions. The ma-
trix product state (MPS) representation of the wavefunc-
tion, which DMRG implicitly uses, more efficiently com-
presses the wavefunction when interactions are strong,
due to lower entanglement in a real-space basis.

In this paper, we introduce a new algorithm for ef-
ficiently producing an MPS representation for ground
states of noninteracting fermion systems. Why is this
useful, when DMRG is most useful in the opposite
regime? This would be a valuable tool in a number of
situations. For example, a powerful and widely used
class of variational wavefunctions for strongly interacting
systems begin with a mean-field fermionic wavefunction,
and then one applies a Gutzwiller projection to reduce or
eliminate double occupancy.3 It could be very useful to
find the overlaps of a DMRG ground state with a variety
of such Gutzwiller states to help understand and classify
the ground state. Once one has the MPS representation
of the mean field state, the Gutzwiller projection is very
easy, fast, and exact, whereas in other approaches it usu-
ally must be implemented with Monte Carlo. One might
also begin a DMRG simulation with such a variational
state, or in some cases with a mean field state with-
out the Gutzwiller projection. Being able to represent
fermion determinantal states as MPS’s in a very efficient
way also opens the door to using DMRG ground states as

minus-sign constraints in determinantal quantum Monte
Carlo, in particular in Zhang’s constrained path Monte
Carlo (CPMC) method4,5. In this case one would hope
that, for systems too big for accurate DMRG, at least
the qualitative structure of the ground state could be
captured by DMRG, and then the results could be made
quantitative with the Monte Carlo method.

The basis of our approach shares ideas with DMRG.
Matrix product state representations exploit a property
of the state (low entanglement) to compress the informa-
tion in the state. Fermionic Gaussian states (the gen-
eral class of states which includes both fermion determi-
nants, BCS states, and free fermion thermal states) are
also compressible, as we will show. The properties of a
Gaussian state are completely defined by its correlation
matrix. For the case of a fermion determinant, the cor-
relation matrix has eigenvalues which are either 0 or 1,
i.e. they carry only a limited amount of information, in-
dicating that the state can be compressed. In particular,
one can perform an arbitrary single-particle change of ba-
sis within the occupied states, or within the unoccupied
states, without changing the determinantal state. Ten-
sor network methods in the context of fermionic Gaus-
sian states have been studied previously in the context
of the multiscale entanglement renormalization ansatz
(MERA)6 and projected entangled pair states (PEPS)7,
however here we present a simple and easily generaliz-
able formalism and construction starting with an efficient
method for forming the MPS of a fermionic Gaussian
state. We also present a new and simpler method for
obtaining a fermionic Gaussian MERA (GMERA), the
MERA of a fermionic Gaussian state, as a simple exten-
sion.
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Our approach to producing the MPS of a fermionic
Gaussian state also produces a compressed form of the
correlation matrix itself, which we call a fermionic Gaus-
sian MPS (GMPS), which might be useful in very differ-
ent contexts where the single-particle matrices are very
large. This compressed form expresses the N × N cor-
relation matrix in terms of O(BN) real angles which
parametrize nearest neighbor rotation gates, where B �
N for states with low entanglement. The compressed
form can be utilized directly. For example, ordinarily
multiplying an arbitrary vector by the correlation ma-
trix, which is not sparse, requires O(N2) operations, but
by using the compressed form only O(BN) operations are
needed. For simplicity, the algorithm we introduce first
utilizes the correlation matrix as the initial input. How-
ever, in Appendix B we present a DMRG algorithm in
the single particle context, which we call fermionic Gaus-
sian DMRG (GDMRG), that starts with a single par-
ticle Hamiltonian matrix and outputs the ground state
correlation matrix in compressed form as a GMPS at a
greatly reduced cost compared to directly diagonalizing
the Hamiltonian matrix, O(B3N) as opposed to O(N3).
This algorithm exploits the close relationship between
the correlation matrix and the density matrix of a many
particle state, and many tensor network algorithms can
similarly be translated into a single particle framework.

The paper is organized as follows. Section II gives a
brief overview of fermionic Gaussian states and correla-
tion matrices, including an introduction to the entangle-
ment of these states. In Section III, we give detailed de-
scriptions of the new algorithms. Section III A covers our
new procedure for compressing a correlation matrix as a
GMPS. Section III B presents a variation of this method
to obtain a GMERA. In Section III C we give a brief in-
troduction to how the GMERA gate structure relates to
wavelet transforms. Section III D covers the procedure
for turning the gates obtained from compressing the cor-
relation matrix into a many-body MPS approximation of
the Gaussian state. Finally, Section IV shows numerical
results for the algorithms covered in the paper.

II. BACKGROUND ON FERMIONIC
GAUSSIAN STATES AND CORRELATION

MATRICES

Consider the Hamiltonian for a 1D system of noninter-
acting fermions

Ĥ =

N∑

i,j=1

â†iHij âj (1)

where ai and a†i are fermion operators and H = [Hij ]
is a Hermitian matrix (H = H†). We assume that the
Hamiltonian terms are local (so the matrix H is band-
diagonal).

Diagonalizing the matrix H, we have H = UDU†

where U is unitary and D is diagonal such that Dkk′ =

εkδkk′ . The Hamiltonian can then be put into diagonal
form,

Ĥ =

N∑

k=1

εkâ
†
kâk (2)

where the operators which create the single particle en-
ergy eigenstates are

â†k =

N∑

i=1

Uikâ
†
i . (3)

Assuming εk ≤ εk′ if k < k′, the ground state is

|ψ0〉 =

NF∏

k=1

â†k |Ω〉 . (4)

where NF is the number of particles in the system.
The correlation matrix is

Λij =
〈
â†i âj

〉
=

NF∑

k=1

U∗ikUjk. (5)

The correlation matrix fully characterizes |ψ0〉 because
all correlation functions, and therefore all observables,
can be factorized into two-point correlators using Wick’s
theorem. Note that the eigenstates of H are also the
eigenstates of Λ (the same U that diagonalizes H also
diagonalizes Λ). However, the eigenvalues of Λ are either
1 (occupied) or 0 (unoccupied). The massive degeneracy
of Λ means that we can make arbitrary changes of basis
among the eigenstates of Λ as long as we do not mix
occupied and unoccupied states.

In our procedure, we will be interested in finding lo-
calized eigenvectors of the correlation matrix which are
(approximately) fully occupied or unoccupied. By ro-
tating into the basis of these eigenvectors, we can lo-
cally diagonalize the correlation matrix, which will lead
to a compression of the state. These eigenvectors have
eigenvalues near 1 or 0, which makes them (approximate)
eigenvectors of the entire correlation matrix and therefore
uncorrelated with the rest of the system. What makes it
possible to find a localized eigenvector?

The answer is the limited entanglement structure of
the states we are interested in (ground states of local
Hamiltonians). Consider the entanglement entropy of
our fermionic Gaussian state, which can be calculated
directly from the correlation matrix. Divide the system
into an arbitrary subblock B of B sites (with the cor-
responding submatrix of Λ, which we call ΛB) and the
rest of the system. We would like to know how large of
a block size B we need to find a localized eigenvector.
If the matrix ΛB has eigenvalues {nb} for b ∈ B, with
0 ≤ nb ≤ 1, the entanglement entropy of the subblock B,
SB ≡ −Tr[ρ̂B log(ρ̂B)] (where ρ̂B is the reduced density
matrix of the state in subblock B), is

SB({nb}) =
∑

b∈B
S1(nb) (6)
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(b) Example eigenvectors.

FIG. 1. Fig. 1(a) shows the occupations nb and corresponding
entanglement S1(nb) from diagonalizing a block of B = 16
sites in the middle of a system of free gapless fermions on
N = 1000 sites at half filling. The minimum and maximum
eigenvalues, n1 and n16, differ from 0 and 1 by ≈ 1.74×10−11.
The eigenvalues closest to 1/2, 1/2 − n8 = n9 − 1/2 ≈ 0.21,
have entropies S1(n8) = S1(n9) ≈ 0.60, which are close to
the maximum of S1(1/2) = log(2) ≈ 0.69. Fig. 4(b) shows
examples of eigenvectors from the same diagonalization. The
eigenvectors with eigenvalues near 0 and 1, which contribute
very little to the entanglement, are localized in the middle
of the block, while the eigenvectors with eigenvalues closer
to 1/2 which contribute most to the entanglement have large
support on the edges of the block.

where S1(nb) = −[nb log(nb)+(1−nb) log(1− nb)]. This
expression has been shown elsewhere8–11. We show a sim-
ple, self-contained derivation of it in Appendix A. Note
that S1(nb) vanishes for both nb → 0 and nb → 1.

The maximum amount of entanglement a block of size
B can contain is when nb = 1/2 for all b ∈ B, so
SB ≤ B log(2). This reflects a volume law entanglement
in the “volume” B. However, ground states of 1D local

Hamiltonians have entanglement that is much smaller,
either of order unity (if the system is gapped), or the
entanglement grows as log(B) if the system is gapless.
To avoid the volume entanglement, most of the block
eigenvalues nb must be exponentially close to 0 or 1. In
other words, as soon as we make B big enough so that
the entanglement begins to saturate, except for a possi-
ble slow logarithmic growth, we should find at least one
eigenvalue very close to 0 or 1. For gapless free fermions
in 1D on N = 1000 sites, we show example eigenval-
ues, eigenvectors, and corresponding entanglements of a
block of B = 16 in the middle of the correlation matrix
in Fig. 1. Even for gapless free Fermions, with a block
size of only B = 16 we find many eigenvalues near 0 or
1 (many localized eigenvectors). We use this observation
next to develop algorithms to locally diagonalize correla-
tion matrices and in the process find a very compressed
form.

III. ALGORITHMS

A. Compressing a Correlation Matrix as a GMPS

We begin the procedure by diagonalizing the upper
left B × B subblock of a correlation matrix Λ of a pure
fermionic Gaussian state. Assume that the state has
some local entanglement structure, for example it is the
ground state of a local Hamiltonian in 1D. For now, we
imagine our system has open boundary conditions. For
simplifying the discussion, from here on we assume our
Hamiltonian is real (and therefore symmetric and diago-
nalized by an orthogonal matrix). We discuss the more
general complex case at the end of the section. Let B be
the group of sites 1, . . . B on the left end of the system,
and ΛB be the associated subblock of Λ. Also, let {nb}
be the eigenvalues of ΛB for b ∈ B where 0 ≤ nb ≤ 1.
(This constraint on the eigenvalues of the subblock fol-
lows from the fact that both Λ and 1 − Λ are positive
semi-definite.)

We increase B until we find some nb that is nearly 1 or
0 within a specified tolerance, e.g. 10−6. The closer the
eigenvalue is to 1 or 0, the more accurate the compres-
sion, but a larger block size translates to more gates and a
bigger bond dimension of the MPS we will form. In Fig. 2
we show the most occupied and unoccupied eigenvectors
of ΛB for B = 12 for a system of gapless free fermions in
1D with N = 1024 sites. We see that B = 12 is sufficient
to give deviations from occupancies of 0 or 1 to nearly
machine double precision. The eigenvalues found in the
bulk likely will not be as accurate, because states in the
bulk will generally be more entangled than the ones on
the edge. The smooth fall-off to zero at the right edge of
the block is characteristic of these modes and is a result
of diagonalizing the block on the left-most boundary of
the system. The localized states we find here are least
entangled with the rest of the system. This is in contrast
to the dominant Schmidt states that are utilized within
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FIG. 2. Examples of approximate occupied and unoccupied
eigenvectors of Λ obtained from diagonalizing ΛB where sub-
block B are sites 1, . . . , B. Λ is formed from the ground state
of Ĥ = −t∑N−1

i=1 (â†i âi+1 + h.c.) for N = 1024 at half fill-
ing (NF = N/2). A block size of B = 12 is used. Eigen-
vectors with highest (nocc) and lowest (nunocc) eigenvalues
found from diagonalizing subblock B are shown. We find
1 − nocc = 2.4 × 10−15 and nunocc = 7.3 × 10−16, so the
occupations are accurate to nearly machine double precision.
1 − nocc and nunocc should be equal at half filling (because
of particle-hole symmetry), but are different in this case as a
result of roundoff errors.

DMRG which have degrees of freedom that are localized
at the edge of the block.

The eigenvector ~v which is least entangled is also an
approximate eigenvector of the total correlation matrix
Λ, i.e. Λ~v ≈ n1~v. Any N ×N unitary matrix that has ~v
as its first column represents a change of basis that puts ~v
on the first site. The associated transformation of Λ will
make Λ11 = n1, and zero out the rest of row 1 and column
1. The matrix of eigenvectors of ΛB would produce such
a matrix (expanding it to N ×N by putting ones on the
diagonal), but this B ×B matrix does not translate well
to many-particle gates to use in constructing an MPS.

We now introduce gate/circuit diagrams which apply
equally well to simple matrix manipulations of Λ and to
many-particle tensor networks. The basic ingredient of
the diagrams are two site nearest neighbor unitary gates.
In Figure 3 we show the relation between a gate and a ma-
trix. In a later section we show how a gate is interpreted
in the many-particle context of a tensor network. We
consider nearest neighbor gates because these translate
to fast MPS algorithms—typically, a non-nearest neigh-
bor gate is implemented as a set of swap gates to bring
the sites together, a nearest neighbor gate, followed by
swaps to return to the original ordering of the sites, which
is much slower than a single nearest neighbor gate. In
the special case that the intermediate sites are in prod-
uct states, i.e. bond dimension 1, non-local gates are also
inexpensive, and we use these in our MERA algorithm.

Returning to the task of moving the least entangled

≡




1
1

1
1




( )
V (θ3)

V (θ3) =

(
cos θ3 − sin θ3
sin θ3 cos θ3

)

V (θ3)

FIG. 3. Definition of a gate used throughout the paper. Ex-
ample for N = 8 sites for a gate at site i = 3. Unless specified
otherwise, circuits are in a direct sum space. We take the
convention that multiplying a matrix from the top by a vec-
tor corresponds to multiplying the matrix on the right by a
column vector.

state ~v to the first site, a set of B − 1 two-site gates
suffices. The first gate acts on sites (B − 1, B), and we
label it VB−1. In general, we take

Vi = V (θi) =

(
cos θi − sin θi
sin θi cos θi

)
. (7)

We choose θB−1 = tan−1(vB/vB−1), where vi is
the ith component of the (un)occupied eigenvector
of interest ~v. With this choice, VB−1 acting on
~vT =

(
v1 . . . vB−1 vB

)
sets the last component,

vB , to zero, and produces a new value of vB−1 →
v′B−1. In other words, we solve for θB−1 so that

~vTVB−1 =
(
v1 . . . vB−1 vB

)
VB−1 =

(
v1 . . . v′B−1 0

)
.

Next we rotate sites (B − 2, B − 1), with θB−2 =
tan−1(v′B−1/vB−2), and continue in this fashion. The

action of all these gates on ~vT gives δi,1, so they act to
change the basis into the one containing ~v.

We take VB = V (θB−1)V (θB−2) . . . V (θ1). This proce-
dure is shown schematically for a simple case in Fig. 4(a).
We then apply the gates to Λ. The transformed corre-

lation matrix V †BΛVB will have n1 ≈ 1 or 0 as the top
left entry (and nearly 0 in the rest of the entries in the
first row and first column). A schematic of this trans-
formation is shown in Fig. 4(b). We will call the first
block B1 ≡ B. We repeat this procedure for B2, sites
2, . . . , B + 1, now simply ignoring the first site. For
half-filled systems, the modes found are likely to alter-
nate between occupied and unoccupied because occupied
and unoccupied modes will generally be found in pairs
when diagonalizing a block of the correlation matrix. Of
course, B does not have to stay the same from one block
to the next, and in general it is better to set it dynami-
cally to make nk sufficiently close to 1 or 0. For the last
blocks, B is decreased to the remaining number of sites.
After N blocks, we will have approximately diagonalized
Λ.

The overall unitary transformation is V =
VB1

VB2
. . . VBN−1

. The matrix V decomposed into
the 2× 2 rotation gates {V (θi)} for N = 8 and B = 4 is
shown in Fig. 5(a). The N × N unitary approximately
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~vT =
(
v1 v2 v3 v4

)

(
v1 v2 v′3 0

)

(
v1 v′′2 0 0

)

(
1 0 0 0

)

V (θ3) θ3 = tan−1
(

v4
v3

)

V (θ2) θ2 = tan−1
(

v′
3

v2

)

V (θ1) θ1 = tan−1
(

v′′
2

v1

)

Λ~v ≈ n1~v, n1 ≈ 1
(a)

V (θ1)†

V (θ2)†

V (θ3)†

V (θ3)

V (θ2)

V (θ1)

Λ

≈ n1 Λ′

(b)

FIG. 4. In Fig. 4(a) we show schematically the procedure to obtain, given an approximate eigenvector ~v of the correlation
matrix Λ, the set of local rotation gates that make up our compressed correlation matrix. The example shown is for a block
size B = 4 and system size N = 8. Fig. 4(b) shows that, by conjugating the correlation matrix by the gates obtained, the
correlation matrix is approximately partially diagonalized.

rotates our single particle basis from real space to what
we refer to as the occupation basis, which is one of the
highly degenerate eigenbases of the correlation matrix.
Conjugating Λ by V gives us a matrix V †ΛV that is
nearly diagonal, with NF values on the diagonal close to
1 corresponding to occupied modes and N − NF values
on the diagonal close to 0 corresponding to unoccupied
modes. In total, the procedure as described would
require O(BN) nearest neighbor rotations, where B is
the largest block size needed for the desired accuracy of
the representation of the correlation matrix.

Writing the 2× 2 rotations as gates is very convenient
for understanding the matrix transformations, but more
importantly it makes it easy to connect to many-body
gates and to quantum circuits in general. As a quantum
circuit, these gates have a slightly peculiar structure. Be-
cause of how the diagonalizations overlapped, the circuit
has a depth of O(N). However, a vertical cut through
the circuit only passes through O(B) gates. This con-
struction and gate structure is in a certain sense optimal
if we limit ourselves strictly to circuits with local gates.
If we want to represent a correlation matrix in a com-

pact way with nearest neighbor gates, we would like to
be able to represent arbitrary correlations in the system
(correlations at all lengths), and in particular, correla-
tions between the first and last site. In Fig. 5(b), we
show a circuit which cannot connect the first and last
sites because its depth is less than N/2. Although our
gate structure, shown in Fig. 5(a), has a depth ∼ N , in
fact we can adjust our diagonalization procedure slightly
to obtain a depth of ∼ N/2 so our circuit can capture
correlations of all lengths. This is done by beginning the
diagonalization procedure from both the left and right
side of the system until the blocks meet in the middle.
This freedom in where to start the diagonalization is sim-
ilar to the choice of gauge of an MPS. Choosing one gauge
over another can be useful if we have already performed
this procedure for a correlation matrix and want to per-
form it again for another correlation matrix which is only
locally different from the first one. If we choose the gauge
center where the correlation matrix has changed, we only
need to change a local set of gates.

A generic local circuit of depth O(N) contains O(N2)
gates, and can represent an arbitrary N × N single-
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O(N)

O(B)

(a)

Λ1,N =
〈
â†1âN

〉
= 0

1 0 0 0 0 0 0 0

≡ 1

≡ 0

Depth = 3 < N/2

(b)

FIG. 5. Fig. 5(a) shows the overall gate structure obtained by the diagonalization procedure. These gates form the total N×N
unitary V which approximately diagonalizes our correlation matrix Λ. By conjugating a diagonal matrix with the appropriate
occupations of 0 or 1 found in the diagonalization procedure by this set of gates, we get an approximation for the correlation
matrix. Fig. 5(b) shows an example of the correlations allowed by representing the correlation matrix Λ with a diagonal matrix
conjugated by a finite depth circuit of depth < N/2. The grey area (the “light cone”) represents sites where there can be
nonzero correlations with the first site. The circles in the middle represent a diagonal matrix with 1’s and 0’s on the diagonal,
which is conjugated by a unitary change of basis approximated here by a finite depth circuit. For the circuit depth shown,
there can’t be correlations with the last two sites. A circuit of depth ≥ N/2 is required to allow for the possibility of nontrivial
correlations across the entire system.

particle unitary change of basis. The low entanglement
of physical ground states allows us to represent an N×N
matrix with O(BN) one-parameter gates, with B � N .
For a gapless system, we know from conformal field the-
ory that the entanglement of a subblock B of B sites
varies as SB ∼ log(B). This means that we should be
able to capture the entanglement of a critical system of
N sites with a block size B ∼ log(N). If we find that
B ∼ log(N), this means that our construction is roughly
optimal. Fig. 14 in Section IV A shows numerical evi-
dence that this is indeed the case.

B. Compressing a Correlation Matrix as a
GMERA

A MERA tensor network12 can represent a 1D criti-
cal system using a constant bond dimension, unlike an
MPS. In our MPS construction, this is reflected in that
B ∼ log(N). However, we can adjust the diagonalization
procedure slightly to obtain a MERA-like gate structure
with a B which does not grow with N . The MERA for
fermionic Gaussian states was first studied in6, but was
only used to study infinite translationally invariant sys-
tems and required a subtle optimization scheme. Here
we will show a simpler construction only requiring the

tools we have explained so far.
We begin the procedure in the same way as we did

for the GMPS, by diagonalizing the block corresponding
to sites 1, . . . , B of the correlation matrix. Just as be-
fore, for a large enough block size we find an occupied
or unoccupied mode and rotate into the basis containing
that mode with B − 1 local 2 × 2 gates. Next, instead
of diagonalizing the block starting at site 2, we instead
diagonalize the block corresponding to sites 3, . . . , B+ 2,
again finding an occupied or unoccupied mode and rotat-
ing into that basis. The state at site 2 is “left behind”—it
is not a low entangled state, so we cannot ignore it, but
we leave it for a later stage of the algorithm. We con-
tinue in this manner, diagonalizing blocks starting at odd
sites of size B to obtain ∼ BN/2 nearest neighbor gates.
Approximately half of the modes are fully occupied or un-
occupied and are projected out (meaning the associated
rows and columns in the correlation matrix are ignored
in later stages). The other half were left behind, and con-
tinue as the sites of the next layer of the gate structure.
By only trying to get N/2 unentangled modes in the first
layer, the size of B does not need to grow with N , as we
show below.

The left-behind sites pass through to the next layer and
are interpreted as a course-grained version of our original
state on only N/2 sites. We repeat the same procedure
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. . .

...

FIG. 6. An example of an alternative diagonalization scheme
resulting in a MERA-like gate structure. Here we show a
section of the first two renormalization steps, with 12 sites
shown in the first layer and 6 renormalized sites shown in
the second. A block size of B = 4 is used. For this block
size there are two layers of disentanglers and one layer of
isometries per level of the MERA. Open legs at the top of
each layer correspond to diagonal modes of the correlation
matrix (with eigenvalues 0 or 1) and are ignored at the next
layer.

for this new course-grained system of N/2 sites, starting
by diagonalizing the subblock of the first 1, . . . , B sites
of the new course-grained lattice, finding an occupied or
unoccupied mode of the course-grained system, and pro-
jecting it out. Here, however, the gate we use to rotate
into the basis of the (un)occupied mode are 2×2 nearest
neighbor gates in the course-grained lattice, but are ac-
tually next-nearest neighbor gates acting on the original
lattice (if we project out every other site). Ordinarily,
using next-nearest neighbor gates (or longer range gates
at higher levels of the MERA) would be costly in the
many-body case, requiring swap gates to make them ef-
fectively nearest neighbor. However, the projected-out
sites are now in product states, meaning that swapping
does not require significant time.

We repeat the above procedure of projecting out ev-
ery other effective site and course graining to a lattice of
half the size. All of the sites will be projected out after
this course-graining is repeated O(log2(N)) times. Fig. 6
shows the first two layers of the resulting gate structure,
which looks like a MERA with B − 2 layers of nearest
neighbor 2-site disentanglers and a layer of nearest neigh-
bor 2-site isometries. The total number of gates in the
construction is ∼ B(N/2+N/4+. . .+1) = BN , the same
gate count for a fixed block size B as for the GMPS. We
call this gate structure, which like our GMPS construc-
tion is a compression of an N×N correlation matrix into
∼ BN gates, a fermionic Gaussian MERA or GMERA.
In this figure, open legs at the top of each layer are modes

that are uncorrelated with the rest of the sites and can
be ignored in the next layer. Some extra gates will be
required to project out the leftover sites at the right end
of the system (not shown in Fig. 6), and there is some
flexibility in how to do this which will change the accu-
racy of the compression slightly. For example, one could
use a gate structure similar to the GMPS construction
to project out all of the leftover sites at the end.

How does the block size B of the GMERA compare to
that in our GMPS construction? We show numerically
in Section IV B that for a simple gapless Hamiltonian
the GMERA does indeed produce accurate results with
a block size B = O(1), independent of the system size,
making it much more efficient in the large N limit.

C. Discrete Wavelet Transforms and Fermionic
Gaussian MERA

We would like to point out the similarity between the
MERA gate structure and orthogonal wavelet transforms
(WT), such as the WTs that produce the well-known
Daubechies wavelets13,14. Of course, the development of
wavelets has not been in a many particle context, and,
for now, we restrict ourselves to the matrix interpretation
of the diagrams. For compact wavelets, an orthogonal
wavelet transform is a local unitary transformation. It
is not usually represented in terms of two-site gates, but
this representation turns out be be particularly conve-
nient. To be specific, we start with the simplest nontriv-
ial WT, the D4 Daubechies WT. This WT is defined by
four coefficients {aj} for j = 1, . . . , 4 which characterize
how the D4 scaling function is related to itself at differ-
ent scales through the equation s(x) =

∑
j aj
√

2s(2x−j).
The matrix form of the WT is given by




a1 a2 a3 a4 0 0 0
a4 −a3 a2 −a1 0 0 0
0 0 a1 a2 a3 a4 0
0 0 a4 −a3 a2 −a1 0

. . .



. (8)

The {aj} are carefully chosen to ensure orthogonality be-
tween scaling functions centered at different sites, and to
make the scaling functions have desirable completeness
properties. For example, linear combinations of the D4
scaling functions centered at different sites, {s(x−k)} for
integer k, fit any linear function, so the resulting coeffi-
cients are ~aT = (1 +

√
3, 3 +

√
3, 3−

√
3, 1−

√
3)/(4

√
2).

The orthogonality requirement results in nonlinear equa-
tions to solve for the {aj} which becomes complicated
for higher order. The second row of the matrix gives
the coefficients that produces wavelets, designed to rep-
resent high momentum degrees of freedom. In terms of
our MERA procedure, the wavelets are left behind, while
the scaling functions propagate to the next level.

The D4 WT has a very simple gate structure, identi-
cal to our MERA structure with B = 3, shown for two
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s1 w1

θ1 θ1 θ1 θ1 θ1

θ2 θ2 θ2 θ2 θ2 θ2

s2 w2

θ1 θ1

θ2 θ2 θ2

. . . . . .

...

FIG. 7. Here we show an example of a discrete wavelet
transform written in the gate notation introduced in this
paper. We show the D4 wavelet, which corresponds to a
fermionic Gaussian MERA with one layer of disentanglers
and one layer of isometries per layer. w1 and s1 (w2 and
s2) label wavelet and scaling functions for the first (sec-
ond) layer. Taking θ1 = π/6 and θ2 = 5π/12, we repro-
duce the conventional scaling coefficients for the D4 WT,
~aT = (a1, a2, a3, a4) = (1+

√
3, 3+

√
3, 3−

√
3, 1−

√
3)/(4

√
2).

layers in Fig. 7. In each horizontal layer of gates, all
gates have the same angle. The D4 WT is specified by
only two angles, θ1 for the bottom layer and θ2 for the
next. Higher order WTs of this type (e.g. D6, D8, etc.)
correspond to larger B. (For example, the D6 WT looks
like Fig. 6). Given the angles, one gets the {aj} by set-
ting all the top values of the circuit to zero except a 1
on one site and applying the 2× 2 rotations in the layers
below. The support of the scaling functions is made obvi-
ous using the gate structure, as there will be 2L nonzero
values at the bottom of the circuit for L layers of gates.
For the D4 WT, one finds that θ1 = π/6 and θ2 = 5π/12
reproduces the D4 {aj}, up to a trivial reversal of the co-
efficients. (A single layer with θ1 = π/4 gives the trivial
Haar wavelets, which have been used previously as a ba-
sis for transforming fermionic Gaussian states by Qi15.)
The scaling functions at the larger scales are found by
performing the same transformation of L layers of gates
on the scaling functions found at the previous scale.

In Fig. 8 we show how scaling coefficients {aj} come
from the gate structure, applying a vector to the top of
the circuit with 1 at the site of a scaling function and
0’s elsewhere. In simple wavelet treatments, the wavelet
coefficients are obtained from the scaling coefficients {aj}
as {(−1)j−1a2L−j+1} for j = 1, . . . , 2L. Here, they are
obtained by shifting the location of the 1 at the top of
the circuit, but we can show in general that this gives the
same result. This is done by noting that the shift of the
1 to get the wavelet coefficients looks like a swap at the
top of the circuit. We can “pull through” this swap by
conjugating each layer of the WT with a transformation
that reverses the order of the sites. This conjugation also
negates the angles in the circuit. It leaves a site reversal
at the bottom of the circuit, reversing the order of the
coefficients. The angle negation negates the sine terms,

0 1 0 0

θ1 θ1

θ2 a4 a3 a2 a1=

(a) Scaling coefficients from gate structure.




c1 −s1
s1 c1

c1 −s1
s1 c1







1
c2 −s2
s2 c2

1







0
1
0
0


 =




a4
a3
a2
a1




where
(
a4 a3 a2 a1

)
=
(
−s1c2 c1c2 c1s2 s1s2

)

and ci = cos(θi), si = sin(θi)

(b) Gate structure in (a) written in terms of matrices and vectors.

0 0 1 0

θ1 θ1

θ2 a1 −a2 a3 −a4=

(c) Wavelet coefficients from gate structure.

FIG. 8. Here we show explicitly how to obtain the scaling
and wavelet coefficients of the D4 WT from the circuit con-
struction. Taking θ1 = π/6 and θ2 = 5π/12, in (a) and (b) we
reproduce the conventional scaling coefficients for the D4 WT,
~aT = (a1, a2, a3, a4) = (1+

√
3, 3+

√
3, 3−

√
3, 1−

√
3)/(4

√
2),

up to a trivial reversal in the order. In (c) with the same
choice of angles we reproduce the conventional wavelet coef-
ficients (a4,−a3, a2,−a1), again up to a trivial reversal and
sign.

leading to the same coefficients except with every other
one negated, since every other site will have an even or
odd number of sin(θi) multiplied together.

Given an arbitrary set of {aj}, we can use the same
procedure that brought ~v to the first site in our GMPS
procedure to find all the angles defining the WT, i.e
~v = ~a. Thus, any compact orthogonal WT of this gen-
eral type can be represented by a simple gate structure.
Because wavelets are much easier to understand than
generic many particle wavefunctions, the connection be-
tween MERA and wavelets may help provide intuition
that helps one understand MERA.

D. Forming the Many-Body MPS from the GMPS
(or GMERA)

For a number conserving real Hamiltonian H,
the many particle unitary gate V̂i corresponding
to the single particle rotation Vi, in the basis
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V̂B1

V̂B2

V̂B3

V̂B4

V̂B5

V̂B6

V̂B7

=

=

FIG. 9. Tensor diagram showing the structure of gates {V̂Bi} for i = 1, . . . , N − 1 obtained in our procedure and how they
contract to form an MPS. The white (black) triangles represent projectors onto the occupied (unoccupied) state. The ordering
of the occupied and unoccupied states is determined by the ordering of the occupations found in the diagonalization procedure,
one particular example at half filling is shown here. Here we show a system with N = 8 sites and a block size B = 4. The
diagram on the right shows that once the sites are rotated into a basis where one of the modes is occupied or unoccupied
(generally with some alternating pattern), the fully occupied or unoccupied modes can be projected out. The transformations

{V̂Bi}, including the projections, can be directly interpreted as the tensors composing the MPS representation of our many-body
state if we do an exact contraction, or we can apply them as a set of gates as explained in the text.

{|Ω〉 , â†i |Ω〉 , â†i+1 |Ω〉 , â†i â†i+1 |Ω〉}, is

[V̂i] = [V̂ (θi)] =




1 0 0 0
0 cos θi sin θi 0
0 − sin θi cos θi 0
0 0 0 1


 . (9)

This reinterpretation of the gates is the only change need
to make our matrix gate structures act on the many par-
ticle Hilbert space.

Say we have compressed the correlation matrix of a
pure fermionic Gaussian state as a GMPS. To create the
MPS representation of this state, we begin with a prod-
uct state, with each site being occupied or unoccupied,
with the occupations given by nk obtained in our diag-
onalization procedure (set to 1 or 0 for nk ≈ 1 or 0).
We then apply, one by one, all of the nearest neighbor
gates {V̂i} (the many-body gates corresponding to the
gates {Vi} obtained with Eq. 9) in the opposite order in
which they were obtained with our diagonalization proce-
dure. The repeated application of gates is similar to the
time-evolving block decimation (TEBD) algorithm16 or
the time dependent DMRG algorithm17, but the pattern
of gates and ordering is different. We apply the two body
gates by moving the center of the MPS to the location of
the gate, contract the gate with the two relevant tensors
in the MPS, and then form the new MPS by perform-
ing a singular value decomposition (SVD), with possible
truncation of states by throwing out states with small
singular values.

We can also form the MPS from our GMERA construc-
tion in a similar manner. However, instead of starting
with a full product state, we start with the gates at the
top of the MERA and work our way down, including only
the sites that have been touched by a gate at that level
or above. When a site is added, it starts as a completely
occupied or unoccupied state, and is immediately mixed
with another site by a gate. The number of sites involved
roughly doubles with each layer, and after O(log2(N))
layers of the MERA we have our MPS approximation for
the entire system. Again, we can truncate as needed by
throwing out low weight states after the SVD as we work
our way down.

Returning to the MPS construction, the tensors of the
MPS could also be constructed directly by contractions
of the gates as shown in Fig. 9. In this diagram the small
black and white triangles signify projectors onto the ap-
propriate occupations found, while the thick lines signify
combined internal indices which form the internal bonds
of the MPS. From this perspective it is easy to see that
picking a block size B for diagonalizing the correlation
matrix would correspond to an MPS with a bond dimen-
sion of χ = 2B−1. We find it simpler and more efficient
to apply the gates layer by layer instead of this method.
Layer by layer, it is natural to truncate the MPS with
SVDs during the construction, and this can lead to an
MPS with a smaller bond dimension than 2B−1 for the
required accuracy. The SVD truncation takes one out
of the manifold of Gaussian states, where the greater
freedom for a fixed bond dimension allows one to find a
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state which is closer to the desired Gaussian state than
one could within the Gaussian manifold. However, one
should pick a block size so that 2B−1 is as close to the
target bond dimension as possible.

We can adapt our circuits to complex quadratic Hamil-
tonians, where the gates are of the same form but the
2× 2 submatrix rotating the singly occupied subspace is
a general matrix in SU(2) parameterized by two angles.
Even more generally, we can extend this procedure to
quadratic Hamiltonians with pairing terms to compress
BCS states, where the gates required are not just num-
ber conserving but general parity conserving gates (so
they involve mixing of unoccupied and doubly occupied
subspaces of the 2 sites of interest). This matrix would
in general be parameterized by 5 angles (one matrix in
SU(2) rotating the singly occupied subspace, one matrix
in SU(2) rotating the empty and doubly occupied sub-
spaces, and a relative phase). This form of gates has
been studied previously in the context of classically sim-
ulating quantum circuits using the matchgate formalism;
see for example18,19.

IV. NUMERICAL RESULTS

Here we show numerical results for the algorithms we
presented. In order to study systems that are both
gapless and gapped, we study a simple model, the Su-
Schrieffer-Heeger model20. This is a model of 1D spin-
less fermions hopping on a lattice with staggered hopping
amplitudes, t1 and t2. The Hamiltonian is

ĤSSH =

N−1
2∑

i=1

(t1â
†
2i−1â2i + t2â

†
2iâ2i+1 + h.c.). (10)

We will take t1 = −t
(
1 + δ

2

)
and t2 = −t

(
1− δ

2

)
. The

model has an energy gap in the bulk between the ground
state and first excited state of ∆ = 2|δ|t in the thermody-
namic limit (N →∞). With open boundary conditions,
it can contain exponentially decaying zero energy modes
localized on the ends of the chain.

A. Results for Compressing a Correlation Matrix
as a GMPS

We start with a simple test of obtaining the GMPS
compression of the ground state correlation matrix of the
SSH model for N = 128 lattice sites for various energy
gaps at half filling (NF = N/2). We analyze the range
of δ from 0 to 2. The ground state for δ = 0 is (approx-
imately) gapless while for δ = 2 it is fully gapped (the
chain uncouples). Fig. 10 shows the block size required
to obtain a GMPS with a relative error in the total en-
ergy of less than 10−6 as a function of the calculated en-
ergy gap. The exact ground state energy and energy gap
are calculated by diagonalizing the hopping Hamiltonian
HSSH . This corresponds to the accuracy of the MPS
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FIG. 10. Block size required to obtain a relative error in the
total energy of less than 10−6 as a function of the calculated
energy gap (in units of t) for N = 128 sites.
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FIG. 11. Relative error in the total energy as a function of
the block size B for N = 128 sites and δ = 0.

representation of the ground state if the GMPS written
with many-body gates is contracted with no further trun-
cation of the MPS, so a GMPS block size B corresponds
to an MPS of bond dimension χ = 2B−1 (which is why
the block size remains constant for intermediate energy
gaps). The plot shows, as expected, that the block size
required decreases as the energy gap is increased. Fig. 11
shows, for the case δ = 0 (where the energy gap, due to
the finite size, is 0.146088t), the relative error in the en-
ergy as a function of the block size.

Fig. 12 shows examples of the modes obtained with
the procedure, both filled and unfilled, for a small gap
and a larger gap. The modes are seen to be localized
for the case of the larger gap, and extend throughout the
system for the smaller gap. The unfilled modes follow the
same decay as the filled modes but oscillate more, since
they are above the Fermi sea and are therefore higher in
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FIG. 12. Examples of occupied and unoccupied modes
found in the diagonalization process. Fig. 12(a) shows occu-
pied/unoccupied modes for δ = 0.4 (energy gap ≈ 0.806135t).
Fig. 12(b) shows occupied/unoccupied modes for δ = 0 (en-
ergy gap ≈ 0.146088).

energy. Fig. 13 shows for the same two gaps the deviation
in the eigenvalues nk from 0 or 1 obtained during the
diagonalization procedure. For the case of the larger gap,
this error saturates to its maximum quickly for modes
near the middle of the system, while for the smaller gap,
the error increases more slowly due to the longer range
correlations.

In Fig. 14 we analyze the block size scaling with system
size N for the gapless case (δ = 0). As we expect from
arguments about entanglement made at the end of Sec-
tion III A, the scaling is found to be B ∼ log(N). This
is the expected scaling for a critical 1D system. We can
see that with this procedure we can analyze very large
systems, up to N = 216 = 65536 sites, even for gapless
free fermions. To avoid storing correlation matrices this
large, we begin with a very accurate compressed corre-
lation matrix as a GMPS using the GDMRG algorithm
presented in Appendix B. With GDMRG, we begin with
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FIG. 13. Examples of deviations in occupations at the end of
the diagonalization procedure for N = 128 sites. Fig. 13(a)
shows errors in the occupations for δ = 0.4 (energy gap ≈
0.806135t). Fig. 13(b) shows errors in the occupations for
δ = 0.0 (energy gap ≈ 0.146088t).

a state with a relative error in the energy of < 10−10.
For N = 65536 this requires a block size of B = 22. We
then obtain the local correlation matrix for the block we
are interested in using the gates from this accurate com-
pression, and use it to obtain a less accurate compression
with a smaller block size. This procedure should lead to,
for a given block size, a more accurate overall state than
one that would be obtained directly from GDMRG, be-
cause GDMRG optimizes the energy which only depends
on very local correlations.

B. GMERA Results

Here we present results for compressing a correlation
matrix as a GMERA using the procedure presented in
Section III B. We show the relative error in the energy
for increasing number of sites for B = 10 in Fig. 15. We
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FIG. 14. Block size B needed for a relative error in the energy
of < 10−6 as a function of number of sites N for spinless, gap-
less fermions with open boundary conditions at half filling. As
expected from arguments about the entanglement of a critical
system, we find B ∼ log(N), tested up to N = 216 = 65536
sites (note the log scale on the x axis). To study systems
of this size and avoid the O(N3) diagonalization of the hop-
ping Hamiltonian, we obtain the correlation matrix using the
GDMRG algorithm as explained in Appendix B.
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FIG. 15. Relative error in the energy for the proposed
GMERA construction for increasing number of sites for a
block size B = 10. The system analyzed is the ground state
of free fermions hopping on a lattice with open boundary con-
ditions. All errors are below 10−6. As expected for a MERA,
the error is seen to saturate for large N , indicating a fixed
block size is sufficient to obtain an accuracy < 10−6 up to
very large system sizes.

see that for this block size, the error stays below 10−6

for systems up to N = 214 = 16384 and in fact appears
to saturate at high number of sites (the change in the
relative error in the energy approaches 0 for larger sys-
tem sizes). This is in stark contrast to the GMPS, where
a block size B ∼ log(N) was required to obtain a fixed
accuracy, as shown in Fig. 14. Instead, the GMERA ob-

0

20

40

60

80

100

225 425 625 825 1025

T
im

e
to

fo
rm

M
P
S
(s
)

Number of sites N

Gapless, ∼ N2.03

Gapped, ∼ N1.02

B = 11, χ = 364

B = 8, χ = 55

FIG. 16. A plot of the time to form the MPS approximation
of gapped and gapless free fermion ground states at half fill-
ing as a function of sites N using gates from a GMPS. The
bond dimensions are chosen large enough such that the rel-
ative errors in the energy of the MPS are below 10−6. The
block size of the GMPS used to form the MPS are the mini-
mum required to obtain a GMPS with a relative error in the
energy of 10−6. A cutoff in the singular values of the SVD
of 10−11 was used when applying the gates to form the MPS
using the method described in Section III D. For the gapped
case, the SSH model with δ = 0.1 is used, corresponding to
an energy gap of ∆ ≈ 0.2t (exact as N →∞).

tains the same accuracy with constant block size B as
shown in Fig. 15. The GMPS obtains the given accuracy
with the same or smaller block size up to N = 512, after
which it requires a larger block size than the GMERA to
obtain the same level of accuracy. As we mentioned ear-
lier, this is made possible partially because the GMERA
structure involves nonlocal gates.

C. GMPS to Many-Body MPS Results

Plots of the time it takes to form the MPS of the
ground state of a gapless free fermion system for up
to N = 1024 sites using the method presented in Sec-
tion III D are shown in Fig. 16. As expected, the time
it takes for a gapless system is polynomial in the sys-
tem size N , while it is approximately linear in N for a
gapped system. The SSH model is used with δ = 0.1 or
an energy gap ∆ ≈ 0.2t. The time to form the gapless
ground state is only a modest polynomial in N , ∼ N2.03,
while as we expect from arguments about entanglement
the time to form the gapped ground state is very nearly
linear in N , ∼ N1.02, because the block size and bond
dimension required to obtain the specified accuracy are
constant for all N shown (B = 8 and χ = 55). With this
method, a gapless ground state of N = 1025 sites with a
relative error in the energy of < 10−6 can be formed on
a laptop in only ∼ 90 seconds.

An interesting point to emphasize is the quality of the
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compression. The GMPS for the gapless ground state on
N = 1025 sites requires a block size of B = 11 to obtain
a relative error in the energy of < 10−6. Naively, turn-
ing these gates into many-body gates and contracting
the network (forming the MPS directly from the GMPS
with no truncation) as explained earlier leads to a bond
dimension of the MPS of χ = 2B−1 = 210 = 1024. How-
ever, applying the gates as described and using a cutoff
of the singular values of 10−11 leads to the formation of
an MPS approximation of the fermionic Gaussian ground
state, still with a relative error in the energy of < 10−6,
with a bond dimension of only χ = 364. This is a result
of the fact that our GMPS only explores the manifold of
fermionic Gaussian states limited to the specified block
size. On the other hand, the MPS approximation of the
Gaussian state we form from this GMPS is able to ex-
plore the entire manifold of MPS’s up to the allowed bond
dimension (and particle number if symmetric tensors are
used, as we do here), so through the SVD we are able
to compress the state quite efficiently beyond what we
initially might expect.

V. CONCLUSION

We have presented an efficient, numerically stable, and
controllably accurate way to compress a correlation ma-
trix into a set of 2 × 2 unitary gates. From these gates,
we have also presented a method for easily and efficiently
forming the MPS approximation of a fermionic Gaus-
sian state. We explained the procedure in detail for the
ground state of a generic number conserving Hamilto-
nian. We then presented results for the SSH model, a 1D
chain of fermions with staggered hopping. We showed
examples of the accuracy and block sizes needed for dif-
ferent gaps of the model. We hope this method can be
used as a simple, efficient and reliable procedure for di-
rectly preparing many states of interest, either by creat-
ing starting states to aid DMRG calculations or prepar-
ing a particular ansatz as an MPS. We also presented one
example of how the procedure can be modified to obtain
different gate structures, in this case one that is related
to the MERA. However, there are other possibilities to
be explored, such as gate structures more directly suited
for systems with 2 spatial dimensions, periodic boundary
conditions, as well as how the method might be applied
to study thermal fermionic Gaussian states. In addition,
we presented how discrete wavelet transforms can be de-
scribed very simply with the gate structure notation we
introduced in this paper.

The method is easily generalized to cases beyond the
one presented here. As we touched upon earlier, it can be
generalized to the case of BCS states, the ground states of
hopping Hamiltonians that include pairing terms. In this
case, the correlation matrix in the Majorana basis can
be written in terms of an anti-symmetric matrix which
can be approximately block diagonalized by ∼ 5BN lo-
cal 2 × 2 rotation gates, which are turned into nearest

neighbor parity-conserving many-body gates. The case
of spinless fermions was presented, but spinful fermions
are a simple generalization. In addition, we expect sim-
ilar methods as those presented can be used to study
and compress bosonic Gaussian states. In this case, one
could form the covariance matrix of the bosonic Gaus-
sian state and locally diagonalize it to find the uncorre-
lated bosonic modes (see21 for a previous study of bosonic
Gaussian MERA). Additionally, more complicated many-
body gates would be required because the local Hilbert
space dimension is larger for bosons.
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Appendix A: Calculation of the Entanglement
Entropy of a Fermionic Gaussian State

In this section we give a simple, self-contained deriva-
tion for Eq. 6, the entanglement entropy for a block of
a free fermion system. This expression has been shown
elsewhere8–11, though we show a simple, self-contained
derivation here.

Assume the block of interest B is the first B sites.
Gaussian states have expectation values that obey Wick’s
theorem. This means that the expectation value of any
operator contained within the block is specified if we
know subblock B of the correlation matrix, ΛB. This im-
plies that the many-body density matrix of the block ρ̂B
is also uniquely specified by ΛB. The entanglement en-
tropy on block B, defined as SB [ρ̂B] = −Tr[ρ̂B log(ρ̂B)],
does not change under general unitary transformations
within the block. Thus, we can perform the single parti-
cle unitary transformation of basis that makes ΛB diag-

onal, with diagonal entries nb =
〈
â†bâb

〉
for b ∈ 1, . . . , B.

The nb uniquely specify the reduced density matrix of
the block, so the entanglement is a universal function of
{nb}:

SB = SB(n1, . . . , nB). (A1)

In fact, the details of the system outside the block are
irrelevant. For example, different systems with different
numbers of sites outside the block can have the same SB
as long as their {nb} are identical and the system is a
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Gaussian state. Thus to evaluate the function SB , we
can choose a simple system in which to evaluate it rather
than using the actual system of interest.

Let’s first consider a block with only one site (B = 1).
We would like to know the universal function S1(n1). We
choose a two site system containing a single particle, with
normalized wavefunction

|ψ〉 = (
√
n1â
†
1 +
√

1− n1â
†
2) |Ω〉 . (A2)

The correlation matrix is(
n1

√
n1(1− n1)√

n1(1− n1) 1− n1

)
(A3)

which has the required block correlation matrix Λ1 =
(n1). The Schmidt decomposition of |ψ〉 is

|ψ〉 =
√

1− n1(|0〉)(â†2 |0〉) +
√
n1(â†1 |0〉)(|0〉)

=
√

1− n1 |0〉 |1〉+
√
n1 |1〉 |0〉

(A4)

where |1〉 is the occupied state of the corresponding site.
From this we see that the reduced density matrix for site
1, ρ̂1 = Tr2[|ψ〉 〈ψ|], is

ρ̂1 = (1− n1) |0〉 〈0|+ n1 |1〉 〈1|
= (1− n1)(Î1 − n̂1) + n1n̂1

(A5)

and

S1(n1) = −Tr[ρ̂1 log(ρ̂1)]

= −(1− n1) log(1− n1)− n1 log(n1).
(A6)

For the system B with block size B > 1, we can choose
the system to be of size 2B and for each site in the block
associate one site outside the block. The Gaussian state
is the product state of the single particle states living
on a pair, each identical in form to the B = 1 state,
with B total particles. This system has no correlations
or entanglement between these pairs. This means that
the entanglement is the sum of the entanglement of each
pair. Thus

SB({nb}) =
∑

b∈B
S1(nb) (A7)

which is identical to Eq. 6. Note also that the overall
reduced density matrix of the block is the product of the
single site density matrices given in Eq. A5.

An alternative argument can be made to derive the
same equation which avoids the introduction of a con-
trived environment. We could have taken as an ansatz
that the reduced density matrix on B, ρ̂B, is the product
of the single site reduced density matrix we derived in
Eq. A5, in other words ρ̂B = ⊗b∈Bρ̂b. We can show that
this is in fact the unique reduced density of the state we
are interested in if we can show that it reproduces the
correct correlation matrix of our state and is a fermionic
Gaussian state (that it obeys Wick’s theorem). Both of
these are easy to show explicitly. Once we verify that this
is indeed the correct reduced density matrix of our state,
we can calculate the entanglement entropy directly with
SB = −Tr[ρ̂B log(ρ̂B)] = −∑b∈B Tr[ρ̂b log(ρ̂b)], which
matches Eq. 6.

H H5
CH5

L H5
R

(a)

Hi
CHi−1

CHi−1
L Hi

R Hi
CHi

L Hi
R

(b)

FIG. 17. Fig. 17(a) shows an example of an effective Hamil-
tonian centered at site 5 for the GDMRG algorithm. The
effective Hamiltonian is the diagonal square block of the trans-
formed Hamiltonian matrix covering the indicated sites. The
example is for N = 10 sites and a block size of B = 3.
Here the center is only one site, but could be more to im-
prove convergence just like in the standard DMRG algorithm.
Fig. 17(b) shows, for a sweep to the right, how to obtain the
new left block from the previous effective Hamiltonian by ro-
tating with the appropriate gates found and taking the sub-
matrix of the indicated sites.

Appendix B: GDMRG, an Algorithm to Obtain a
Compressed Ground State Correlation Matrix as a

GMPS

Here we describe fermionic Gaussian DMRG
(GDMRG), a DMRG-like algorithm in the single
particle context. The algorithm is an efficient method to
directly obtain all the angles specifying the compressed
correlation matrix as a GMPS without ever needing to
express the matrix in uncompressed form. The ground
state GMPS of a hopping Hamiltonian on N sites is
calculated with a cost of only O(B3N), where B is the
block size of the GMPS (which determines the accuracy
of the compression and depends on the entanglement of
the ground state).

Imagine that we start with a hopping Hamiltonian H
on a lattice of N sites, and we would like to obtain the
GMPS with a block size B that minimizes the energy of
H. We begin with a random starting GMPS. Just like in
the DMRG algorithm, we form an effective Hamiltonian
centered at a site with a left and right block, which we
show in Fig. 17(a). Say that we start on the left side
of the lattice and begin sweeping right. Our GMPS will
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start gauged to the left. For a single-site GDMRG, our
center block is only one site, but we could use a larger
center to decrease the number of sweeps required for con-
vergence. In practice for free gapless fermions we find
that a single center site works quite well. The first step
is to diagonalize the 2B − 1 site effective Hamiltonian,
and obtain the effective correlation matrix Λeff. Using
this Λeff, we diagonalize the first B × B block and, for
a large enough B, find a fully occupied or unoccupied
mode. Just as described in Fig. 4, we find the B − 1
nearest neighbor 2× 2 gates that rotate Λeff into the ba-
sis containing this mode, partially diagonalizing it. These
gates form the first block of the GMPS.

Next we would like to move the center to the right so
that we can obtain the next block of the GMPS. Because
the compression is a unitary transformation, we can start
moving the center to the right by undoing the gates in

the block of the GMPS to the right of the center. This is
step is in contrast to ordinary DMRG where a sequence
of right blocks are stored and are called from memory
when needed. We then obtain the effective Hamiltonian
for the next site using the block of the GMPS we obtained
from the previous effective Hamiltonian of the sweep, as
shown in Fig. 17(b). We repeat this process until we
reach the end of the lattice, completing our first sweep.
We continue sweeping back and forth until the energy is
sufficiently converged. We use this algorithm to obtain a
very accurate correlation matrix for systems up to N =
216 = 65536, from which we obtain the GMPS in Fig. 14.
For N = 65536 sites to obtain a correlation matrix with a
relative error in the energy of less than 10−10, we require
a block size of B = 22 and 14 sweeps (where a single
sweep is from left to right or right to left).
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