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A given fractional quantum Hall state may admit multiple, distinct edge phases on its boundary. We explore
the implications that multiple edge phases have for the entanglement spectrum and entropy of a given bulk state.
We describe the precise manner in which the entanglement spectrum depends upon local (tunneling) interactions
along an entanglement cut and throughout the bulk. The sensitivity to local conditions near the entanglement cut
appears not only in gross features of the spectrum, but can also manifest itself in an additive, positive constant
correction to the topological entanglement entropy, i.e., it increases its magnitude. A natural interpretation for
this result is that the tunneling interactions across an entanglement cut can function as a barrier to certain types
of quasiparticle transport across the cut, thereby, lowering the total entanglement between the two regions.

I. INTRODUCTION

A. Motivation

The bulk-boundary correspondence in topologically or-
dered systems relates a given bulk state to its possible bound-
ary excitations.1–3 This correspondence is remarkable because
it implies that the bulk and boundary data are one and the
same. However, in the context of 2+1D Abelian topologi-
cal phases or, equivalently,97 Abelian fractional quantum Hall
(FQH) states – the focus of study of this paper – it has re-
cently been stressed,4,5 following previous work,6–10 that the
map connecting the possible edge excitations to a given bulk
state is many-to-one. In other words, a bulk state may ad-
mit multiple, distinct edge phases. The distinction between
the edge phases can be quite dramatic, for example, in some
cases a bulk phase may admit a purely fermionic edge and a
distinct, purely bosonic, edge description.98

The underlying reason that multiple edge terminations can
occur lies in the possibility that different edge interactions can
drive the low-lying edge excitations into distinct low-energy
phases. The ν = 2/3 FQH state is a well known example
of a state that can host either a clean, or disorder-dominated,
gapless edge phase.11,12 Similarly, the toric code13 admits dis-
tinct gapped edge phases as well as intervening gapless crit-
ical points.14–18 (see Refs. [19–23] for a more mathematical
discussion of possible boundary interactions in various non-
chiral 2+1D topological phases). On the other hand, fully chi-
ral examples can occur in QH systems at both integer, ν = 8
and 12, and fractional fillings lying at ν = 8/7 and 12/11,
among others.4,5 To be precise, an edge is said to be fully
chiral if all edge excitations are, say, left-moving with no
right-movers; chiral, if there are more, say, left-movers than
right-movers; and non-chiral, if there are an equal number
of left-movers and right-movers. Remarkably, every Laugh-
lin state state at inverse filling ν−1 = 2m + 1 admits more
than one edge phase, however, only one phase is guaran-
teed to be fully chiral.5 Distinct fully chiral edge terminations
can (nearly always99) be differentiated by experimentally-
measurable tunneling exponents.5 These exponents character-
ize the differential conductance, say, across a Hall sample or

into the edge from a Fermi liquid lead, at a quantum point
contact. Distinct non-chiral phases may also possess distin-
guishing signatures.24

Additional insight into the nature of a particular QH state
is furnished by the topological entanglement entropy and,
more generally, the entanglement spectrum (both defined
below).25–28 Such entanglement measures are sensitive to
long-ranged correlations within a state that may be invisible
to local order parameters. Interestingly, arguments suggest
that the physical edge spectrum can be reconstructed from the
(bulk) entanglement spectrum, which is only a function of the
ground-state wavefunction.28–32 It is natural to ask how the
entanglement spectrum is compatible with the different pos-
sible edge phases of a particular state – given a spatial cut of
a particular bulk wavefunction, to which distinct edge theory
does the entanglement spectrum correspond? This question
motivated our work, but as will be shown below, our results
have additional remarkable implications.

In this article, we study the entanglement entropy and the
entanglement spectrum for 2+1D Abelian topological phases
that admit multiple edge phases or multiple gapped interfaces.
As anticipated from the physics that may occur at an actual
boundary of the system, we describe how both the entangle-
ment entropy and the entanglement spectrum are sensitive to
the possible interactions occurring near an entangling cut, and
in general, throughout the entire bulk, reminiscent of recent
work.33–35 We find that the entanglement entropy can receive
a constant (negative-definite) sub-leading correction that de-
pends upon the bulk state under consideration and the interac-
tions occurring in the neighborhood of the entanglement cut.
We focus on fully chiral states, however, our results and tech-
niques apply equally well to non-chiral systems and we pro-
vide a few examples of these as well. Before we provide a
summary of our results, we review the concepts of quantum
entanglement to provide the relevant context for our work.

B. Review of Entanglement Entropy and Spectrum

Given a state |ψ〉 and a bipartition of the Hilbert space,
H = HA ⊗ HB , the entanglement entropy is equal to the
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von-Neumann entropy of the reduced density matrix, ρA =
TrB(|ψ〉〈ψ|):

S(ρA) = −TrA

(
ρA log(ρA)

)
, (1)

where the subscript A on the Tr operation indicates the sub-
space over which the trace is performed. If |ψ〉 is a pure state
then S(ρA) = S(ρB). In this paper, we are solely concerned
with a Hilbert space division associated to the degrees of free-
dom living in spatially distinct regions: A and, its comple-
ment, B.100 Therefore, the entanglement cut can be identified
with the boundary between regions A and B.

The entanglement entropy of a gapped system in 2+1D
takes the scaling form:

S(ρA) = α`− γ, (2)

where subdominant corrections in the ` → ∞ limit have
been suppressed, and we assume that region A has a smooth
boundary. The linear size ` of region A is assumed to obey
ξ � ` � L, where ξ is the correlation length (which is finite
due to the bulk gap) and L is the linear size of the system.
The non-universal constant α depends upon the regularization
of the theory – for instance, it can be a function of the lat-
tice cutoff. However, the universal constant γ is called the
topological entanglement entropy (TEE) and is known to be
a robust feature of a gapped phase. The value of the TEE
partially characterizes the topological phase and, when the re-
gion A has the shape of a disk with smooth boundary, takes
the celebrated value25–27:

γ =
1

2
log
(
D2
)

=
1

2
log
( M∑
a=1

d2
a

)
. (3)

where D is the total quantum dimension of a particular phase
and da the quantum dimension of each emergent quasiparticle
a of the phase. The da determine the asymptotic growth of the
Hilbert space dimension of a configuration of N-quasiparticles
of type a via dim(H

(N)
a ) ∼ dNa . For further details, see Ref.

[36].
In the literature so far, it has been shown that as long as

region A has topology of a smooth disk, the TEE is given
by the expression in Eqn. (3). For more elaborate topolo-
gies – for instance, when the state is defined on the torus,
and region A contains a non-contractible cycle – the constant
sub-leading term in the entanglement entropy may take a dif-
ferent form which captures additional identifying properties
of the phase. These constant sub-leading ‘corrections’ de-
pend upon the topology of the total space, the topology of A,
the particular linear combination of degenerate ground states,
and the modular S-matrix of the underlying topological field
theory.37,38 Additional constant corrections can arise from a
departure from the strict ξ/` → 0 limit and when the bound-
ary of A has corners.39 However, from the quite general argu-
ments in, for example, Ref. [37,38], one expects that when the
boundary is smooth, and the system is gapped, then any con-
stant, sub-leading contribution to the entanglement entropy in
2+1D has a topological origin.

The entanglement spectrum is defined to be the eigenval-
ues of the entanglement Hamiltonian HA

101 that is defined by
writing the density matrix in the form:

ρA =
e−HA

ZA
, (4)

where

ZA = TrA

(
e−HA

)
. (5)

With this definition, the entanglement entropy is identified
with the thermal entropy of the ensemble defined by ρA at
a temperature equal to unity.

Over the past five years, there has been an enormous
outpouring of research on identifying phases of matter, es-
pecially topological phases, using the entanglement spec-
trum. The initial work focused on (fractional) quantum Hall
states.28,40–53 This work was soon extended to the study of
topological insulators and other symmetry-protected topolog-
ical (SPT) phases,29,54–61 more general topologically ordered
phases,37,38,62–65 and even disordered systems.54,60,66–72 As we
will elaborate on below, one major outcome of this research
was the strong evidence for an entanglement-edge correspon-
dence, i.e., the low-energy entanglement spectrum is con-
nected with the low-energy spectrum of the physical edge
states.26,28–32

C. Summary of Results

In this article, we utilize the coupled wire construction73–75

to study the entanglement entropy and entanglement spec-
trum of Abelian topological phases on the cylinder, follow-
ing the methods described in Refs. [76,77] (see Ref. [78] for
a related calculation). Using this construction, we illustrate
quite generally that there exist additional sub-leading, con-
stant corrections to the entanglement entropy. Our primary
focus is upon fully-chiral phases built from local fermions,
however we expect our methods to readily generalize to non-
chiral, non-Abelian, and/or bosonic states. We give examples
of some of these below, although we leave the consideration
of non-Abelian states to future work. We now summarize our
results.

1. Entanglement Entropy

Interestingly, we find that both the entropy and the spec-
trum are sensitive to the interactions near an entanglement cut
that runs parallel to the wires. In particular, we find that γ can
receive a positive constant correction that depends upon the
physical interactions near the would-be entanglement cut. We
believe these corrections to be universal and analogous to sim-
ilar sub-leading corrections that can occur in 1+1D conformal
field theory.35,79–82

The dependence of the entanglement entropy on the inter-
actions near an entangling cut arises as follows within our ap-
proach. The states that we study are made by sewing together
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a collection of parallel 1+1D wires each hosting a non-chiral
Luttinger liquid (see Fig. 3).73,74 Two wires are said to be
sewn together if the right-moving modes on the first wire and
the left-moving modes on the second are perturbed by a gap-
generating perturbation within this right-left sector such that
the low-energy degrees of freedom are completely gapped. A
gapped, 2+1D state may then be obtained by populating the
entire plane with an array of such coupled parallel wires.

FIG. 1: An entanglement cut between any two wires (horizontal
lines) is sensitive to the phases, denoted here by KR/L, of the edge
modes occurring at the cut and the interactions across the cut. In-
teractions between wires are denoted by dashed lines. Interactions
across the entanglement cut are represented with red dashed lines
to distinguish them from interactions in the bulk. In general, these
interactions need not be the same as those in the bulk.

An entanglement cut between two wires is sensitive to the
particular interactions that couple those wires together, as il-
lustrated in Fig 1. From this point of view, a correction to
the entanglement entropy is not totally unexpected, since the
tunneling perturbations determine how quasiparticles are con-
strained to move between wires. We show that there exist
choices of tunneling terms for which only a restricted set of
local quasiparticles can pass at any one time, e.g. consider an
electronic system in which electron-pair tunneling is favored
over single-electron tunneling. When such tunneling terms are
the most dominant coupling between the wires along which
we choose to partition the system, then there exists a barrier
to the arbitrary movement of quasiparticles across the cut. In
fact, quasiparticles that are prohibited from moving between
the subsystems across the cut may or may not be restricted
within their respective subsystems, and both cases lead to in-
teresting consequences. If the tunneling interactions localize
certain quasiparticles within their respective subregions, we
have more information about the state in question, e.g., there
is individual number conservation of the localized quasiparti-
cles within each subregion, as opposed to the total system. It
is natural to expect that the entanglement between two such
regions decreases when such tunneling perturbations become
dominant across the entanglement cut and this is precisely
what we find.

To better understand the form of the constant correction
to the entanglement entropy, it is helpful to provide an alter-
native interpretation of the topological entanglement entropy.
For an Abelian topological phase defined by a K-matrix, the

FIG. 2: The effect of the tunneling interactions across the cut on the
entanglement entropy can be understood by introducing the Keff -
matrix. It is the fundamental quasiparticles of a theory defined by
Keff that may tunnel unimpeded across the entanglement cut.

topological entanglement entropy (for a disk geometry with
smooth boundary or the topology that we study) takes the
value γK = log

√
|det(K)|. Within the wire construction,

theK-matrix also determines the precise form of local tunnel-
ing operators that transfer (fundamental) electrons and, pos-
sibly their composites, across the entanglement cut. Thus,
we may interpret the topological entanglement entropy as a,
rather coarse, measure of the fundamental quasiparticles that
can tunnel across the cut through its dependence upon the K-
matrix.102

As we show in Eqn. (75), the total constant sub-leading
term in the entanglement entropy – including the corrections
we find – can be written in terms of an effective K-matrix,
which is different from the original and determined by the
neighboring topological phases and most dominant interac-
tions between edge modes along the entanglement cut – see
Fig. 1. The effectiveK-matrix incorporates any additional re-
strictions imposed by the structure of the theory that describes
the edge modes along the entanglement cut, or in general how
the bulk phase is sewn together – see Fig. 2. It is the ‘funda-
mental’ quasiparticles, defined with respect to the effective
K-matrix, that may tunnel unimpeded across the entangle-
ment cut. Consistent with the above reasoning, we find that
the constant sub-leading term in the entropy takes the form:

−γKeff = − log
√
|det(Keff)|. (6)

We study examples where this phenomenon occurs at both
integer fillings, ν = 2, ν = 4, and ν = 8 and fractional fill-
ings, ν = 4/3 and ν = 15/8. We also study cases of in-
terfaces between inequivalent topological phases that support
gapped interfaces, and show that in those cases a cut at the in-
terface also yields a non-vanishing sub-leading constant con-
tribution. We believe this phenomenon to be rather generic as
our examples readily generalize to many other Abelian states
as well.

2. Caveats

We note that such constant corrections to the entropy do
not contradict the seminal results in Refs. [25,26]. The in-
teractions we study occur along the entire entanglement cut
instead of only at select points along the cut. In fact, we view
our result as bolstering the general sentiment of such works
in the sense that the corrections we find highlight additional
characteristics of a given topological phase that entanglement
can probe.
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Two states may be identified if there exists a finite-depth
local unitary operator that transforms one state into the other,
consistent with any symmetries that are to be preserved by the
two states.83–85 Such transformations do not affect the univer-
sal entanglement properties of a given state. We do not be-
lieve the constant correction to the entanglement entropy that
we find is in conflict with this intuition. Recall that the entan-
glement entropy is computed in the limit where the length of
the entangling surface O(`) → ∞. The corrections we find
are due to interactions that occur along the entire entangle-
ment cut. Therefore, we do not expect the state where such
interactions are absent to be connected to the state where such
interactions are present by a local unitary of finite depth.

It is tempting to interpret our result as being due to the nu-
cleation of a ‘strip’ of Hall fluid defined by the effective K-
matrix across the wires where the unconventional interactions
are dominant (see Fig. 2). The entanglement cut runs through
this strip and the sub-leading constant term is in exact agree-
ment with the expected topological entanglement entropy of
such a fluid, γKeff = log

√
|det(Keff)|. Indeed, we may

populate the entire plane by wires whose mutual interactions
are incorporated into a Keff . The resulting 2D phase has the
same observable properties, e.g., charge and thermal Hall con-
ductance, but with perhaps a different set of low-energy local
quasiparticles. However, as we show in an Appendix I, such
a 2D state does not admit deconfined quasiparticles with the
statistics implied by Keff and so the the ‘strips’ do not coa-
lesce into a 2D fluid defined by Keff ; rather, the quasiparticle
statistics of such a state are identical with those of the theory
defined by the un-perturbed K-matrix.

We obtain our results by concentrating on a finite set of
tunneling interactions that we assume to be most dominant.
Certainly, there is no general reason to restrict our attention to
a finite set of interactions, as any interaction not forbidden by
symmetry can appear in the action describing the edge modes
at the entanglement cut. However, we do not expect small
perturbations to significantly alter the gapped ground state that
is determined by the dominant interactions, and so the form of
the entanglement spectrum and entropy that we find should be
preserved at leading order.

One might also be worried that our results are an artifact of
the wire construction. This construction is essentially in the
limit when the correlation length transverse to the wires van-
ishes and the boundary states are ultra-localized on the edge.
From this we are able to show that including interactions ex-
actly at the cut itself is enough to modify the TEE. In a more
realistic model with a finite correlation length we expect that
we would have to extend the range of interactions to at least a
finite-strip with width larger than the correlation length. Other
than this caveat we do not expect the results of our calcula-
tions to differ from what would be calculated in other models
realizing the respective phases.

3. Entanglement Spectrum

Previous work26,28–32,40–61,63,64,66–72 suggests a close con-
nection between the entanglement spectrum and the edge

spectrum. These works directly imply that the various edge
phases available to a given bulk should be visible in the
entanglement spectrum. In particular, the experimentally-
measurable tunneling exponents, which may be used to dis-
tinguish different edge phases by measuring the scaling di-
mensions of vertex operators within the particular edge the-
ory, are related to the eigenvalues of the entanglement Hamil-
tonian within particular (flux) sectors of the theory. We make
the connection between the edge spectrum and the entangle-
ment spectrum more precise in the context of edge phases with
more than one edge mode.

Given a list of spectral eigenvalues, in general it is unclear
how to decode the list to deduce the phase of the edge us-
ing the analytic expression for the entanglement spectrum ex-
cept at fine-tuned points. However, it is possible to compare
the behavior of such lists under global perturbations of the
bulk state, if they are known to transform in distinct ways.
To this end, we imagine putting our states on a spatial cylin-
der. We then compare spectra associated to distinct edge
phases before and after insertion of flux through the cylinder.
The behavior under flux insertion allows some distinct edge
phases to be distinguished in an unambiguous way, e.g. com-
pletely fermionic and completely bosonic edge phases can
be distinguished by threading π-flux through the hole of the
cylinder.38,86,87

D. Outline

The remainder of the paper is organized as follows. In Sec.
II, we review the construction of (Abelian) Hall states using a
collection of coupled wires. This section is pedagogical, how-
ever, we highlight certain aspects of this construction which
are especially important for our study. In Sec. III, we calculate
the entanglement spectrum and entropy that result from cut-
ting the state at the interface between two wires. This section
generalizes the beautiful work in Refs. [76,77], and makes
explicit how interactions near the entanglement cut can affect
the spectrum. The next three sections elucidate the technol-
ogy developed in the previous section through examples. In
Sec. IV, we study filling fractions ν = 2, 4, and ν = 4/3,
which illustrate how the tunneling interactions across the cut
can lead to constant, sub-leading corrections to the entangle-
ment entropy even in the states with no topological order, i.e.
ν = 2, 4. In Sec. V, we consider filling fractions ν = 8
and ν = 8/15, for which more than one edge phase can oc-
cur at the entanglement cut, and describe how these distinct
phases manifest themselves in the entanglement spectrum and
entropy. In Sec. VI, we consider the entanglement at an in-
terface between two Laughlin states at filling ν = 1/kR and
ν = 1/kL. In Sec. VII, we briefly describe how π-flux can
be used to distinguish certain entanglement cuts. In Sec. VIII,
we conclude and discuss a number of questions we hope to
address in the future. Additionally, our paper contains nine
glorious appendices containing technical details used in the
main text.
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II. COUPLED WIRE CONSTRUCTION OF FRACTIONAL
QUANTUM HALL STATES

In this section, we review the construction of FQH states
(of fermions) using a collection of coupled 1D Luttinger
liquids.73,74 The coupled wire approach is powerful because
it allows us to study non-perturbative interactions using
bosonization techniques.

A. 1D Fermi Liquid Arrays

The coupled-wire construction begins with N parallel
wires that each host an N channel 1D spinless Fermi liquid;
spin may be incorporated into the channel index. Each wire
is oriented parallel to the x̂−direction and an array of wires
is placed in the xy plane, where the wires are separated from
one another by a distance d in the ŷ−direction. A background
magnetic field B is applied in the ẑ = x̂ × ŷ-direction. This
set-up is shown in Fig 3.

a) An array of wires in a constant background field. Dashed lines
indicate interactions between neighboring wires.

b) A single wire, j, with four internal channels. Each internal
channel has a right- and left-moving mode, as indicated by the

arrows on the outermost channel.

FIG. 3: Schematic Illustration of a Coupled Wire array

The 1D free Fermi liquid action for the collection of wires
takes the form:

SFL =

N∑
j=1

∫
dtdx

N∑
I=1

[
Ψ†I,ji∂tΨI,j

+
1

2m
Ψ†I,j(∂x − ieAx)2ΨI,j + µIΨ

†
I,jΨI,j

]
, (7)

where the operator Ψ†I,j creates an electron on wire j =
1, ...,N in channel I = 1, ..., N . For simplicity, we take the
electron mass m, and a channel-dependent chemical potential
µI , to be the same on each wire. We choose a gauge where
the background electromagnetic field, Aµ = (0,−By, 0, 0).
Subsequently, sums over repeated indices will be understood
unless otherwise specified.

At low energies, we may restrict our attention to excitations

near the Fermi points at k(R/L,I,j)
F by writing,

Ψ†I,j = eik
(R,I,j)
F xψ†(R,I,j) + eik

(L,I,j)
F xψ†(L,I,j), (8)

where the ψ†(R/L,I,j) fields create purely right/left-moving ex-
citations along wire j in channel I near the Fermi points. They
are slowly varying with respect to the scale set by the “bare”
Fermi momenta, k(0)

F,I =
√

2mµI . The slowly varying as-
sumption avoids double counting the low-energy degrees of
freedom, and effectively places a cutoff Λ � k

(0)
F,I on the al-

lowed momenta of the fields ψ†(R/L,I,j). By substituting Eqn.
(8) into the Fermi liquid action of Eqn. (7), we obtain the
linearized action:

Slinearized =

∫
dtdx

[
ψ†(R,I,j)i(∂t + vF,I∂x)ψ(R,I,j)

+ ψ†(L,I,j)i(∂t − vF,I∂x)ψ(L,I,j)

]
, (9)

where the bare Fermi velocities are vF,I = k
(0)
F,I/m, and the

Fermi momenta are given by:

k
(R/L,I,j)
F = ±k(0)

F,I + eBjd (10)

About the decoupled wire fixed point, higher-order interac-
tions are irrelevant in the renormalization group (RG) sense
and have been suppressed.

The 2D electron density for each channel is given by
ρ

(I)
2D = 1

πdk
(0)
F,I . By suitable inter-wire coupling terms, the

wire construction yields FQH states at filling fraction ν =

(2πρ2D)/(eB), where ρ2D =
∑
I ρ

(I)
2D. When the tunneling

couplings are tuned to zero, we have a highly anisotropic 2D
Fermi liquid (with an open Fermi surface). At non-zero cou-
pling, the bulk is gapped, however, there may exist gapless
modes living on the boundary of the system consistent with
the desired Hall state.

B. 1D Luttinger Liquid Arrays

To proceed, we bosonize the system. Within each wire j
and for each channel I , we introduce two real bosonic fields
φ
R/L
I,j associated to the right/left-moving fermion fields:

ψ†(R/L,I,j) =
γ(R/L,I,j)√

2πα
e±iφ

R/L
I,j , (11)

where α is a short-distance cutoff. The bosonic fields satisfy

[φaI,j(x), φbJ,k(y)] = −iπaδabδIJδjksgn(x− y), (12)

where a = R/L ≡ ±1. The Klein factors, γ(R/L,I,j), are
taken real and satisfy the Clifford algebra:

{γ(a,I,j), γ(b,J,k)} = 2δabδIJδjk, (13)

where a, b = R/L. Equations (12) and (13) ensure that the
fermionic operators, ψ(R/L,I,j), anti-commute. The bosonic
fields are only defined up to integer multiples of 2π:

φ
R/L
I,j ∼ φ

R/L
I,j + 2πp

R/L
I,j , (14)
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where pR/LI,j ∈ Z. Eqn. (14) determines the allowed expo-
nential, i.e., vertex, operators that can be constructed from the
bosonic fields.

From these definitions we find the bosonized form of the
free fermion action in Eqn. (9):

SLL =
1

4π

∫
dtdx

[
− ∂xφRI,j∂tφRI,j + ∂xφ

L
I,j∂tφ

L
I,j

− V (j),(a,b)
IJ ∂xφ

a
I,j∂xφ

b
J,j

]
, (15)

where a, b = R/L = ±1. We have added short-ranged
density-density interactions within wire j through the inter-
action matrix V (j),(a,b)

IJ , using the bosonic form of the charge
density operator,

1

2π
∂xφ

R/L
I,j = ψ†(R/L,I,j)ψ(R/L,I,j) (16)

Stability of the theory requires the 2N × 2N matrix,

(U (j))IJ =

(
V

(j),(R,R)
I,J V

(j),(R,L)
I,J−N

V
(j),(L,R)
I−N,J V

(j),(L,L)
I−N,J−N

)
, (17)

to be positive-definite. Interactions between excitations of op-
posite chirality, V (j),(R,L)

IJ = V
(j),(L,R)
JI , can renormalize the

scaling dimensions of the vertex operators, and may thus af-
fect their RG relevance. Density-density interactions between
fields of the same chirality, V (j),(a,a)

IJ = V
(j),(a,a)
JI renormal-

ize the velocities of the edge excitations but do not affect the
scaling dimensions of the fields.

C. Coupled Luttinger Liquids

Gapped 2+1D phases, including fractional quantum Hall
states, are obtained by coupling the gapless 1+1D wires.
There are two important types of interactions that we now ad-
dress: those which tunnel electrons and/or holes and those
which couple charge density.

We consider tunneling between nearest-neighbor wires
only. Each such perturbation is labelled by an integer vector
~mj,j+1 = (ma

I,j ,m
b
J,j+1) which defines a tunneling term:

O~mj,j+1
= Γ~mj,j+1

exp
(
ima

I,jφ
a
I,j + imb

J,j+1φ
b
J,j+1

)
+ h.c.,

(18)

where repeated indices denoting the chirality (a, b), and chan-
nel (I, J), of the fields are summed over and the product of
Klein, cut-off, and Fermi momenta factors is

Γ~mj,j+1
=

exp
(
iak

(a,I,j)
F ma

I,jx+ ibk
(b,J,j+1)
F mb

J,j+1x
)

(2πα)M~mj,j+1

×
∏
a,I

γ
|maI,j |
(a,I,j)

∏
b,J

γ
|mbJ,j+1|
(b,J,j+1),

(19)

where M~mj,j+1
=
∑
a,I |ma

I,j |+
∑
b,J |mb

J,j+1|. Interactions
that contain |ma

I,j | > 1 are defined using the operator product
expansion. Enforcing charge conservation requires:∑

I

[
mR
I,j −mL

I,j +mR
I,j+1 −mL

I,j+1

]
= 0. (20)

Enforcing translation-invariance along the wires requires the
oscillating exponential factor in Eqn. (19) to vanish:∑

I,a

[
ak

(a,I,j)
F ma

I,j + ak
(a,I,j+1)
F ma

I,j+1

]
= 0. (21)

Imposing additional symmetries, e.g., time-reversal symme-
try, can lead to further constraints on the allowed interactions.
Later, we consider examples which break charge conservation
or translational invariance; in a physical system these can be
broken by proximity to a superconductor or disorder, respec-
tively.

We will also allow inter-wire density-density couplings,
which take the same form as the intra-wire couplings in Eqn.
(15). These interactions can affect the scaling dimensions of
tunneling perturbations, and are required to ensure that cer-
tain higher-body interactions are relevant. In general, discrete
symmetries can restrict the allowed inter-wire (and intra-wire)
density-density interactions, but we do not consider such sym-
metries here.

Locality should also restrict allowed inter-wire interactions.
A perturbation is local (and, therefore, allowed) if the interac-
tion only involves a finite number of wires in the thermody-
namic limit, N → ∞. In one example below, we introduce
next-nearest-neighbor couplings, but all other examples only
require coupling nearest-neighbors.

Equipped with these two types of interactions, we construct
a 2D state by sewing together the Luttinger liquid wires so
that the only remaining gapless degrees of freedom live on the
boundary of the system. Intuitively, for chiral systems with
only nearest-neighbor couplings, two wires are sewn together
if the right-moving modes on wire j and the left-moving
modes on j + 1 obtain a gap in the presence of a tunneling
operator. This requires N integer vectors ~m(β)

j,j+1 that define
“mutually-commuting” operators O~mβj,j+1

by satisfying:15

a(m(β))aI,j(m
(γ))aI,j + a(m(β))aJ,j+1(m(γ))aJ,j+1 = 0,

(22)

for all β, γ = 1, . . . , N with sums over a = ±1 and
I, J = 1, . . . , N implied. Vectors satisfying Eqn. (22) are
said to be “null” and the O~mβj,j+1

can simultaneously pin
all of the low-energy boson modes. Applying the operators
O~mβj,j+1

throughout the system produces a gap to all low-
energy modes, except possibly those on a boundary.

One might worry that the Klein factors would impede a
straight-forward analysis in terms of the bosonic fields.88,89

In fact, this is not the case; we show in Appendix A that the
Klein factors associated with the operators O~mβj,j+1

commute

when the ~mβ
j,j+1 commute. The Klein factors can thus be si-

multaneously diagonalized and replaced by c-numbers which
can be absorbed into the coupling constants.103
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1. Illustrating the Construction with ν = 1/m Laughlin States

Following previous work, it is helpful to illustrate the tech-
nical discussion above by working through the coupled wire
construction of the ν = 1/m Laughlin state of fermions. In

this case, each wire hosts a single channel which is filled to
a density such that 2k

(0)
F ν−1 = eBd. The Fermi points lie

at k(R/L,j)
F = k

(0)
F (2jν−1 ± 1). The sewing perturbation is

defined by the integer vector (m+1
2 , m−1

2 , m−1
2 , m+1

2 ):

O1/m
j,j+1 =

γ
m+1

2

(R,j)γ
m−1

2

(L,j)γ
m−1

2

(R,j+1)γ
m+1

2

(L,j+1)

(2πα)m
cos
(m+ 1

2
φRj +

m− 1

2
φLj +

m− 1

2
φRj+1 +

m+ 1

2
φLj+1

)
. (23)

The oscillating factor vanishes. The perturbation requires m
odd – we can only create a Laughlin state of fermions. The
integer vector satisfies the null condition of Eqn. (22) so the
perturbation can open a gap and the Klein factors can be ig-
nored. Furthermore, the operators can be made relevant by
tuning the inter-wire density-density interactions.

For the moment, let us assume all additional interactions
vanish. To analyze the effects of perturbation by O1/m

j,j+1, we
make the field redefinition following Ref 74:

φRj =
m+ 1

2
ϕRj +

1−m
2

ϕLj ,

φLj =
1−m

2
ϕRj +

m+ 1

2
ϕLj , (24)

in terms of which the above perturbation simplifies:

O1/m
j,j+1 =

1

(2πα)m
cos(mϕRj +mϕLj+1). (25)

This has the form of an electron transfer operator between
edges of a ν = 1/m Hall state. The fields ϕL1 and ϕRN are
unaffected by these perturbations; after all bulk degrees of
freedom are gapped, these two fields remain in the low-energy
spectrum as the familiar FQH edge modes.

Strictly speaking, the newly defined fields obey the period-
icity conditions:

ϕ
R/L
j ∼ ϕR/Lj +

2π

m
P
R/L
j , (26)

where the integers PRj + PLj ∈ mZ. The perturbation

O1/m
j,j+1 pins the fields so that |〈exp(miϕRj +miϕLj+1)〉| = 1.

Expansion about a particular vacuum of the cosine requires
PRj = −PLj+1, which implies PL1 + PRN ∈ mZ. Thus, the
low-energy theory inherits non-local operators:

O1,N = exp
(
i
∑
j,a

ϕaj

)
= exp

(
iϕL1 + iϕRN

)
, (27)

where, in the second equality, we have replaced the bulk fields
by their expectation values after being pinned. These opera-
tors correspond to the transfer of an electron across the sys-
tem, and represent the anomalous behavior of the two edges.
Although the fields ϕL1 and ϕRN are not completely indepen-
dent, we treat them (and any other fields at a boundary created

by an entanglement cut) as having independent 2π periodici-
ties. This allows us to concentrate on the low-energy modes
near the entanglement cut.

Finally, we write the low-energy action, which depends
only on ϕL1 and ϕRN , by substituting (24) into (15):

Sν=1/m =
m

4π

∫
dtdx

[
∂xϕ

R
N (−∂t − ṽF,N∂x)ϕRN

+ ∂xϕ
L
1 (∂t − ṽF,1∂x)ϕL1

]
, (28)

The ṽF,J are determined by the original vF,J and any short-
ranged density-density interactions. Locality prevents cou-
pling between ϕL1 and ϕRN . Thus, we have obtained the low-
energy (edge) theory that describes the ν = 1/m Laughlin
state, which is fundamentally different from the free-fermion
gapless modes in the decoupled wires.

III. ENTANGLEMENT SPECTRUM OF
MULTI-COMPONENT LUTTINGER LIQUIDS

In this section we will calculate the entanglement spectrum
of a multi-component gapped, chiral Luttinger liquid general-
izing Refs. [76,77]. Since we focus on chiral states, our en-
tanglement cut partitions the multi-component fluid into right-
and left-movers, however the extension to non-chiral topolog-
ical phases is trivial. From this choice of spatial cut we com-
pute the reduced density matrix of the right-movers, and then
try to interpret the result as the ground state density matrix of
a 2D FQH fluid with open boundary.

A. Effective Action at an Entanglement Cut

If we cut the coupled-wire system open between wires j
and j + 1 by removing all tunneling and density-density in-
teractions that sew the wires together, we will find low-energy
modes living along the cut. For the ν = 1/m example re-
viewed in the previous section, we obtain a non-chiral Lut-
tinger liquid at the cut when both sides of the cut are consid-
ered. This system is described by an action identical to Eqn.
(28) (with the replacement 1→ j+1 andN → j). Therefore,
within the wire construction, we generally expect that the ac-
tion at the cut is a non-chiral Luttinger liquid that is identical
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in form to the sum of the two actions describing the gapless
chiral modes that exist at each boundary. This observation
provides the crucial simplification for the calculation of the
entanglement spectrum of a particular Abelian Hall state.

There is an important caveat to this logic. Thus far, we
have assumed that different wires interact via the same set of
tunneling interactions. Generally, there is no reason why this
must be the case; on the contrary, there are infinitely many
tunneling terms that will maintain the bulk gap. From the de-
coupled wire fixed point, each of these tunneling interactions
is on the same footing, given the ability to tune inter-wire for-
ward scattering interactions. We will show that the choice of
tunneling term can have a dramatic impact on the entangle-
ment spectrum and entropy.

The most general (decoupled) action for the low-energy de-
grees of freedom, including both sides of the entanglement
cut, takes the form:

S =
1

4π

∫
dtdx

[
−KR

IJ∂tϕ
R
I ∂xϕ

R
J − V RIJ∂xϕRI ∂xϕRJ

+KL
IJ∂tϕ

L
I ∂xϕ

L
J − V LIJ∂xϕLI ∂xϕLJ

]
, (29)

where I, J = 1, . . . , N . The right/left-moving bosonic modes
are periodically identified,

ϕ
R/L
I ∼ ϕR/LI + 2πP

R/L
I , (30)

with P
R/L
I ∈ Z. Because we are considering fully chiral

states here, we have dropped the wire indices j, j + 1 of the
previous section for convenience.

The right/left-moving modes, ϕR/L, live on opposite sides
of the entanglement cut and describe the excitations of a chiral
Luttinger liquid on each side of the cut parameterized by the
positive-definite, symmetric integer K-matrices KR/L. We
refer to the action above, for the independently 2π-periodic
modes, as being defined by the matrices KR/L. The fun-
damental fermion excitations are composites of the ϕ

R/L
I

modes. Density-density interactions along an edge are param-
eterized by the positive-definite, symmetric matrices V R/L,
while density-density interactions across the entanglement cut
are given by,

SU = UIJ

∫
dtdx

[
∂xϕ

R
I ∂xϕ

L
J

]
, (31)

where UIJ is a symmetric matrix. The importance and effects
of these types of terms was discussed above.

Before we made the entanglement cut, many-particle tun-
neling of local electrons/holes across the cut occurs via some
set of interactions parameterized by integer vectorsMR/L

βI =

K
R/L
IJ (m(β))

R/L
J :

Stunneling =
1

4π

∫
dtdx

[
gβ cos

(
Ma

βIϕ
a
I

)]
, (32)

where the vectorsMR/L
βI for β = 1, . . . , N are linearly inde-

pendent and satisfy the analog of Eqn. (22):

MR
βI(K

R)−1
IJM

R
γJ −ML

βI(K
L)−1
IJM

L
βJ = 0. (33)

Tunneling interactions that satisfy Eqn. (33) generate a
gap in the inter-wire spectrum for finite gβ .15 Note that in
each tunneling interaction in Eqn. (32), the integer vector
MR/L

βI = K
R/L
IJ (m(β))

R/L
J , where the (m(β))

R/L
J are in-

tegral; the factor KR/L ensures that multiples of the “fun-
damental” electrons and holes are tunneling, rather than the
emergent fractionally-charged quasiparticles. There could be
additional tunneling interactions, however, we only study N
independent, gap-generating operators (i.e., those satisfying
Eqn. (33)) at a time. We assume these perturbations are the
dominant interactions between two wires, either because they
have the leading (relevant) scaling dimensions, or their cou-
pling constants have been taken to be large.

For a general choice of tunneling interaction, specified by
the vectors (MR,ML), we must be careful that the inter-wire
vacuum that they determine is non-degenerate. Any such de-
generacy is not topological and can be lifted by local pertur-
bations between the two wires. Further, precisely the pertur-
bations that lift the degeneracy can be used to label the degen-
erate vacua.104 To this end, we require the N 2N -component
vectors (MR

β,I(K
R
IJ)−1,ML

β,I(K
L
IJ)−1) to be primitive. A

thorough discussion of the primitivity condition of sets of
null vectors can be found in Refs. [90,91]. The vectors are
primitive if and only if the greatest common divisor of the
N×N minors of the matrix (MR

β,I(K
R
IJ)−1,ML

β,I(K
L
IJ)−1)

is unity. The greatest common divisor of this matrix is equal
to the degeneracy of the inter-wire vacuum. A simple example
of a non-primitive coupling can be seen for a ν = 1 integer
state. At the entanglement cut, the edge theories are described
by the K-matrices KR/L = (1). A possible gapping term has
MR = ML = 2, for which it appears the total ground-state
degeneracy is 2. However, adding additional local tunnelling
couplings corresponding to the null vector (1, 1) would split
the additional degeneracy back to its primitive value of 1.

We remark that generally KR need not equal KL. How-
ever, from the assumption that the bulk state is gapped, KR

and KL must be such that there exist perturbations that will
induce a gap in the low-energy spectrum of Eqn. (29). In
other words, the excitations living along the entanglement cut
must be fully “gappable.” This is possible exactly when there
existN integer vectors,MR/L

βI , satisfying the null criterion in
Eqn. (33). An example of a gappable edge with KR 6= KL

is KR = (1) and KL = (9), in a system without charge
conservation.17

Symmetry considerations may restrict the allowed integer
vectors MR/L

βI . In this section, we analyze arbitrary tunnel-
ing perturbations, however, when we consider particular ex-
amples in the next section, we will be careful to specify the
symmetries that a particular set of tunneling interactions pre-
serve. For convenience, we also assume conformal symmetry,
V R/L = KR/L andU = 0, in this section. This assumption is
not essential for the results of our analysis, however, it does af-
fect the quantitative physical description. For instance, when
studying a particular tunneling interaction, it may be neces-
sary to assume its coefficient is finite, rather than its scaling
dimension is relevant, in order to ensure that the modes at the
entanglement cut obtain a gap. We show in Appendix B that
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any linearly independent set of N vectors satisfying the null
criterion of Eqn. (33) can be made relevant by tuning V R/L

and U .

B. Symmetry Breaking

We assume the coupling constants gβ > 0 in Eqn. (32) and,
without loss of generality, expand the gapped theory about the
vacuum:

〈MR
βIϕ

R
I +ML

βIϕ
L
I 〉 = 0, (34)

for each β. While the cosine interaction is invariant under the
independent shifts, ϕR/LJ ∼ ϕR/LJ +2πP

R/L
J with PR/LJ ∈ Z,

the expansion about a particular vacuum breaks this symme-
try. The vacuum in Eqn. (34) is only invariant under shifts by
P
R/L
J that satisfy:

MR
βIP

R
I +ML

βIP
L
I = 0. (35)

This shows the spontaneously broken independent shift sym-
metries of the bosonic fields.

If (MR)−1ML and its inverse are both integer matrices,
i.e., (MR)−1ML ∈ GL(N,Z), then every integer vector PL

uniquely determines another integer vector PR via Eqn. (35).
However, if (MR)−1ML /∈ GL(N,Z), then not all integer
vectors PL will yield an integer solution for PR. Instead,
the allowed PR/L take the restricted form, PR/LJ = v

R/L
JK zK ,

where zK is an arbitrary integer vector and vR/L are integer
matrices determined via the following algorithm.

First, put the N × 2N matrix
(
MR ML

)
into its Smith

normal form:(
S 0N×N

)
= U

(
MR ML

)(v1 v2

v3 v4

)
, (36)

where S,U , 0N×N , and vi are all integer N × N matrices.
U is invertible over the integers and so is the matrix com-
posed of the vi. Utilizing the invertibility of U , we see that
MRv2 +MLv4 = 0; hence vR = v2 and vL = v4 are exactly
the matrices we are seeking. BecauseMR/L are non-singular
(proven in Appendix C), this solution is unique up to multi-
plication by a unimodular matrix. The restricted solution set
PR/L = vR/Lz will play an important role in computing the
entanglement entropy.

C. Quadratic Approximation

We approximate the cosine interactions in Stunneling by the
quadratic mass term:

gβ cos
(
Ma

βIϕ
a
I

)
= −1

2
gβ

(
Ma

βIϕ
a
I

)(
Mb

βJϕ
b
J

)
+ . . . ,

(37)

where . . . represents a constant shift and higher-order inter-
actions. This approximation is justified when the interactions

in Eqn. (32) generate a spectral gap, i.e., when the N in-
dependent vectors MR/L

βI satisfy the null condition in Eqn.
(33). It is not reliable when there are competing tunneling
interactions. We will see below that this approximation dras-
tically simplifies some of the calculations. Thus, we expect
that dealing with competing interactions will be a challeng-
ing problem. Although we will not consider it further here, it
would be interesting to consider the behavior of the entangle-
ment spectrum in such circumstances.

D. Lattice Structure

It is convenient to make a field redefinition in order to sim-
plify the analysis of the action in Eqns. (29) and (37) and to
illuminate the underlying physics.92,93 We take the “square-
root” of KR/L by introducing basis vectors eR/LI satisfying:

(e
R/L
I )i(e

R/L
J )i =K

R/L
IJ , (38)

where i = 1, . . . , N . These vectors define integer lat-
tices ΛR/L = {nIeR/LI |nI ∈ Z}, of which the KR/L are
the so-called Gram matrices with unit cell volume equal to
|detKR/L|. The dual basis (reciprocal basis) is defined by
the vectors (f

R/L
I )i = (KR/L)−1

IJ (e
R/L
J )i, which satisfy:

(f
R/L
I )i(f

R/L
J )i =(KR/L)−1

IJ ,

(f
R/L
I )i(e

R/L
J )i =δIJ ,

(e
R/L
I )i(f

R/L
I )j =δij . (39)

The choice of basis (and, therefore, dual basis) for each
chirality is unique up to SO(N) rotations, (e

R/L
I )i →

(OR/L)ij(e
R/L
I )j with OR/L ∈ SO(N). We will exploit this

freedom momentarily. The physical properties are also invari-
ant under certain redefinitions: (e

R/L
I )i →W

R/L
IJ (e

R/L
J )i for

WR/L ∈ GL(N,Z), which amounts to a field redefinition in
Eqn. (29), ϕR/LI → (WR/L)−1

IJ ϕ
R/L
J .

We put this formalism to work by defining the fieldsXR/L
i :

ϕ
R/L
I = (f

R/L
I )iX

R/L
i , (40)

which have the virtue of diagonalizing the action in Eqn. (29):

S =
1

4π

∫
dtdx

[
− ∂tXR

i ∂xX
R
i − ∂xXR

i ∂xX
R
i

+ ∂tX
L
i ∂xX

L
i − ∂xXL

i ∂xX
L
i (41)

We show in Appendix D that we can use the freedom in the
choice of the eR/LI to choose a basis such that not only is
Eqn. (41) diagonal, but that the cosine terms, expanded to
quadratic order as in Eqn. (37), take the form

Stunneling = − 1

4π

∫
dtdxλi(X

R
i +XL

i )(XR
i +XL

i ) + . . . ,

(42)
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where the . . . represent a constant shift and the λi
are positive eigenvalues of the matrix with ijth entry,
(fRI )iMR

βIgβMR
βJ(fRJ )j ; with the correct choice of basis,

these eigenvalues are invariant under the replacementR→ L,
as shown in Appendix D. Because this basis choice diagonal-
izes the mass matrix, it will depend on the gapping vectors
and the coupling constants gβ .

The new fields are periodic up to elements in the lattices
ΛR/L: XR/L

i ∼ X
R/L
i + 2πP

R/L
I (e

R/L
I )i. However, the

expansion about a particular minimum of the cosine tunnel-
ing operators, Eqn. (35), restricts the allowed lattice points
by constraining PR/LJ = v

R/L
JK zK . When this restriction is

included, the periodicity condition on the fields is,

X
R/L
i ∼ XR/L

i + 2π(e
R/L
I )iv

R/L
IJ zJ . (43)

where zJ ∈ Z. This defines the restricted lattice,

Λ′ = {zJvRIJ(eRI )i|zJ ∈ ZN} (44)

and an “effective K matrix”,

Keff
IJ = vRMI(e

R
M )j(e

R
K)jv

R
KJ = ((vR)TKRvR)IJ . (45)

Both Λ′ and Keff are unchanged up to basis transformations
under the substitutionR→ L, as shown in Appendix D. They
will directly enter our calculation of the entanglement spec-
trum and entanglement entropy. The invariance under R→ L
reflects the fact that the spectrum and entropy are independent
of whether we trace over the right or left side of the system.

Recall that physically the lattices ΛR/L determine the
form of fundamental quasiparticle creation/annihilation
operators, exp

(
inI(e

R/L
I )iX

R/L
i

)
. On the other hand,

‘fractional’ quasiparticle creation/annihilation operators,
exp

(
in′I(f

R/L
I )aX

R/L
a

)
, are formed by elements of the

dual lattice. Since there is a connection between the lattice
and the fundamental quasi-particle excitations, the restriction
of the lattice Λ′ implies that there is a reduced set of local
quasi-particles that are allowed to tunnel.

E. Quantization and Diagonalization of the Hamiltonian

We now canonically quantize the Hamiltonian associated
to the action of Eqns. (41) and (42) in order to compute the
ground state wave function of the gapped system obtained at
finite λi. Placing the system on a (spatial) circle of circum-
ference `, we perform a mode-decomposition of the right- and
left-moving fields at time t = 0:

XR
i =XR

i,0 +
2πNR

i

`
x+

∑
n>0

( αi,n√
|n|
e

2πinx
` +

α†i,n√
|n|
e−

2πinx
`

)
,

XL
i =XL

i,0 +
2πNL

i

`
x+

∑
n<0

( αi,n√
|n|
e

2πinx
` +

α†i,n√
|n|
e−

2πinx
`

)
,

(46)

where the sum on n ranges over the positive/negative integers
for the right/left-moving fields. We refer to the XR/L

i,0 and

N
R/L
i operators in Eqn. (46) as the zero mode operators and

the αi,n as the oscillator mode operators. To preserve the spa-
tial periodicity under x→ x+ `, as well as the periodicity of
the fields required by Eqn. (43), eigenstates of the zero mode
operators NR/L

i have eigenvalues

n
R/L
i = (e

R/L
I )iv

R/L
IJ zJ , (47)

for any integers zJ . From the analysis in the previous section,
we see that these eigenvalues lie in the lattice Λ′. The modes
in the field expansion obey the algebra:

[XR
i,0, N

R
j ] = −iδij ,

[XL
i,0, N

L
j ] = iδij ,

[αi,m, α
†
j,n] = δijδmn (48)

and all other commutators vanish.
Acting upon the ground state, the Hamiltonian associated

to the action of Eqns. (41) and (42) takes the decoupled form:

H =

N∑
i=1

[
Hzero
i +Hosc

i

]
, (49)

where

Hzero
i =

π

2`

[(
NR
i −NL

i

)2

+ `2λi

(
XR
i,0 +XL

i,0

)2]
,

Hosc
i =

π

2`

∑
n∈Z−{0}

[
4|n|α†i,nαi,n

+
`2λi
|n|

(
αi,nαi,−n + αi,nα

†
i,n

+ α†i,nαi,n + α†i,nα
†
i,−n

)
+ 2|n|

]
. (50)

The zero modes and oscillator modes decouple because of the
quadratic approximation. Eigenstates of the zero mode part of
the Hamiltonian represent distinct sectors of the theory which
we will label by their NR/L

i eigenvalues. The sectors that
enter in the description of the wave function are constrained
by Eqn. (35) so that our expansion about a particular vac-
uum remains consistent. The oscillator modes represent ex-
citations on top of each zero mode sector. Note that we have
used the fact that the ground state is a linear combination of
states that are annihilated by the operatorNR

i +NL
i , a fact that

follows from Eqn. (35) after performing the field redefinitions
in the previous section. Additionally, we can heuristically un-
derstand this by noting that configurations where NR

i + NL
i

was non-vanishing would be energetically costly since the Xi

fields would have appreciable spatial dependence which in-
turn deforms the field away from its vacuum configuration76.

Finally, we must now determine the excitation spectrum for
each Hosc

i . We complete the diagonalization of the oscillator
part of the Hamiltonian by performing the Bogoliubov trans-
formation:(

αi,n
α†i,−n

)
=

(
cosh(θi,n) sinh(θi,n)
sinh(θi,n) cosh(θi,n)

)(
βi,n
β†i,−n,

)
(51)
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where

cosh(2θi,n) =
|n|+ `2λi

2|n|√
|n|2 + `2λi

,

sinh(2θi,n) = −
`2λi
2|n|√

|n|2 + `2λi
. (52)

Rewriting the oscillator Hamiltonian in terms of the βi,n
modes, we obtain:

Hosc
i =

∑
n∈Z−{0}

Ei,n

(
β†i,nβi,n +

1

2

)
, (53)

where Ei,n = 2π
`

√
|n|2 + `2λi. The ground state of Hosc

i

is annihilated by the operators βi,n. Note that the small |n|
regime is precisely the same as the `→∞ regime which will
be of interest momentarily.

F. Reduced Density Matrices

We now find the reduced density matrix, ρR for the ground
state of H =

∑
i(H

zero
i + Hosc

i ) after tracing out the left-
moving degrees of freedom. To the order at which we are
working, i.e., the quadratic approximation, the ground state is
a tensor product of the zero mode and oscillator mode degrees
of freedom. Therefore, the reduced density matrix takes the
separable form ρR = ρRzero ⊗ ρRosc. This allows us to calculate
them independently.

1. Zero Mode Reduced Density Matrix

To calculate the ground state in the zero mode sector, we
note thatHzero

i is equivalent to the harmonic oscillator Hamil-
tonian after identifying mi = (π`λi)

−1, ωi = 2π
√
λi, Xi =

(NR
i −NL

i )/2, and Pi = XR
i,0 +XL

i,0:

Hzero
i =

1

2

(P2
i

mi
+miω

2
iX

2
i

)
, (54)

since
[
NRi −N

L
i

2 , XR
j,0 +XL

j,0

]
= [Xi,Pj ] = iδij . We take the

continuum approximation which is valid in the limit ` → ∞.
Therefore, the un-normalized ground state is given by:

|ψzero
0 〉 =

∑
nRi ,n

L
i ∈Λ′

e
−

∑N
i=1

1

4`
√
λi

(nRi −n
L
i )2

|nRi , nLi 〉. (55)

Imposing the constraint (NR
i +NL

i )|ψzero
0 〉 = 0 gives:

|ψzero
0 〉 =

∑
ni∈Λ′

e
−

∑N
i=1

n2
i

`
√
λi |ni,−ni〉. (56)

The un-normalized reduced density matrix for the right-
moving sector is thus:

ρRzero = TrL

(
|ψzero

0 〉〈ψzero
0 |

)
=
∑
ni∈Λ′

e
−

∑N
i=1

2n2
i

`
√
λi |ni〉〈ni|. (57)

Retracing our steps, it is evident that ρRzero = ρLzero.

2. Oscillator Reduced Density Matrix

We use the method of Peschel94 to calculate the reduced
density matrix for the right-moving oscillator modes. Using
the Bogoliubov transformation in Eqn. (51) we compute:

〈α†i,nαi,n〉 = 〈βi,−nβ†i,−n sinh2(θi,n)〉 = sinh2(θi,n). (58)

The expectation value is taken in the ground state of Hosc
i .

Alternatively, we can write ρRosc formally as

ρRosc =
e−H

osc
e

Zosc
e

. (59)

Because we are working at quadratic order, the entanglement
Hamiltonian takes the form

Hosc
e =

∑
i

∑
n>0

ωi,n

(
α†i,nαi,n +

1

2

)
, (60)

where the dispersion ωi,n is to be determined. Thus,

Zosc
e = TrR(e−H

osc
e ) =

∏
i

∏
n>0

1

2
csch

(ωi,n
2

)
, (61)

where the trace is performed over the right-moving sector.
The correlator in Eqn. (58) can be rewritten as:

TrR

(
α†i,nαi,nρ

R
osc

)
= −∂ωi,n log (Zosc

e )− 1

2

=
1

2
coth

(ωi,n
2

)
− 1

2
. (62)

Equating Eqns. (58) and (62) yields the dispersion

ωi,n = log
(cosh(2θi,n) + 1

cosh(2θi,n)− 1

)
. (63)

In the `→∞ (low energy) limit, we find

ωi,n =
4|n|
`
√
λi
− 2|n|3

3(`2λi)3/2
+O(

1

`5
). (64)

G. Entanglement Spectrum

Multiplying the un-normalized zero mode and oscillator
mode density matrices together, we find the un-normalized re-
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duced density matrix in the `→∞ limit:

ρR = ρRzero ⊗ ρRosc =
( ∑
ni∈Λ′

e
−

∑N
i=1

2n2
i

`
√
λi |ni〉〈ni|

)
⊗
(
e
−

∑N
i=1

∑
n>0

4n

`
√
λi

(α†i,nαi,n+ 1
2 )
)
.

(65)

This immediately yields the entanglement Hamiltonian:

HR
e ≡− log(ρR)

=

N∑
i=1

2

`
√
λi

(
(NR

i )2 + 2
∑
n>0

(nα†i,nαi,n +
n

2
)
)

(66)

where we have restored the operator NR
i . Normalizing the

density matrix merely shifts the zero spectrum by a con-
stant that can be absorbed into the regularization of the spec-
trum; furthermore it makes no contribution to the entangle-
ment entropy since that involves a derivative. The Hamil-
tonian breaks up into sectors labelled by the eigenvalues of
NR
a in Λ′. Each oscillator excitation carries “entanglement

energy” 4n/(`
√
λi). We see that we have benefitted from the

the decoupling of the zero modes and the oscillator modes,
which is a consequence of the quadratic approximation made
in Eqn. (37). We observe that this decoupling is present in
both the entanglement spectrum and the edge spectrum.

We can immediately see the important result that the en-
tanglement spectrum depends strongly upon the interactions
along the entanglement cut. First, the factors λi depend on
the coupling constants gβ . This represents a dependence upon
non-universal parameters such as the UV cutoff and is not of
intrinsic interest. Second, and more importantly, the eigen-
values of NR

i are constrained to lie in the restricted lattice
Λ′, which is determined by the null vectorsMR/L

βI . This is a
dependence upon universal parameters which are determined
by the phase structure of the edge excitations. Thus, both the
allowed tunneling terms, labelled byMR/L

βI , which are a uni-
versal feature of the topological phase, and their coupling con-
stants, gβ , determine the entanglement spectrum. This depen-
dence leads to a remarkable correction to the entanglement
entropy below.

H. Entanglement Entropy

We can now compute the entanglement entropy, which de-
fined as the thermodynamic entropy of the density operator in
Eqn. (65). We define the partition functions as a function of
“temperature,” T = 1/β, which we have until now set to 1:

Ze(T ) = TrR(e−βH
R
e ) = Zzero

e Zosc
e , (67)

where

Zzero
e (τ) =

∏
i

∑
ni∈Λ′

e
πiτ

∑
i

1√
λi
n2
i =

∑
zI∈ZN

eπiτzIΩIJzJ

(68)

and

Zosc
e ({τi}) =

∏
i

e−
πiτi
12

∏
n>0

1

1− e2πiτin
, (69)

where have used Zeta function regularization to compute∑
n>0 n = −1/12 and defined τ = 2i

π`T , τi = 2i
π`
√
λiT

and

ΩLK = vRIL(eRI )i
1√
λi

(eRJ )iv
R
JK . (70)

Ω is dictated by the form of the eigenvalues in Eqn. (47).
We are interested in the entanglement entropy, Se, in the

`→∞ limit. When Se is expanded in powers of `, the term of
order `0 is the topological entanglement entropy, which is sen-
sitive to universal features of the topological phase. We have
introduced τ , τi and Ω in order to write the partition functions
in terms of Riemann θ and Dedekind η functions, whose mod-
ular properties we will exploit to compute the leading terms of
Se in the `→∞ (τ, τi → 0) limit. To this end:

Zzero
e (τ) = θ(0|τΩ) =

θ(0| − τ−1Ω−1)√
det(−iτΩ)

,

Zosc
e ({τi}) =

∏
i

1

η(τi)
=
∏
i

√
−iτi

η(−τ−1
i )

, (71)

where the first equality in each line follows from the defini-
tions of the partition functions, and the second equalities uti-
lize a modular transformation. Thus,

Zzero
e = (det(−iτΩ))−

1
2

∑
mI∈ZN

e−iπτ
−1mI(Ω−1)IJmJ

`→∞−−−→
[

det

(
2

π`T
Ω

)]− 1
2

+O(e−c`), (72)

for some positive constant c. Similarly,

Zosc
e

`→∞−−−→
∏
i

( 2

π`
√
λiT

)1/2

e
π2`T

√
λi

24 . (73)

Utilizing the definition Eqn. (70), we find det(Ω) =
det2(vR)det(KR)

∏
i

1√
λi

. Thus,

Ze(`→∞) =

∏
i e

π2`T
√
λi

24

|det(vR)| (det(KR))
1/2

. (74)

The entanglement entropy can now be computed using:

Se =
∂
(
T log(Ze(`→∞))

)
∂T

∣∣∣
T=1

=
π2`

12

∑
i

(
√
λi)−

1

2
log |det(KR)| − log |det(vR)|,

= α`− 1

2
log |det (Keff)|, (75)

where Keff = (vR)TKRvR = (vL)TKLvLand subleading
terms in ` have been suppressed. We give the leading correc-
tions to Eqn. (75) in Appendix E.
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Eqn. (75) is the primary result of this paper. The first term
in Eqn. (75) is the leading non-universal area law term, which
depends upon the coupling constants gβ (and, ultimately, the
cutoff) through its dependence upon the λi. The sub-leading
constant in Eqn. (75) contains the topological entanglement
entropy, γKR = log

√
det |KR| and a constant correction,

log |det(vR)| > 0, that is sensitive to the dominant interac-
tions, encoded in the matrix vR, occurring near the entangle-
ment cut. These interactions depend upon both KR/L and
the null vectorsMR/L

βI , but not on any non-universal features.
Additionally, since our entanglement cut has a smooth bound-
ary this term does not arise from properties of the boundary
geometry itself. Thus, we find that we must view the parame-
terization of possible interactions as additional universal data
characterizing a topological phase, as this data encodes infor-
mation about interfaces between two phases KR and KL.

We note that the correction to the entropy due to interac-
tions serves to lower the entanglement between two regions
separated by an entanglement cut. This is natural as the term
is controlled by theMR/L

βI and, ultimately, KR/L, which de-
termine how quasiparticles tunnel from one region to another.
The choice of tunneling interaction,MR/L, is not unique and
may restrict the allowed local quasiparticles that may tunnel.
This restriction and the total constant sub-leading term in Eqn.
(75) may be incorporated into an effective Keff -matrix that
determines the types of quasiparticles that can tunnel between
the right-moving and left-moving edges. This is the sameKeff

that we have already seen in Eqn. (45). In fact, the tunnel-
ing interactions that give rise to non-zero corrections simulate
the effects of a strip of topological fluid defined by the Keff -
matrix through their restriction on the form of the allowed
fundamental quasiparticle tunneling operators across the in-
terface – see Fig. 2. This result has at least two interesting
implications: (i) if we turn on one set of gapping interactions
in a small region of our wire array then an entanglement cut
in that region can have a different TEE than in other regions
where a different set of gapping interactions is used (ii) we can
have two gapped phases with the same edge theories but dif-
ferent choices of gapping interactions throughout the bulk and
these phases can be distinguished by the correction to their
TEE – we might say these two phases are homologous.

In the next three sections, we apply our results to a num-
ber of interesting examples to illustrate how the entanglement
spectrum depends upon the interactions.

IV. EXAMPLES PART I: TUNNELING DEPENDENCE

Here we consider examples where KR = KL, i.e. the sys-
tem is symmetric across the entanglement cut, but where inter-
actions near the entanglement cut, or throughout the bulk, are
such that some local quasiparticles cannot move freely across
the cut. This limitation contributes a constant correction to the
entanglement entropy, as described in the previous section.

A. ν = 4

A ν = 4 state can be constructed as four copies of the in-
teger quantum Hall state at ν = 1, each built as described in
Sec. II C 1, with the parameter m = 1. Within this construc-
tion, modes at the interface between any two nearest-neighbor
wires j and j + 1 become gapped in the presence of the
single-particle backscattering term, (ψLI,j+1)†ψRI,j + h.c. ∼
cos(ϕLI,j+1 + ϕRI,j), where I = 1, . . . , 4 labels the layer of
the ν = 4 state. This tunneling term preserves charge and
translations along the interface. Since this is a free-fermion
topological phase without topological order we would not ex-
pect any contribution to the topological entanglement entropy.

Now imagine that a different set of tunneling operators
are dominant along the entanglement cut. In particular, con-
sider the set of tunneling operators, cos

(
(MR

(4))βIϕ
R
I,j +

(ML
(4))βIϕ

L
I,j+1

)
, defined by the integer vectors:

(MR
(4))1I =(1, 0, 1, 0), (ML

(4))1I =(0, 1, 0, 1),

(MR
(4))2I =(0, 1, 0, 1), (ML

(4))2I =(1, 0, 1, 0),

(MR
(4))3I =(0, 0, 1, 1), (ML

(4))3I =(1, 1, 0, 0),

(MR
(4))4I =(0, 0, 1,−1), (ML

(4))4I =(0, 0,−1, 1).(76)

These operators tunnel a pair of right-moving electrons into
a pair of left-moving electrons and are marginal about the
free fermion fixed point. These tunneling terms conserve both
charge and translations along the interface and are primitive.
Because the rows of (MR

(4),M
L
(4)) satisfy the null condition

in Eqn. (33) (with KR/L = I4), and are linearly independent,
they may be made relevant simultaneously by tuning inter-
wire density-density interactions, as explained in Appendix B.

However, the matrix (MR
(4))
−1
Iβ (ML

(4))βJ is not in
GL(4,Z) because its entries are half-integral (although it does
have unit determinant.) Therefore, we expect a constant cor-
rection to the entanglement entropy, as given by Eqn. (75).
To determine this correction, we follow the prescription of
Sec III B and write the 4 × 8 matrix, (MR

(4),M
L
(4)), in terms

of its Smith normal form:

U(4)(MR
(4),M

L
(4))V(4) = S(4), (77)

where

U(4) =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

 , S(4) =

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 ,

V(4) =



1 0 −1 1 −1 −1 −1 0
0 1 0 −1 1 1 0 −1
0 0 1 −1 1 0 1 −1
0 0 0 0 1 0 0 0
0 0 0 1 −2 −1 −1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

(78)
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We identify

vR(4) =

 −1 −1 −1 0
1 1 0 −1
1 0 1 −1
1 0 0 0

 , vL(4) =

 −2 −1 −1 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

(79)

and find |det(vR(4))| = |det(vL(4))| = 2. The effective K-
matrix is

Keff = (vR(4))
T vR(4) = (vL(4))

T vL(4) 4 2 2 −2
2 2 1 −1
2 1 2 −1
−2 −1 −1 2

 . (80)

Therefore, using Eqn. (75), we compute the entanglement en-
tropy,

Se(ν = 4,Ma
(4)) = α`− log(2) (81)

where α is a non-universal constant, and we have suppressed
corrections that vanish in the limit `→∞. We see that there is
a log(2) correction to the entropy which differs from the van-
ishing topological entanglement entropy that we would have
computed if the single-electron tunneling terms had domi-
nated over the terms described by Eqn. (76). Furthermore,
log(2) is the minimal non-zero correction, because the en-
tries of V(4) are necessarily integral. Larger corrections are
generally possible, however, they would require higher-body
interactions across the cut.

While inter-wire tunneling terms defined by the vectors
Ma

(4) in Eqn. (76) that are turned on near the entanglement
cut can generate such a correction, the region in which these
interactions dominate does not need to be limited to the region
around the entanglement cut. Instead, we could have sewn all
wires together using these interactions to create a kind of al-
ternate ν = 4 phase. Near the UV fixed point, consisting of a
collection of decoupled wires, these tunneling interactions can
be made arbitrarily relevant by tuning the (exactly) marginal
inter-wire density-density interactions. If the IR fixed point is
chosen by the most relevant tunneling interactions, this con-
struction for the ν = 4 state is on equal footing with the usual
state, in the sense that which state occurs in a given system
is determined by the microscopic density-density couplings.
The inter-wire interactions in Eqn. (76) are marginal about
the free fermion fixed point.

It is interesting to ask whether or not the 2D state defined
by the vectors Ma

(4) is a truly a distinct integer state from
the “conventional” ν = 4 state where nearest-neighbor wires
are sewn together via the single-particle backscattering term,
(ψLI,j+1)†ψRI,j +h.c. Both phases have the same electrical and
thermal Hall conductance since the edge mode structure is
identical, however, the unconventional bulk state has a dif-
ferent constant sub-leading term in its entanglement entropy
compared to the “conventional” ν = 4 state. On a torus, the
ground state defined by the vectors Ma

(4) is non-degenerate.

In addition, the state defined by the vectorsMa
(4) has differ-

ent local bulk excitations: in the strict limit where only the
tunneling terms of Ma

(4) are present, single-electron tunnel-
ing across wires is not allowed, rather, only electron-pairs can
tunnel. In this sense, gapped single-electron excitations are
confined along the wire directions. We note that perturbation
by single-particle hopping terms allows electrons to be trans-
ported between wires. Due to the bulk gap, the state deter-
mined by the inter-wire interactions in Eqn. (76) is robust to
negligibly small perturbations by such single-particle tunnel-
ing.

We note that on the finite cylinder, the edge structure of
the 2D state defined by the vectorsMa

(4) is simply the four-
channel free chiral Fermi liquid. This is not the edge struc-
ture that might be expected from a phase defined by the K-
matrix equal to Keff = (vR(4))

T vR(4), which happens to define
a bosonic topological phase as can be seen from the even-
integer entires on the diagonal. Instead, since the interface
between both bulk phases of the ν = 4 system can be gapped,
we should imagine that we capped off each end of the state de-
fined by theMa

(4) with a strip of ‘conventional’ ν = 4 fluid.

B. ν = 2

The integer quantum Hall state at ν = 2 admits a simi-
lar construction, and corresponding correction to the entan-
glement entropy, if we violate both charge conservation and
translation invariance along the entanglement cut. A proof
that charge conservation must be broken in order for the ν = 2
state to admit a constant correction is given in Appendix G. As
an example for how the constant correction can occur, con-
sider the nearest-neighbor tunneling operators defined by the
primitive integer vectors:

(MR
(2))1I =(3,−1), (ML

(2))1I = (3, 1),

(MR
(2))2I =(2, 1), (ML

(2))2I = (1, 2). (82)

These vectors are null (satisfy Eqn. (33)) and (MR
(2))
−1ML

(2)

is not in GL(2,Z).
To calculate the constant correction, we compute the Smith

normal form:

U(2)(MR
(2),M

L
(2))V(2) = S(2), (83)

where

U(2) =

(
−1 0
1 1

)
, S(2) =

(
1 0 0 0
0 1 0 0

)
,

V(2) =

 0 0 0 1
1 2 −5 −7
0 1 −3 −5
0 −1 4 5

 . (84)

We see:

vR(2) =

(
0 1
−5 −7

)
, vL(2) =

(
−3 −5
4 5

)
, (85)
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and find |det(vR(2))| = |det(vL(2))| = 5. The effective K-
matrix is

Keff =

(
25 35
35 50

)
. (86)

Thus, the entanglement entropy is given by,

Se(ν = 2,Ma
(2)) = α`− log(5). (87)

While we have no proof, brute force searching suggests the
log(5) correction to be the minimal possible non-trivial value
for a constant correction to the ν = 2 entanglement entropy.
This provides another example of a free-fermion state whose
bulk can be modified to generate a non-vanishing contribution
to the topological entanglement entropy, albeit in this case we
must break extra symmetries compared to the ν = 4 case.

C. ν = 4/3

Let us now consider a fractionalized bulk state. We will
show that the ν = 4/3 state admits a constant correction to
its entanglement entropy, although our construction violates
translation invariance along the cut. We construct the bilayer
ν = 4/3 state from one layer of ν = 1 and one layer of
ν = 1/3, where within each layer, the wires are sewn together
with the tunneling operator defined in Eqn. (25) with m = 1
and m = 3, respectively.

As explained in Sec. II C 1, if the tunneling operators are re-
moved between two nearest-neighbor wires, we obtain a non-
chiral Luttinger liquid whose action is defined by the matrices,

KR/L =

(
1 0
0 3

)
, and 2π-periodic fields, ϕR/L1,2 . With respect

to these Luttinger liquid variables, the tunneling operators that
we have removed, take the form:

O(1) = cos(ϕL1 + ϕR1 ),

O(1/3) = cos(3ϕL2 + 3ϕR2 ). (88)

Now suppose a different set of nearest-neighbor tunneling
interactions are enabled to become strong along an entangle-
ment cut or throughout the bulk. With respect to the Lut-
tinger liquid variables, we consider the tunneling operators,
Õ(4/3)
β = cos

(
(Ma

( 4
3 )

)βIϕ
a
I

)
defined by the integer vectors:

(MR
( 4
3 ))1I =(2, 0), (ML

( 4
3 ))1I = (1, 3),

(MR
( 4
3 ))2I =(1, 3), (ML

( 4
3 ))2I = (2, 0). (89)

These integer vectors are null (they satisfy Eqn. (33)), and the
corresponding tunneling operators conserve charge. However,
(MR

( 4
3 )

)−1ML
( 4
3 )

is not in GL(2,Z), and thus, we expect a
constant correction to the entanglement entropy.

To find this correction, we compute the Smith normal form:

U( 4
3 )(MR

( 4
3 ),M

L
( 4
3 ))V( 4

3 ) = S( 4
3 ), (90)

where

U( 4
3 ) =

(
1 0
−2 −1

)
, S( 4

3 ) =

(
1 0 0 0
0 3 0 0

)
,

V( 4
3 ) =

 0 0 1 0
0 1 1 2
1 0 −2 −3
0 0 0 1

 . (91)

We observe:

vR( 4
3 ) =

(
1 0
1 2

)
, vL( 4

3 ) =

(
−2 −3
0 1

)
, (92)

and find |det(vR
( 4
3 )

)| = |det(vL
( 4
3 )

)| = 2. The effective K-
matrix is

Keff =

(
4 6
6 12

)
. (93)

Using Eqn. (75), we obtain the entanglement entropy:

Se(ν =
4

3
,Ma

( 4
3 )) = α`− 1

2
log(3)− log(2). (94)

We thus find that the original TEE log(
√

3) is corrected by a
log(2) contribution due to the modified interactions along the
entanglement cut.

All of these examples illustrate the key feature that start-
ing with a conventional wire construction of a quantum Hall
phase one can shift the TEE by either modifying the tunnel-
ing terms at the entanglement cut itself, or creating a fully
modified bulk phase which can still be attached to the same
edge theory. The implications of these results are surprising
because it, for example, illustrates that we can have identical
edge theories attached to bulk phases with differing TEE con-
tributions. These bulk phases appear to differ by the allowed
local excitations that can tunnel between neighboring wires –
in certain strict limits – and this constraint on the local tunnel-
ing processes reduces the total entanglement entropy.

V. EXAMPLES PART DEUX: STABLE EDGE PHASES

In the previous section, we showed how the entanglement
spectrum and entropy depends on the choice of tunneling in-
teractions across the interface, but always with KR = KL.
In this section, we consider heterojunctions where this is not
the case. In particular, we consider the case where KR and
KL are not exactly equivalent, but are only stably equivalent,
i.e. there exists an invertible, integral matrix, W , such that
WT (KR ⊕ σz)W = KL ⊕ σz and there does not exist any
such W when the σz factors are removed.105 Examples, and a
more detailed discussion, of stable equivalence can be found
in Refs. [4] and [5]. In the two examples we discuss, we will
first explain how each phase can be built from the wire con-
struction, although the constructions are by no means unique,
and then consider the entanglement spectrum and entropy.

Notice that Eqn. (33) implies that whenever (MR)−1ML

is in GL(N,Z) that KR and KL are equivalent up to a
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GL(N,Z) transformation. However, when KR and KL are
not exactly equivalent, (MR)−1ML /∈ GL(N,Z) and we ex-
pect a correction to the constant sub-leading term in the en-
tanglement entropy. Our examples verify this fact. For these
statements, we have assumed |det(KR)| = |det(KL)|, but
this assumption will be relaxed in Sec. VI where we consider
interfaces between general Laughlin states.

A. ν = 8

Our first example occurs at filling ν = 8. We will consider
an interface between a free-fermion ν = 8 integer quantum
Hall state and its stably equivalent partner the E8 bosonic in-
teger quantum Hall state. We will begin by first explicitly
constructing the stably equivalent partner to the usual ν = 8
state.

1. ν = 8 Edge Reconstruction

Here we describe how modifying the couplings on wires j
and j − 1 will reconstruct the usual ν = 8 edge (i.e., 8 layers
of ν = 1) on wire j into its stably equivalent partner. First, we
remove the nearest-neighbor backscattering terms,

O(8)
I;j−1,j = cos(ϕLI,j+ϕ

R
I,j−1) ∼ (ψLI,j)

†ψRI,j−1+h.c., (95)

where I = 1, . . . , 8 is the layer index, as well as the analogous
term between wires j and j + 1. Then the free fermion Lut-
tinger liquid on wire j is defined by matrices KR/L

j = I8.
Uniqueness of unimodular lattices with signature (M,N),
with M,N > 0 implies the matrix equality,

I8 ⊕ (−I1) = WT
(8,1) (KE8

⊕ (−I1))W(8,1) (96)

where the E8 Cartan matrix, KE8 is given in Eqn. (F2) and
W(8,1) is some matrix in GL(9,Z) (the form of W(8,1) and

an explanation of how to find it are given in Appendix F).
Because the diagonal entries of KE8

are even, all vertex op-
erators that create local particles have integer spin and hence
describe bosonic quasiparticles. Thus, the equality in Eqn.
(96) is somewhat remarkable: it implies the (non-chiral) eight-
channel free fermion Luttinger liquid may be decomposed into
a left-moving free Fermi liquid and a “bosonic” right-moving
sector, exactly.

We implement this decomposition on wire j by the field
redefinition,

(
ϕR

ϕL

)
I,j

=
(
W−1

(8,8)

)
IJ

(
ϕ̃R

ϕ̃L

)
J,j

, (97)

whereW(8,8) = W(8,1)⊕ I7 ∈ GL(16,Z) has no effect on the
left-moving fields, ϕLI,j , for I = 2, . . . , 8. Using the identity
in Eqn. (96), the Luttinger liquid action for the new fields,
ϕ̃
R/L
I,j , is defined with respect to the matrices, K̃R

j = KE8
and

K̃L
j = I8.
We sew wires j and j−1 back together by adding tunneling

interactions that gap out the left-moving modes on wire j and
the right-moving modes on wire j − 1,

Õ(8)
I;j−1,j = cos(ϕ̃LI,j + ϕRI,j−1). (98)

These operators are charge conserving (the total charge den-
sity operator on wire j is 1

2π t
a
I∂xϕ̃

a
I,j , where tR1,j = −2, tR4,j =

2, and otherwise tRI,j = 0; additionally tLI,j = 1). Since
ϕ̃LI,j = ϕLI,j for I = 2, ..., 8, the interactions are identi-

cal to Eqn. (95) when I 6= 1. However, Õ(8)
I=1;j−1,j differs

from O(8)
I=1;j−1,j and breaks translation invariance by carry-

ing 4k
(0)
F units of extra momentum. Although it is a single-

particle backscattering term in the new variables, it is a many-
body interaction in the original fields,

Õ(8)
1,j−1,j = cos

(
ϕR1,j + ϕR2,j + ϕR3,j + ϕR4,j + ϕR5,j − ϕR6,j − ϕR7,j − ϕR8,j + 3ϕL1,j + ϕR1,j−1

)
. (99)

The argument of the cosine does not commute with the argu-
ment of O(8)

I=1;j−1,j . This implies that there will be a line of

critical excitations if both Õ(8)
1,j−1,j andO(8)

I=1;j−1,j were to be
present in the action and be of equal dominance. We expect
this zero crossing can be avoided, however.

When the Õ(8)
I;j−1,j interactions dominate over the interac-

tions in Eqn. (95), the gapless right-moving modes on wire
j enter a chiral “bosonic” Luttinger liquid phase defined by
the matrix K̃R

j = KE8
. Thus, we have explicitly shown how

altering the interactions near the entanglement cut between
wires j and j + 1 can change the K matrix on one side of the

cut.

We can compute the entanglement spectrum for a cut be-
tween wires j and j + 1 following the method described in
Sec. III G, once we specify whether the low-energy modes
on wire j + 1 are eight fermionic modes or eight bosonic
modes; the construction for the latter is analogous to that of
this section. There are three possible cases: the asymmet-
ric case, where KL

j+1 = I8, KR
j = KE8

; the symmetric-E8

case, where K̃R
j = K̃L

j+1 = KE8 ; and the symmetric-I8 case,
where KR

j = KL
j+1 = I8. We will consider them separately.
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2. Symmetric Interface Entanglement Spectra

It is simplest to begin by considering the two possible
symmetric interfaces. We drop the wire labels, j and j +
1: the right-moving modes belong to wire j and the left-
moving modes belong to wire j + 1. We first sew together
the symmetric-I8 interface, corresponding to an un-perturbed
ν = 8 state, by adding single-particle backscattering
terms, cos((MR

(8))βIϕ
R
I +(ML

(8))βIϕ
L
I ), where (MR

(8))βI =

(ML
(8))βI = δβI . There is no constant correction to the topo-

logical entanglement entropy because (MR
(8))
−1ML

(8) = I8.
Since this state has no fractionalization, the topological entan-
glement entropy vanishes.

Likewise, when expressed in terms of the modes ϕ̃R/L, the
symmetric-E8 interface can be sewn together using the oper-
ators cos((MR

(8))βI ϕ̃
R
I + (ML

(8))βI ϕ̃
L
I ). Therefore, there is

no constant correction to the topological entanglement, which
again vanishes because det (K̃E8

) = 1.
Since the universal part of the entropy does not distinguish

the phases we can consider the entanglement spectrum. The
entanglement Hamiltonian takes the form given in Eqn. (66).
The only difference between the spectrum for the symmetric-
I8 and symmetric-E8 interfaces lies in the eigenvalues of the
zero mode operators. These eigenvalues reflect the underly-

ing lattice of local quasiparticles: for the symmetric-I8 in-
terface, the eigenvalues are defined by lattice vectors in I8
which square to arbitrary integers; for the symmetric-E8 in-
terface, the eigenvalues are defined by lattice vectors in E8

which square to even integers. A basis for the E8 lattice is
given in Appendix F.

For the special, fine-tuned values of the parameters, λa =
λb for all a, b that enter Eqn. (42) this difference in quasiparti-
cle lattice structure will be manifest in the spectrum. However,
such values are very fine-tuned and their generic dependence
upon the coupling constants will make it difficult to clearly
distinguish the two interfaces. For this reason, it is useful to
compare the response of the spectrum to the insertion of π-
flux through the cylinder. The spectrum of the symmetric-I8
interface shifts after π-flux is inserted, while the symmetric-
E8 interface is invariant under the π-flux insertion.

3. Asymmetric Interface

We now consider the asymmetric interface, gapped
by the tunneling interactions, cos

(
(MR

(8)/(8̃)
)βI ϕ̃

L
I +

(ML
(8)/(8̃)

)βIϕ
L
I

)
, defined by the integer vectors:

(MR
(8)/(8̃)

)1I =
(
07 1

)
, (ML

(8)/(8̃)
)1I =

(
2 07

)
,

(MR
(8)/(8̃)

)2I =
(
−1 05 1 −1

)
, (ML

(8)/(8̃)
)2I =

(
−1 1 06

)
,

(MR
(8)/(8̃)

)3I =
(
−1 1 04 −1 0

)
, (ML

(8)/(8̃)
)3I =

(
−1 0 1 05

)
,

(MR
(8)/(8̃)

)4I =
(
0 −1 1 05

)
, (ML

(8)/(8̃)
)4I =

(
−1 02 1 04

)
,

(MR
(8)/(8̃)

)5I =
(
02 −1 1 04

)
, (ML

(8)/(8̃)
)5I =

(
−1 03 1 03

)
,

(MR
(8)/(8̃)

)6I =
(
03 1 −1 03

)
, (ML

(8)/(8̃)
)6I =

(
1 04 1 02

)
,

(MR
(8)/(8̃)

)7I =
(
04 1 −1 02

)
, (ML

(8)/(8̃)
)7I =

(
1 05 1 0

)
,

(MR
(8)/(8̃)

)8I =
(
05 1 02

)
, (ML

(8)/(8̃)
)8I =

(
1 06 1

)
(100)

where 0n represents n consecutive zero entries in the vec-
tor. If re-fermionized in the symmetric-I8 basis, these gap-
generating interactions take the form of charge-conserving
single-particle backscattering terms, (ψLI )†ψRI + h.c. They
preserve charge conservation, but not translation invariance
along the interface. Because (MR

(8)/(8̃)
)−1ML

(8)/(8̃)
/∈

GL(8,Z), we expect a constant correction to the entanglement
entropy.

To find this correction, we compute the Smith normal form:

U(8)/(8̃)(M
R
(8)/(8̃)

,ML
(8)/(8̃)

)V(8)/(8̃) = S(8)/(8̃). (101)

Because of the large size of the matrices appearing in
Eqn. (123), we have relegated the explicit forms of
U(8)/(8̃),V(8)/(8̃), and S(8)/(8̃) to Appendix H. However, we

may decompose V(8)/(8̃) to find:

vR
(8)/(8̃)

=



0 1 0 0 0 0 0 0
−5 0 0 1 1 −1 −1 −1
−4 0 0 0 1 −1 −1 −1
−3 0 0 0 0 −1 −1 −1
−2 0 0 0 0 0 −1 −1
−1 0 0 0 0 0 0 −1
−6 −1 1 1 1 −1 −1 −1
−2 0 0 0 0 0 0 0


,

vL
(8)/(8̃)

=



1 0 0 0 0 0 0 0
5 2 −1 −1 −1 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (102)
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from which we find |det (vR
(8)/(8̃)

)| = |det (vL
(8)/(8̃)

)| = 2.
Thus, the entanglement entropy across the asymmetric-I8/E8

interface is:

Se(I8/E8,Ma
(8)/(8̃)

) = α`− log(2). (103)

We generally expect there to always be a constant correc-
tion to the entanglement entropy at such asymmetric inter-
faces. The reason is that neither the I8 lattice nor the E8 lat-
tice contains the other, i.e., there is no way to perfectly embed
one in the other. Recall that the cosine interactions are invari-
ant under independent shifts of the right/left-moving fields by
elements in their respective lattices, however, the expansion
about a particular vacuum breaks this shift symmetry down to
one where any shift of a right-moving field is accompanied
by a compensating shift of a left-moving field. When an ar-
bitrary shift of a right-moving field can be canceled by a left-
moving one, i.e., when the matrix (MR)−1ML ∈ GL(N,Z)
for some N , there is no constant correction to the entropy.
However, if (MR)−1ML /∈ GL(N,Z), then there is a re-
striction on the allowed shifts down to a common sub-lattice.
When neither of the two lattices contain the other, there is nec-
essarily a restriction and a constant correction to the entropy
is expected.

B. ν = 8/15

Our second example occurs at filling ν = 8/15. Again,
we imagine making an entanglement cut between wires j and
j + 1, however, the construction for this stable-equivalence
requires that we modify nearest-neighbor and next-nearest-
neighbor interactions in order to access a novel chiral edge
phase on wire j.

1. ν = 8/15 Edge Reconstruction

We construct the bilayer ν = 8/15 state using the technique
described in Sec. II C 1, where the first layer is in the ν = 1/3
state and the second layer is in the ν = 1/5 state. Within each
layer, wires are filled to the appropriate density and are sewn
together with the tunneling operator defined in Eqn. (25) with
m = 3 and m = 5, respectively.

To construct the stably equivalent phase for gapless right-
moving modes on wire j, we will alter the interactions on
wires j + 1, j, j − 1, and j − 2. We begin by removing all
interactions that couple these wires together. Once decoupled,
these wires are in a 1D Fermi liquid phase. It will be useful
to describe excitations on wire j using a “Luttinger liquid ba-
sis” of field variables and the excitations on wire j − 1 using
a “free fermion basis” of variables. For instance, it is conve-
nient to describe the excitations on wire j in terms of the vari-
ables appropriate to the decoupled ν = 1/3+1/5 state, ϕR/LI,j ,

which are described by the action (29) with KR/L
j =

(
3 0
0 5

)
and obey the periodicity condition given by Eqn. (26) where
m = 3 or 5. On wire j − 1, we consider the original electron

fields, φR/LI,j+1, which are described by the action (29) with

K
R/L
j−1 = ±I2.
We will exploit the following identity:

(W ( 8
15 ))T

3 0 0 0
0 5 0 0
0 0 1 0
0 0 0 −1

W ( 8
15 ) =

2 1 0 0
1 8 0 0
0 0 1 0
0 0 0 −1

 ,

(104)

where,

W ( 8
15 ) =

 −1 −3 0 −1
0 −3 0 −1
0 0 1 0
1 8 0 3

 ∈ GL(4,Z). (105)

Eqn. (104) motivates us to make the change of variables,
ϕR1,j
ϕR2,j
φR1,j−1

φL1,j−1

 ≡W ( 8
15 )


ϕ̃R1,j
ϕ̃R2,j
φ̃R1,j−1

φ̃L1,j−1

 . (106)

We observe that φR1,j−1 = φ̃R1,j−1. The action in terms of the

fields ϕ̃RI,j is Eqn. (29) with K̃R
j =

(
2 1
1 8

)
while the action

for the φ̃R/L1,j−1 is the same as for the φR/L1,j−1 fields. On wire

j−1, we then switch to the ϕR/Lj−1 fields, defined via Eqn. (24).
To sew the wires j, j − 1, j − 2 back together, we couple

the left-movers on wire j to the right-movers on wire j − 1,
and left-movers on wire j − 1 to the right-movers on j − 2,
by adding the tunneling interactions in Eqn. (25) within each
layer. The remaining low-energy modes are ϕ̃RI,j .

106 Thus, we
have provided an explicit construction for the interactions that
must dominate in order that the low-energy modes on wire j
at the entanglement cut between j and j + 1 are described by

K̃R
j =

(
2 1
1 8

)
.

2. Symmetric Interfaces

To calculate the entanglement spectrum with respect to an
entanglement cut between wires j and j + 1, we must specify
the phase of the low-energy modes on both sides of the inter-
face. As in the ν = 8 case, there are three situations to con-

sider: the symmetric interface whereKR
j = KL

j+1 =

(
3 0
0 5

)
,

the symmetric interface where KR
j = KL

j+1 =

(
2 1
1 8

)
, and

the asymmetric interface.
We compute the spectrum following Sec III G, beginning

with the symmetric interfaces. In what follows, we drop
the wire label: right-moving modes belong to wire j and
the left-moving modes belong to wire j + 1. We sew to-

gether the symmetric-
(

3 0
0 5

)
interface, corresponding to an
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un-perturbed ν = 8/15 state, by adding the backscatter-
ing terms, cos((MR

( 8
15 ),s1

)βIϕ
R
I + (ML

( 8
15 ),s1

)βIϕ
L
I ), where

(MR/L

( 8
15 ),s1

) =

(
3 0
0 5

)
. There is no constant cor-

rection to the topological entanglement entropy because
(MR

( 8
15 )

)−1ML
( 8
15 )

= I2. The topological entanglement en-

tropy γ 8
15

= log(
√

15) which is the expected conventional
value.

Likewise, when expressed in terms of the modes ϕ̃R/L, the

symmetric-
(

2 1
1 8

)
interface can be sewn together using tun-

neling operators cos((MR
( 8
15 ),s2

)βIϕ
R
I + (ML

( 8
15 ),s2

)βIϕ
L
I ),

whereML
( 8
15 ),s2

=

(
2 1
1 8

)
. Again, there is no constant cor-

rection to the topological entanglement, which is given by
γ 8

15
= log(

√
15).

The entanglement Hamiltonian for both cases takes the
form given in Eqn. (66). The only difference between the

spectrum for the symmetric-
(

3 0
0 5

)
and symmetric-

(
2 1
1 8

)
interfaces lies in the eigenvalues of the zero mode opera-
tors. These eigenvalues reflect the underlying lattice: for the

symmetric-
(

3 0
0 5

)
interface, the eigenvalues are defined by

lattice vectors in
√

3Z ⊕
√

5Z which square to arbitrary inte-

ger multiples of 3 and 5; for the symmetric-
(

2 1
1 8

)
interface,

the eigenvalues may be defined by integral linear combina-
tions of the vectors:

(√
2 0

)
,
(
1/
√

2
√

15/2
)
. The square

of elements in the lattice defined by these two basis vectors is
always even.

As mentioned above for the fine-tuned values of the param-
eters, λa = λb for all a, b, these differences are manifest in
the spectrum. However, for generic values a clear identifi-
cation of the two interfaces will be difficult. For this rea-
son, it is useful to compare the response of the spectrum to
the insertion of π-flux through the cylinder. The spectrum of

the symmetric-
(

3 0
0 5

)
interface shifts after π-flux is inserted,

while the symmetric-
(

2 1
1 8

)
interface is invariant under the

π-flux insertion.

3. Asymmetric Interface

A set of operators that gap out the modes at an asymmetric-(
3 0
0 5

)
/

(
2 1
1 8

)
interface are cos((MR

( 8
15 ),A)βIϕ

R
I +

(ML
( 8
15 ),A)βIϕ

L
I ) where MR

( 8
15 ),A =

(
5 −5
1 −7

)
and

ML
( 8
15 ),A =

(
0 10
−3 5

)
. These interactions conserve

charge, but break translation invariance along the interface.
Notice (MR

( 8
15 ),A

)−1ML
( 8
15 ),A

/∈ GL(2,Z) as its entries are

half-integral. Therefore, we expect a constant correction to
the entanglement entropy.

To find this correction, we compute the Smith normal form:

U( 8
15 ),A(MR

( 8
15 ),A,M

L
( 8
15 ),A)V( 8

15 ),A = S( 8
15 ),A, (107)

where

U( 8
15 ),A =

(
0 1
1 −5

)
, S( 8

15 ),A =

(
1 0 0 0
0 15 0 0

)
,

V( 8
15 ),A =

 1 3 1 −2
0 0 1 0
0 1 −2 1
0 0 0 1

 .

(108)

We see that |det(vR
( 8
15 ),A

)| = |det(vL
( 8
15 ),A

)| = 2. We can
also calculate an effective K-matrix in this case via

Keff = (vR)TKRvR = (vL)TKRvL

=

(
8 −6
−6 12

)
. (109)

Therefore, the entanglement entropy across the asymmetric-(
3 0
0 5

)
/

(
2 1
1 8

)
interface is:

Se(Ma
( 8
15 ),A) = α`− 1

2
log(15)− log(2). (110)

Again, we generally expect such a correction across asymmet-
ric interfaces when the underlying lattices do not contain one
another.

VI. EXAMPLES PART III: INTERFACES BETWEEN
DISTINCT LAUGHLIN STATES

Our final set of examples are perhaps the simplest. How-
ever, the interfaces we consider provide interesting features.
We consider an entanglement cut through gapped interfaces
that separate distinct Abelian states. The only relation that
these states have to one another is that they may share a
gapped interface.

A. Laughlin Interfaces

First, we consider an entanglement cut made between the
two distinct Laughlin states at filling fractions, ν = 1/kR and
ν′ = 1/kL. An interface between identical, single-component
Laughlin states does not provide any interesting entanglement
corrections.

The filling fractions cannot arbitrary: we require the modes
living at the interface to have an instability to a gap-generating
perturbation that transfers some number of electrons be-
tween the edges. Such a perturbation must take the form
cos(MR

(k)ϕ
R+ML

(k)ϕ
L), whereMR/L

(k) is a multiple of kR/L
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and ϕR/L are the edge modes for the state at ν = 1/kR and
ν′ = 1/kL, respectively. To generate a gap, the integers,
MR/L

(k) , must satisfy:

(MR
(k))

2

kR
=

(ML
(k))

2

kL
. (111)

Thus, defining g = gcd[kR, kL], kR/L = g(k̃R/L)2, for some
integers k̃R/L. In the remainder, we assumeMR/L

(k) and kR/L

are related by Eqn. (111).
If kR 6= kL, any such perturbation will necessarily vio-

late charge conservation, in addition to translation invariance
along the cut. Thus, the above interaction must be mediated
by (some number of) Cooper pairs from a proximity-coupled
superconductor and a periodic background potential.

The entanglement entropy is immediate using our algo-
rithm. We compute the Smith normal form:

U(k)(MR
(k),M

L
(k))V(k) = S(k), (112)

where

U(k) =
(

1
)
, S(k) =

(
gcd[MR/L

(k) ] 0
)
,

V(k) =

(
v1 −k̃L
v2 k̃R

)
, (113)

where gcd[MR/L
(k) ] is the greatest common divisor of MR

(k)

andML
(k) and v1 and v2 are integers satisfying v1k̃

R+v2k̃L =

1. The effective K-matrix is Keff = kRkL/g. Thus,

Se(MR/L
(k) , k

R/L) = α`− 1

2

(
log(kR) + log(kL)− log(g)

)
,

(114)

which is invariant under interchanging R ↔ L. When kR =
kL, g = kL and the constant subleading term reduces to the
expected result, log(

√
kR).

B. Symmetry-Preserving Interfaces

In this subsection, we break from our pattern and study
interfaces between non-chiral states. In general, such states
present a new opportunity for how an interface may be
gapped: edge modes on opposite sides of the interface need
no longer interact; they may in principle obtain a spectral
gap via intra-wire interactions. For example, suppose KR =
KL = σz . Then, in principle, we could choose the gapping
vectors (1, 1, 0, 0) and (0, 0, 1, 1). These are valid gapping
terms, but the MR/L matrices are not invertible and so our
methods do not apply when such terms are added. However,
in many cases symmetry preservation can preclude such inter-
actions. Indeed, we will consider two examples where sym-
metry preservation ensures that a completely gapped interface
can only occur through the interaction between edge modes on
opposite sides of the entanglement cut. These examples pro-
vide a simple illustration for how our methods may be applied
to non-chiral states.

1. Topological Insulator and Strong-Pairing Insulator Interface

Our first example was the topic of a recent paper by Wang
and Levin.91. We consider the interface between a fermionic
topological insulator and a strong pairing insulator. Charge-
conservation and time-reversal invariance prevents the edge
modes of the fermionic topological insulator from obtaining a
gap when bordering the topologically trivial vacuum. How-
ever, these edge modes may obtain a gap in a symmetry-
preserving manner when they border the strong pairing insu-
lator.

The interface can be described by the Luttinger liquid ac-
tion:

SSPI/TI =

∫
dtdx

[
(KSPI/TI)IJ∂tϕI∂xϕJ − VIJ∂xϕI∂xϕJ

+gβ cos((MR
SPI/TI,M

L
SPI/TI)βIϕI)

]
,

(115)

where

KSPI/TI =

−8 0 0 0
0 8 0 0
0 0 1 0
0 0 0 −1

 , V = vI,

(MR
SPI/TI,M

L
SPI/TI) =

(
0 8 1 3
8 0 3 1

)
, (116)

and some positive constant v. We note that the R/L label on
MR/L

SPI/TI refer to modes living on the right/left side of the en-
tanglement cut. We take the strong-pairing insulator to live
on the right side of the cut and its edge excitations to be de-
scribed by the modes ϕ1,2. The topological insulator edge
modes live on the left side of the cut and are described by
ϕ3,4. The interface is gapped in a time-reversal invariant and
charge-conserving way by the cosine interactions, parameter-
ized by gβ .

To compute the entanglement entropy obtained for
an entanglement cut across such an interface, we put
(MR

TI/SPI,M
L
SPI/TI) into its Smith normal form:

USPI/TI(MR
SPI/TI,M

L
SPI/TI)VSPI/TI = SSPI/TI, (117)

where

USPI/TI =

(
1 0
−3 1

)
, SSPI/TI =

(
1 0 0 0
0 8 0 0

)
,

VSPI/TI =

 0 1 3 1
0 0 1 0
1 0 −8 −3
0 0 0 1

 . (118)

We find |det(vRSPI/TI)| = 1 and |det(vLSPI/TI)| = 8. The
effective K-matrix is

Keff = −
(

64 24
24 8

)
. (119)
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Thus, the entanglement entropy is,

Se(MR/L
SPI/TI) = α`− 1

2
log(64). (120)

Again, this result is symmetric under tracing out the strong-
pairing or topological insulator edge degrees of freedom.

2. Topological Insulator and Doubled Semion Interface

In our second example, we consider the interface between
the topological insulator and the doubled-semion state which
was recently studied by Lu and Lee.95 Again, the preserva-
tion of U(1) n Z2 symmetry prevents the edge modes of the
topological insulator from obtaining a spectral gap when bor-
dering the trivial vacuum; however, the interface between the
topological insulator and doubled-semion state may obtain a
symmetry-preserving gap.

The interface can be described by the Luttinger liquid ac-
tion:

STI/DS =

∫
dtdx

[
(KTI/DS)IJ∂tϕI∂xϕJ − VIJ∂xϕI∂xϕJ

+gβ cos((MR
TI/DS,M

L
TI/DS)βIφI)

]
,

(121)

where

KTI/DS =

0 2 0 0
2 0 0 0
0 0 1 0
0 0 0 −1

 , V = vI4,

(MR
TI/DS,M

L
TI/DS) =

(
0 2 1 1
2 0 1 −1

)
, (122)

for some positive constant v. As before, the R/L label on
MR/L

TI/DS refer to modes living on the right/left side of the en-
tanglement cut. We take the doubled-semion state to live on
the right side of the cut and its edge excitations to be described
by the modes ϕ1,2. The topological insulator edge modes live
on the left side of the cut and are described by ϕ3,4 fields. The
interface is gapped in a time-reversal invariant and charge-
conserving way by the cosine interactions, parameterized by
gβ .

To compute the entanglement entropy obtained for
an entanglement cut across such an interface, we put
(MR

TI/DS,M
L
TI/DS) into its Smith normal form:

UTI/DS(MR
TI/DS,M

L
TI/DS)VTI/DS = STI/DS, (123)

where

UTI/DS =

(
1 0
1 −1

)
, STI/DS =

(
1 0 0 0
0 2 0 0

)
,

VTI/DS =

 0 0 1 0
0 1 1 −1
1 −2 −2 1
0 0 0 1

 . (124)

We find |det(vRTI/DS)| = 1 and |det(vLTI/DS)| = 2. The
effective K-matrix is

Keff =

(
4 −2
−2 0

)
. (125)

Thus, the entanglement entropy is,

Se(MR/L
TI/DS) = α`− 1

2
log(4). (126)

Again, this result is symmetric under tracing out the doubled-
semion or topological insulator edge degrees of freedom.

VII. FLUX INSERTION

In Sec. V, we saw examples for which entanglement cuts
gave identical entanglement entropies, even while the edge
modes appearing at the entanglement cuts were in very differ-
ent phases. This is not surprising as the topological entangle-
ment entropy measures the modular S-matrix of the topolog-
ical phase and the different edge phases we considered have
identical S-matrices. Unfortunately, the identification of the
distinct edge phases through the entanglement spectrum is
also difficult. We also mentioned in that section that flux in-
sertion was a possible tool for distinguishing the phases. We
will discuss that in more detail here.

In this section, we describe how flux insertion through the
cylinder can help differentiate the possible edge phases occur-
ring at the entanglement cut. When the topological phase is
put on a cylinder, flux insertion through the hole of the cylin-
der can generally be used to access different ground state sec-
tors corresponding to the different bulk quasiparticles. Given
a particular flux sector, the entanglement spectrum reflects the
spin of the operator (and the topological spin of the bulk quasi-
particle created by the operator) in the edge theory associated
to the bulk (quasiparticle) sector.

Extracting the actual value of the spin again appears dif-
ficult at generic points in moduli space for arbitrary states.
However, there is a coarser way in which distinct edge phases
may be differentiated. Recall that the edge phases we consid-
ered were either fermionic or bosonic, as the fermionic phase
admit operators of half-integer spin while the boson phase
only contain operators with integer spin. It is known that π-
flux has an important effect on the fermionic phase while it
has no effect on the bosonic phase: the boundary conditions
of the fields in the fermionic phase are modified by the pres-
ence of the π-flux, while the fields comprising the bosonic
phase are unaffected. The modified boundary conditions re-
sult in a shift of the “ground state energy” in the entanglement
spectrum of the fermionic phase from which the two phases
may be distinguished.
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A. Generalities

We thread flux Φ through the cylinder by turning on a con-
stant vector potential Ax = Φ/` so that:

Φ =

∫ `

0

dxAx. (127)

We are interested in the effect of the threaded flux on the edge
modes occurring at an entanglement cut.

First, consider free fermions living on the two sides of the
entanglement cut. We may gauge away a constant vector po-
tential at the cost of modifying the boundary conditions of the
fermions:

Aµ → Aµ + ∂µλ, ψ → e−iλψ, (128)

where λ = (Φx)/`. Only when we thread 2π flux does the
system remain invariant. π-flux interchanges periodic and
anti-periodic boundary conditions on the fermions. Bosoniz-
ing the free fermion, (ψR/L)† ∼ e±iϕ

R/L

, we see that anti-
periodic boundary conditions correspond to the boundary con-
ditions:

ϕR/L(`) = ϕR/L(0) + 2π
(
PR/L +

1

2

)
, (129)

for PR/L ∈ Z. Thus, π-flux merely shifts of the origin of the
underlying lattice so that the shortest lattice vector has length-
squared equal to 1/4.

The generalization to a single-channel non-chiral Luttinger
liquid at level k living at the entanglement cut is immediate.
The electron operator takes the form, (ψR/L)† ∼ e±ikϕ

R/L

.
If flux Φ is threaded, ϕR/L obeys the boundary condition:

ϕR/L(`) = ϕ(0) + 2π
(
PR/L +

Φ

2πk

)
, (130)

for PR/L ∈ Z. Thus, there are k different sectors, each corre-
sponding to a value of flux, Φ = 2πm, with m = 0, . . . , k−1
which are accessed through 2π-flux insertion. However, for
our needs, we require only π-flux insertion.

B. Flux Insertion: Symmetric Interfaces of Integer States

We now show how the entanglement spectrum of the
symmetric-I8 interface differs from that of the symmetric-E8

interface when π-flux threads the cylinder.
First, consider the effect of π-flux on the symmetric-I8 in-

terface: fermions with periodic boundary conditions are trans-
formed into fermions with anti-periodic boundary conditions.
In bosonized language, where (ψ

R/L
I )† = exp(±iϕR/LI ) for

I = 1, . . . , 8, the bosons satisfy the boundary conditions:

ϕ
R/L
I (`) = ϕ

R/L
I (0) + 2π

(
P
R/L
I +

1

2

)
, (131)

for PR/LI ∈ Z.

The matrixW(1,8) ∈ GL(9,Z), relates the I8⊕(−I1) lattice
to the E8 ⊕ (−I1) lattice via Eqn. (96) and determines the
boundary conditions on the edge modes of the E8 phase:

ϕ̃RI (`) = ϕ̃RI (0) + 2π(P̃RI + S̃RI ), (132)

where P̃RI ∈ Z and S̃RI = 1
2

∑
J

(
W(1,8)

)
IJ

=(
−7 −12 −9 −6 −4 −2 −8 −4

)
. Since S̃RI ∈ Z, it

can be absorbed by the arbitrary integer P̃RI . Thus, unlike
the fields, ϕRI , the fields ϕ̃RI are unaffected by the π-flux. This
makes sense because all the vertex operators constructed from
the ϕ̃RI are bosonic and hence should not acquire a phase upon
encircling π-flux.

We would like to compute the reduced density matrix for
the symmetric-I8 interface when π-flux threads the cylinder
following Sec. III. We assume a tunneling interaction of the
form cos(ϕRI + ϕLI ) across the entanglement cut. The only
novelty arising from the flux insertion is that the eigenvalues
of the zero mode operators take the form N

R/L
I + 1/2. We

find the entanglement Hamiltonian:

HR
e (π) =

8∑
a=1

2

`
√
λa

(
(NR

a +
1

2
)2 + 2

∑
n>0

(nα†a,nαa,n +
n

2
)
)
.

(133)

Crucially, there is a finite difference in the ground state en-
ergy of the entanglement Hamiltonian with and without π-flux
present:

E0(π)− E0(0) =
1

2`

8∑
a=1

1√
λa
≥ 0. (134)

This is a finite-size effect which vanishes as ` → ∞. The
constant sub-leading term in the entanglement entropy is un-
affected by this shift. We remark that this does not necessarily
hold true for non-Abelian states, however.

Since the periodicity conditions on the ϕ̃R/LI fields are un-
changed by the π-flux insertion, the entanglement Hamilto-
nian of the E8 edge is invariant, and there is no change in en-
ergy analogous to Eqn. (134). Thus, whether or not the energy
difference in Eqn. (134) is finite gives us a (coarse) prescrip-
tion to distinguish the two symmetric interfaces possible at the
entanglement cut.

C. Flux Insertion: Symmetric Interfaces of Fractional States

We now show how π-flux insertion can be used to dis-

tinguish the symmetric-
(

3 0
0 5

)
and symmetric-

(
2 1
1 8

)
inter-

faces. Again, our strategy is to observe whether or not there
is a finite energy shift in the ground state energy of the entan-
glement Hamiltonian under π-flux insertion.

First, consider the effect of π-flux on the symmetric-(
3 0
0 5

)
interface. The fundamental fermions with peri-

odic boundary conditions are transformed into fermions with
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anti-periodic boundary conditions. In bosonized language,
(ψ

R/L
I )† = exp(±ikR/LI ϕ

R/L
I ) for kR/L1 = 3 and kR/L2 = 5.

Hence, we may take the bosons to satisfy the “shifted” bound-
ary conditions:

ϕ
R/L
I (`) = ϕ

R/L
I (0) + 2π

(
P
R/L
I +

1

2

)
, (135)

for PR/LI ∈ Z.
The matrix W ( 8

15 ) ∈ GL(4,Z) in Eqn. (105) allows us
to determine the boundary conditions induced on the fields,

ϕ̃
R/L
I describing the symmetric-

(
2 1
1 8

)
interface:

ϕ̃
R/L
I (`) = ϕ̃

R/L
I (0) + 2π(P̃

R/L
I + S̃

R/L
I ), (136)

where P̃R/LI ∈ Z and the integer vector S̃R/LI =
(
0 −2

)
. We

may absorb the integer shift S̃R/LI into the arbitrary integers
Ñ
R/L
I . Thus, the fields ϕ̃R/LI are unaffected by the π-flux.
The calculation of the reduced density matrix for the

symmetric-
(

3 0
0 5

)
interface when π-flux threads the cylin-

der follows the approach described in Sec. III. We assume a
tunneling interaction of the form, cos(kRI ϕ

R
I + kLI ϕ

L
I ), across

the entanglement cut. Again it is only the eigenvalues of the
zero mode operators that shift to NR/L

I + 1/2. For this case
as well there is a nonzero difference in energy of the ground
state of the entanglement Hamiltonian with and without the
π-flux present:

E0(π)− E0(0) =
1

2`

2∑
a=1

1√
λa
≥ 0. (137)

The constant sub-leading term in the entanglement entropy is
unaffected by this shift.

Because the ϕ̃R/LI fields are invariant under the π-flux in-

sertion, the symmetric-
(

2 1
1 8

)
edge sees no such shift.

VIII. SUMMARY

In this paper, we have studied how distinct edge phases of
a given Hall state manifest themselves in the entanglement
spectrum and entanglement entropy. Surprisingly, we have
found a universal constant correction to the topological en-
tanglement entropy that is reflective of the distinct ways in
which the edge modes appearing at an entanglement cut can
be gapped. In addition, we have observed how the distinct
edge phases affect the entire entanglement spectrum.

There are a number of directions for future work. These
range from straightforward extensions to more speculative
possibilities:
• We have concentrated on fully chiral Abelian topological
states of fermions in 2+1D. We expect our results and meth-
ods to readily generalize to bosonic states, non-chiral symme-
try protected states, and non-Abelian states, as well as topo-
logically ordered states in other dimensions.

• Our states were placed on a cylinder and we studied an en-
tanglement cut running around the cylinder. It would be of in-
terest to study possible corrections in other geometries, simi-
lar to Refs. [37,38], and to understand whether the corrections
we find survive the prescriptions in Refs. [25,26] that isolate
the constant sub-leading term in the entanglement entropy.

• We found a dependence of the entanglement spectrum on
the actual coupling constants parameterizing the interactions
across the entanglement cut. It would be of interest to bet-
ter understand how universal information in the entanglement
spectrum might be extracted.

• We have studied the situation in which an independent set
of sewing perturbations were present at the entanglement cut.
It would be interesting to understand how the entanglement
spectrum behaves when different sets of sewing perturbations
“compete” with one another. On a related note, it is of inter-
est to understand if the different gapped phases occurring at
an entanglement cut for, say, two independent sets of sewing
perturbations were connected to one another without a closing
of the gap.

• A confirmation of our results through numerical experi-
ments using model wave functions would be of great interest.
Additionally, it would be illustrative to find a prescription in
which our correction could be studied in the Chern-Simons
formulation of the topological phase. We expect that this is an
interesting, but non-trivial problem.

• The tunneling interactions that resulted in constant correc-
tions to the entanglement entropy were found by requiring the
matrix (MR)−1ML – formed by the integer vectors defining
the interaction – to not lie in GL(N,Z). A more systematic
understanding for such occurrences is desirable. In particular,
does a given state admit only a finite number of possible con-
stant corrections to its entropy? While it does not appear to be
possible to obtain arbitrary corrections, without any symmetry
constraints, it appears that there is no restriction on the num-
ber of different corrections, i.e., there are a countable number
of different corrections to the entropy.

• In Sec. IV A, we studied constant corrections to the entan-
glement entropy in a ν = 4 example resulting from novel tun-
neling interactions across the entanglement cut. We remarked
that it is possible to create a 2D state using such interactions
without changing the free Fermi liquid edge structure; how-
ever, such a state only allows electrons to tunnel in pairs so
there is a type of “confinement” of single-particle excitations.
A better understanding of the resulting 2D state and analogous
constructions at other fillings would be of interest.

• Chiral edge phase transitions were studied in Refs. [4,5].
Given an edge phase defined by a particular K-matrix, these
transitions proceeded by the interaction of these modes with
the edge modes arising from a strip of ν = 1 fluid.96 Our work
here suggests a generalization of this procedure: we imagine
attaching a (narrow, but finite) ‘strip’ of a different (possibly
fractional) fluid and allowing the different edge excitations to
interact with one another. The one requirement is that these
two fluids be able to share a gapped boundary.
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Appendix A: Klein Factors

The wire construction provides us with a set of chiral
fermion creation operators, ψ†I,j,a, where I is a channel index
for wire j, and a = R or L. We introduce a collective index
i to replace both the channel I and wire j indices. Therefore,
we denote ψ†I,j,a by ψ†i,a in the remainder of this Appendix.
The ψ†i,a are bosonized according to

ψ†i,R/L ∼ γi,R/Le
±iφR/LI . (A1)

The γi,a operators are Klein factors: they satisfy anti-
commutation relations,

{γi,a, γj,b} = 2δijδab, (A2)

and ensure that the fermion operators with different i, a obey
the correct commutation relations. The commutation relations
for fermion operators with the same i, a are ensured by the
commutation relations of the φai in Eqn. (A6).

Here we show that given a set of fermion-parity-conserving
operators O~m that will gap (some of) the degrees of freedom
in the wires, the products of Klein factors that enter in each
O~m will mutually commute, provided that the bosonic parts
of each O~m also commute.

To be concrete, the operators are products of fermion an-
nihilation and creation operators, which we express schemat-
ically as

O~m =
∏
I,a

ψ
mi,a
i,a , (A3)

where ~m is a vector of integers; when mi,a is negative ψ†i,a
instead of ψi,a should enter the product. Thus, each operator
can be decomposed as

O~m = Γ~me
i~m·~φ, (A4)

where the notation ~m · ~φ is shorthand for
∑
i,ami,aφ

a
i and

Γ~m =
∏
i,a

γi,a. (A5)

We show that if the operators are chosen such that the set of
ei~m·

~φ mutually commute, then the Γ~m will also mutually com-
mute. Thus, one can work in a basis of eigenvectors of all the
Γ~m and the Klein factors effectively become classical vari-
ables.

1. Proof that the Klein factors commute

The bosonic operators obey the equal-time commutation re-
lation [

φai (x), φbj(x
′)
]

= −aπiδabδijsgn(x− x′), (A6)

with a = R/L = ±1 from which it follows,

ei~m·
~φ(x)ei

~m′·~φ(x′) = ei
~m′·~φ(x′)ei~m·

~φ(x)e[i~m·~φ(x),i ~m′·~φ(x′)]

= ei
~m′·~φ(x′)ei~m·

~φ(x)e−iπ
∑
i,ami,am

′
i,a .
(A7)

Hence, the condition that the bosonic operators commute is
exactly the condition∑

i,a

mi,am
′
i,a = 0 mod 2, (A8)

for all ~m, ~m′. Now consider the Klein factors. Each Γ~m is
a product of an even number of γ-operators, since the O~m
conserve fermion parity. Furthermore, since γ2

i,a = 1, each
Γ~m can be written so that no γ-operator appears more than
once in the product. Thus, the commutation relations between
the Γ~m are described by Sec. A 2, which yields[

Γ~m,Γ ~m′

]
= 0 ⇐⇒

∑
i,a

mi,am
′
i,a = 0 mod 2. (A9)

From Eqn. (A8) we see that[
Γ~m,Γ ~m′

]
= 0 ⇐⇒

[
ei~m·

~φ(x), ei
~m′·~φ(x′)

]
= 0. (A10)

Thus, whenever the bosonic parts of the operators O~m com-
mute, the contributions from the Klein factors do as well, and
we can omit them from our consideration.

2. Commutation relations for products of γ matrices

Given the operators Γa = γa1γa2 ...γa2n and Γb =
γb1γb2 ...γb2n′ , where all ai are distinct and all bi are dis-
tinct, and collectively refer to the i, a-labels, we now show
that [Γa,Γb] = 0 exactly when the set I = {ai} ∩ {bi} con-
tains an even number of elements. First, label the elements of
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I , γi1 , ..., γiN . Then define

Γ̃a =

N∏
j=1

γij

2n−N∏
k=1

γãk ,

Γ̃b =

2n′−N∏
k=1

γb̃k

1∏
j=N

γij , (A11)

where {ãk}∪ I = {ai} and {b̃k}∪ I = {bi}. Γ̃a,b differ from
Γa,b by at most a sign. We have manufactured the slightly
strange-looking ordering of the γ matrices so that

Γ̃bΓ̃a =

2n′−N∏
k=1

γb̃k

2n−N∏
j=1

γãj . (A12)

Now since ãk 6= ij and b̃k 6= ij for any k and j, we can
rewrite

Γ̃a = (−1)N(2n−N)
2n−N∏
k=1

γãk

N∏
j=1

γij ,

Γ̃b = (−1)N(2n′−N)
1∏

j=N

γij

2n′−N∏
k=1

γb̃k . (A13)

Thus,

Γ̃aΓ̃b =

2n−N∏
k=1

γãk

2n′−N∏
j=1

γb̃j , (A14)

where we have used (−1)N(2n−N)(−1)N(2n′−N) = 1. Since
ãk 6= b̃j for any k and j (or else such a pair would have been
in I), we can rewrite

Γ̃aΓ̃b = (−1)(2n−N)(2n′−N)
2n′−N∏
j=1

γb̃j

2n−N∏
k=1

γãk , (A15)

whenN is even, the right-hand-side is identical to that of Eqn.
(A12). Hence, when N is even, Γ̃a and Γ̃b commute, which
implies that Γa and Γb also commute.

Notice that it is not necessary for Γa and Γb to both be a
product of an even number of γ operators, as long as one of
them is such a product. On the other hand, if both Γa and Γb

are a product of an odd number of γ operators, then they will
commute exactly when N is odd.

Appendix B: Relevance of gapping vectors

Here we show that any set of linearly independent gapping
terms satisfying the null condition of Eqn. (33) can be made
arbitrarily relevant by appropriately choosing the interactions
between the right- and left- moving fields.

The action at the entanglement cut takes the form

S =
1

4π

∫
dtdx (ηij∂tXi∂xXj − Vij∂xXi∂xXj) (B1)

whereXi≤N = XR
i andXi>N = XL

i−N , XR/L were defined
in Eqn. (40), and

η =

(
−IN 0

0 IN

)
. (B2)

Eqn. (B1) is similar to Eqn. (41) but without any assumptions
on the form of interactions; instead, interactions are lumped
into the 2N × 2N matrix V . Tunneling terms take the form

Stunneling =
1

4π

∫
dtdx [gβ cos (RβiXi + LβiXi+N )] ,

(B3)
where R and L are defined in Eqn. (D2) and satisfy RRT =
LLT , from the null condition (33).

We assume the ansatz V = e−A, where

A =

(
0 αR−1L

α(R−1L)T 0

)
, (B4)

and α is a tuning parameter. The linear independence of gap-
ping vectors assures us that R is invertible, as shown in Ap-
pendix C. Then A2n = α2nI, which gives

V −1 = eA = I
∞∑
k=0

α2k

(2k)!
+A

∞∑
k=0

α2k

(2k + 1)!
. (B5)

This yields the scaling dimension, ∆β , of
cos (RβiXi + LβiXi+N ):

∆β =
1

2

((
R L

)
V −1

(
R L

)T)
ββ

= eα
(
RRT

)
ββ
. (B6)

By tuning α to be large and negative, we can manufacture a
set of interactions, contained in V , which make the scaling
dimensions, ∆β , arbitrarily relevant.

Appendix C: Linear independence of rows ofMR/L

To completely gap out the entanglement edge, it is neces-
sary that the 2N -component vectors formed by the rows of(
MR ML

)
are linearly independent. However, this does not

necessarily imply that the rows ofMR are linearly indepen-
dent. Here we show that Eqn. (33) requires this to be the case.
First, notice that Eqn. (33) implies that the inner product of
any linear combination of the rows of

(
MR ML

)
with an-

other linear combination is zero:(
aαMR

αI

)
(KR)−1

IJ

(
bβMR

βJ

)
−
(
aαML

αI

)
(KL)−1

IJ

(
bβML

βJ

)
= aαbβ

(
MR

αI(K
R)−1
IJM

R
βJ −ML

αI(K
L)−1
IJM

L
βJ

)
= 0.

(C1)

Now we prove the rows of MR are linearly independent
by contradiction: suppose that for some β0, MR

β0I
=∑

β 6=β0
bβMR

βI , for some coefficients bβ . Then by Eqn. (C1),
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MR
β0I −

∑
α6=β0

bαMR
αI

 (KR)−1
IJ

MR
β0J −

∑
β 6=β0

bβMR
βJ


=

ML
β0I −

∑
α6=β0

bαML
αI

 (KL)−1
IJ

ML
β0J −

∑
β 6=β0

bβML
βJ


= 0. (C2)

The chirality of KL requires ML
β0J

=
∑
β 6=β0

bβML
βJ .

But this contradicts the fact that the 2N -component rows of(
MR ML

)
are linearly independent. Hence, we conclude

that not only are the 2N -component vectors linearly indepen-
dent, but the N -component rows ofMR,L are as well.

Note that this implies that the matrix
gβ(f

R/L
I )iMR/L

βI M
R/L
βJ (f

R/L
J )j is positive-definite: for any

N -component vector z, define yβ =
√
gβMR/L

βJ (f
R/L
J )izi

where there is no sum implied on β. Since theMR/L
βJ (f

R/L
J )i

are non-singular, y is not equal to zero. Hence, for any z,
zigβ(f

R/L
I )iMR/L

βI M
R/L
βJ (f

R/L
J )jzj = yβyβ > 0.

Appendix D: Field Redefinitions

Here we show that starting with the action in Eqn. (41) and
the quadratic mass terms of Eqn. (37) rewritten in terms of the
fields XR/L

i , namely,

−gβ
2

(
Ma

βI(f
a
I )iX

a
i

) (
Mb

βJ(f bJ)jX
b
j

)
, (D1)

for some choice of dual basis, (f
R/L
I )i, that we can do an

orthogonal transformation on the fields such that the quadratic
term takes the diagonal form of Eqn. (42), while Eqn. (41)
remains invariant.

We first introduce the matrices:

Rβi =MR
βI(f

R
I )i, Lβi =ML

βI(f
L
I )i, (D2)

which we (“QR”) decompose as,

Rβi = TRβaQ
R
ai, Lβi = TLβaQ

L
ai, (D3)

where QR/L are orthogonal and TR/L are lower-triangular
matrices. Since R and L are non-singular (proven in Ap-
pendix C), this decomposition is unique if we choose the di-
agonal elements of TR/L to be positive. From Eqn. (33), we
obtain TRβaT

R
γa = TLβaT

L
γa. The uniqueness of the Cholesky

decomposition then implies TR = TL ≡ T .
We now independently rotate the right/left-moving fields to

define the fields X̃R/L
a :

X
R/L
i = Q

R/L
ai X̃R/L

a . (D4)

Eqn. (41) is invariant under these orthogonal rotations and the
cosine terms of Eqn. (D1) are rewritten as

−gβ
2

(
Tβa(X̃R

a + X̃L
a )
)(
Tβb(X̃

R
b + X̃L

b )
)
. (D5)

Finally, we can diagonalize the mass matrix, Mab =∑
β gβTβaTβb by writing,

X̃R/L
a = OabXR/Lb , (D6)

where Oab ∈ SO(N) satisfies:

1

2
OacMabObd = λcδcd. (D7)

Because gβTβaTβb is positive, λa > 0. Thus, the quadratic
terms in Eqn. (D5) now take the diagonal form of Eqn. (42)
with XR/L

i → XR/Li .

Returning to the original variables, we find ϕ
R/L
I =

(f
R/L
I )iQ

R/L
ai OabXR/Lb . Thus, the field redefinitions that

we have implemented amount to an orthogonal rotation of
the dual basis, (f

R/L
I )i → (FR/LI )i = (f

R/L
I )aQ

R/L
ba Obi,

or, equivalently, (e
R/L
I )i → (EI)R/Li = (e

R/L
I )aQ

R/L
ba Obi.

This transformation is in SO(N) if the matrices QR/L are in
SO(N); if they are not in SO(N), they can be made so by
multiplying one row ofMR/L by a factor of −1, which does
not change the physics.

Thus, the (ER/LI )i basis is the “correct” choice of basis.
Using this basis, the restricted lattices defined in Eqn. (44) are
identical: starting from the results of Sec. III B, we see that

MRvR =MLvL, (D8)

where we have dropped the indices to reduce clutter. Fur-
thermore, by definition, MRFR = MRfR(QR)TO =
MRfR(QR)TQL(eL)TFL = MLFL, where in the last
equality we have utilized Eqns. (D2) and (D3) and TR =
TL. Combined with Eqn. (D8), this yields (vR)−1FR =
(vL)−1FL. Inverting this equation yields, (ER)T vR =
(EL)T vL. Thus, when the “correct” basis choice is used, the
restricted lattices defined in Eqn. (44) are identical.

Appendix E: Finite Size Corrections to the Entanglement
Entropy

We have found,

Ze(T ) =
(det (−iτΩ))

−1/2∑
mI∈ZN e

−iπτ−1mIΩ−1
IJmj∏

i
1√
−iτi

e−iπ/12τi
∏
n>0

(
1− e−2πin/τi

)
(E1)

where the T dependence is implicit in τ = 2i
π`T , τi = 2i

π`
√
λiT

.
Using Eqn. (75) we find:
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Se = ∂T

T
−1

2
ln det (−iτΩ) + ln

 ∑
mI∈ZN

e−iπτ
−1mIΩ−1

IJmj


+
∑
i

(
iπτi
12

+
1

2
ln (−iτi)−

∑
n>0

ln(1− e−2πin/τi)

)))∣∣∣∣∣
T=1

= Se(`→∞) + ∂T

T ln

 ∑
mI∈ZN

e−
1
2π

2`TmIΩ−1
IJmj

 −∑
i

∑
n>0

T ln(1− e−π
2n`
√
λiT )

)∣∣∣∣∣
T=1

= Se(`→∞) + Szero + Sosc. (E2)

where

Szero = ln
∑
m

e−
1
2π

2`mΩ−1m

+

∑
m−

1
2π

2`mΩ−1me−
1
2π

2`mΩ−1m∑
m e
− 1

2π
2`mΩ−1m

≈
∑
m0

(
1− 1

2
π2`mΩ−1m

)
e−

1
2π

2`mΩ−1m (E3)

and

Sosc = −
∑
i,n>0

(
ln(1− e−π

2n`
√
λi) +

π2n`
√
λie
−π2n`

√
λi

1− e−π2n`
√
λi

)

≈
∑
i0

(
1− π2`

√
λi

)
e−π

2`
√
λi , (E4)

where we have expanded in the large ` limit. The sum over
m0 is a sum over the (possibly multiple) m which minimize
mΩ−1m and, similarly, the sum over i0 is over the (possibly
multiple) i that have the smallest value of λi.

Appendix F: I8 ⊕ (−I1) = E8 + (−I1)

In this appendix, we provide the bases, Cartan matrices, and
basis transformation for the equivalent lattices, I8 ⊕ (−I1) =
E8⊕(−I1). We also describe how the basis transformation re-
lating these two lattices is found. These two lattices are equiv-
alent because unimodular, signature (8, 1) lattices are unique
up to SO(8, 1) transformations.

As a basis for the E8 ⊕ (−I1) lattice, we choose:

(eI)a = (xI)a − (xI+1)a, I = 1, ..., 6,

(e7)a = −(x1)a − (x2)a,

(e8)a =
1

2

(
(x1)a + · · ·+ (x8)a

)
,

(e9)a = (x9)a, (F1)

where a = 1, ..., 9 and (xI)a is the unit vector with a “1” in
the I-th entry and zeros otherwise. Using the inner product,

ηab = diag(18,−1), the above basis has the Cartan matrix,
(KE8⊕(−I1))IJ = (eI)aηab(eJ)b,

KE8⊕(−I1) =



2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 −1 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 0 0 0
0 −1 0 0 0 0 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 0 0 0 0 0 −1


.

(F2)

As a basis for I8 ⊕ (−I1), we choose:

(e′I)a = (xI)a. (F3)

The associated Cartan matrix is,

KI8⊕(−I1) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 −1


. (F4)

Because these two lattices are equivalent, there exists a ma-
trix W(8,1) ∈ GL(9,Z) satisfying:

(WT
(8,1))IJ(KE8⊕(−I1))JK(W(8,1))KL = (KI8⊕(−I1))IL.

(F5)
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The explicit form of such a W(8,1) is as follows:

W(8,1) =



−3 −3 −3 −3 −3 3 3 3 −8
−5 −5 −5 −6 −6 6 6 6 −15
−4 −4 −4 −4 −5 5 5 5 −12
−3 −3 −3 −3 −3 4 4 4 −9
−2 −2 −2 −2 −2 2 3 3 −6
−1 −1 −1 −1 −1 1 1 2 −3
−3 −3 −4 −4 −4 4 4 4 −10
−1 −2 −2 −2 −2 2 2 2 −5
1 1 1 1 1 −1 −1 −1 3


.

(F6)

We now explain howW(8,1) is obtained. A Dynkin diagram
geometrically expresses the content contained in the Cartan
matrix. Each basis element of a given lattice is represented
by a dot or node. A shaded node denotes a basis element
with length-squared equal to +2 while an open node denotes
a basis element of length-squared equal to +1. A single line
between two nodes signifies that the associated basis elements
have an inner product equal to−1. If no line is drawn between
nodes, the associated basis elements are orthogonal. Thus, an
equivalent way of asking for the W(8,1) transformation is to
seek basis transformations of eI and e′J such that the asso-
ciated Dynkin diagrams are the same. The extended Dynkin
diagram forE8 is given in Fig. 4. ‘Extended’ refers to an extra
node (compared with the E8 Dynkin diagram) at the long-end
of the diagram marked with an open circle.

FIG. 4: Extended Dynkin diagram for E8. Numbers indicate the
particular basis vector to which the nearby circle refers.

A basis is given by:

(ẽI)a = (xI)a − (xI+1)a, I = 1, ..., 6,

(ẽ7)a = −(x1)a − (x2)a,

(ẽ8)a =
1

2
((x1)a + · · ·+ (x8)a),

(ẽ9)a = (x7)a − (x8)a + (x9)a, (F7)

which has the Cartan matrix:

KẼ8
=



2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 −1 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 0 0 −1
0 −1 0 0 0 0 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 0 0 −1 0 0 1


.

(F8)

The difference (x7)a− (x8)a between ẽ9 and e9 is an element
of the E8 lattice:

x7 − x8 = −3e1 − 6e2 − 5e3 − 4e4

− 3e5 − 2e6 − 4e7 − 2e8, (F9)

which implies the existence of the basis transformation:

ẽI = MIJeJ , (F10)

with

MIJ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
−3 −6 −5 −4 −3 −2 −4 −2 1


.

(F11)

There exists a similar basis redefinition of the I8 ⊕ (−I1)
whose Cartan matrix is represented by the extended E8

Dynkin diagram:

e′′1 = −x1 − x2 − x3 + x9,

e′′i = xi+1 − xi+2, i = 2, ..., 6,

e′′7 = x2 − x3,

e′′8 = x1 − x2,

e′′9 = x8, (F12)

where

e′′I = CIJNJKe
′
K , (F13)

with

NJK =



−1 −1 −1 0 0 0 0 0 1
0 0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1 0
0 1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0


,

(F14)

and CIJ = I5 ⊕ (−I3) ⊕ I1. The matrix C is introduced to
preserve charge conservation in the example considered in the
main text, but is not essential for relating the two lattices.

Thus, we have the relations:

CILNLK(e′K)aηabCJMNML(e′L)b = (e′′I )aηab(e
′′
J)b

= (ẽI)aηab(ẽJ)b

= MIK(eK)aηabMJL(eL)b,

(F15)

from which we read off,

W(8,1) = MT (NT )−1C. (F16)
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Appendix G: Charge Conservation and ν = 2 Tunneling
Interactions

In this Appendix, we show that a constant correction to the
entanglement entropy in the ν = 2 state requires charge con-
servation to be violated. Consider the tunneling operators de-
fined by the integer vectors (MR

1I =
(
a b
)
,ML

1I =
(
c d
)
)

and (MR
2I =

(
a′ b′

)
,ML

2I =
(
c′ d′

)
). Nullity and charge

conservation requires the first vector, (MR
1I ,ML

1I) to satisfy:

a2 + b2 =c2 + d2,

a+ b =c+ d. (G1)

Squaring the second equation and subtracting from the first
yields: ab = cd. Suppose c 6= 0, then d = ab/c. Substituting
back into the null condition allows us to find: c2 = 1/2(a2 +
b2 ± |a2 − b2|. If c = ±a, then d = ±b and the charge
conservation constraint fixes a = c, d = b. Alternatively,

if c = ±b, then d = ±a, and charge conservation requires
a = d and b = a. On the other hand, if c = 0, we reach the
same conclusions. Thus, a charge-conserving null vector must
take one of two forms:

(
a b a b

)
or
(
a b b a

)
. The same

analysis implies the “primed” charge-conserving null vector
to take an analogous form. Requiring the the null vectors to
be orthogonal to one another requires, aa′+ bb′− cc′−dd′ =
0, implies (MR)−1ML to either be the identity or the Pauli
σx matrix. Therefore, we must break charge conservation if
we are to generate a constant correction to the entanglement
entropy for the ν = 2 state.

Appendix H: Matrices of Sec. V A 3

In this Appendix, we provide explicit forms for the matrices
U(8)/(8̃),V(8)/(8̃), and S(8)/(8̃) used in Sec. V A 3. We find:

U(8)/(8̃) =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 −1 0 0
1 1 1 1 1 −1 −1 0
1 1 1 1 1 −1 −1 −1


,

V(8)/(8̃) =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 −5 0 0 1 1 −1 −1 −1
0 0 0 1 0 0 0 −1 −4 0 0 0 1 −1 −1 −1
0 0 0 0 1 0 0 −1 −3 0 0 0 0 −1 −1 −1
0 0 0 0 0 1 0 −1 −2 0 0 0 0 0 −1 −1
0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1 −6 −1 1 1 1 −1 −1 −1
1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 5 2 −1 −1 −1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

S(8)/(8̃) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


. (H1)

Appendix I: Statistics of Quasiparticles in the ν = 2′ Phase

In this Appendix, we consider the statistics of quasiparticles
within a bulk 2D phase for the K-matrix,

K =

(
1 0
0 1

)
, (I1)

that is constructed within the wire approach with tunneling
interactions gβ cos(MR

βIϕ
R
I +ML

βIϕ
L
I ) defined by the tun-
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neling vectors:

(MR
(2))1I =(3,−1), (ML

(2))1I = (3, 1),

(MR
(2))2I =(2, 1), (ML

(2))2I = (1, 2), (I2)

where the ϕR/LI realize a 2-channel free Fermi liquid in the
decoupled limit. We colloquially refer to this phase as ν = 2′.
These tunneling vectors are primitive and null. Primitivity en-
sures that the gapped – a result of the nullity condition – inter-
wire vacuum determined by the cosine interactions is unique
(up to the usual degeneracy of shifting the arguments of the
cosine by 2π). If we happened to have chosen non-primitive
vectors, this vacuum would be degenerate. However, this type
of degeneracy is not protected as it may be lifted by local per-
turbations along the wire.

Now, if we were to take the resulting Keff determined by
the tunneling vectors in Eqn. (I2) seriously, the statistics of
quasiparticles would be determined by:

(Keff)−1 =

(
2 − 7

5
− 7

5 1

)
. (I3)

In distinction to the fermion statistics of the quasiparticles of
the ν = 2 state, if Keff can be taken seriously, we obtain
non-trivial mutual statistics between distinct quasiparticles,
one of which has the self-statistics of a boson and the other
is fermionic. We will show that no such excitations occur in
this example, and we believe this conclusion to be representa-
tive of all such examples discussed in our paper.

We now justify these remarks. Within the wire construc-
tion, quasiparticles correspond to 2π kinks of the inter-wire
cosine interaction. Under the transport of any quasiparticle
around a full loop that may contain some number of quasipar-
ticles, the acquired statistical phase is:

θ =c1[〈3ϕR1 − ϕR2 + 3ϕL1 + ϕL2 〉]

+c2〈2ϕR1 + ϕR2 + ϕL1 + 2ϕL2 〉]
∣∣∣x
x′
, (I4)

where c1 and c2 are (not necessarily integral) constants and
|xx′ instructs us to evaluate the expectation values at positions
x and x′ along the interface and search for a possible 2πZ
shift. While in general, the ci need not be integral, there is
an important constraint that they must satisfy: namely, if we
remove the expectation value and combine arguments, the co-
efficient of each ϕR/LI term must be integral. This condition
arises from the requirement that any quasiparticle transport
be achieved by only using local (electron) operators. We con-
sider the limit where the only quasiparticle transport operators
are those given by the vectors in Eqn. (I2). (It is an interest-
ing question of how perturbations generated by single-particle
tunneling operators might affect this result and our general
study of the entanglement spectrum and entropy.)

We now determine whether fractional ci are allowed which
would imply possible fractional (mutual) statistics in the ν =
2′ state. Combining the arguments of the expectation values,
we obtain:

(3c1 + 2c2)R1 + (c2 − c1)R2 + (3c1 + c2)L1

+(c1 + 2c2)L2. (I5)
We use the second term to write: c2 = c1 +N where N ∈ Z.
Substituting this back into the above expression, we find:

(5c1 +N)R1 +NR2 + (4c1 +N)L1 + (3c1 + 2N)L2.
(I6)

Writing c1 = p/q with q not dividing p, integrality of the co-
efficients requires q to divide 5, 4, and 3. The only possibility
is to take q = 1. This means there are no fractional statistics
in the ν = 2′ state.
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98 A ‘bosonic’ edge is one for which there is no quasiparticle cre-
ation operator that commutes with all others operators, but anti-
commutes with itself, i.e., all operators have integer spin. A
‘fermionic’ edge has at least one operator with half-integer spin.

99 One exception occurs for short-range entangled, bosonic systems
with 16 fully-chiral edge modes: the exponents of operators in
the two distinct edge phases are determined by the E8 ⊕ E8 and
Spin(32)/Z2 lattices, respectively, which happen to have iden-
tical spectra and degeneracy. Higher-point correlation functions
are needed to differentiate these two edge phases.

100 There is no ambiguity in this Hilbert space division given the
explicit lattice construction of our states.

101 The entanglement Hamiltonian also goes by the name of the
modular Hamiltonian in the context of axiomatic quantum field
theory.

102 As we will review momentarily, the K-matrix is equal to the
Gram matrix of the underlying fundamental quasiparticle lat-
tice that is determined by the particular topological phase under
study. The determinant of the K-matrix is equal to the volume
of the unit cell of the fundamental quasiparticle, i.e., electron,
lattice.92,93 In the ν = 1/3 Laughlin state, the quasiparticle lattice
has volume 1/3, while the fundamental quasiparticle or electron
lattice has volume 3.

103 Relative signs or phases that may appear between eigenvalues of

the Klein factors, associated with the presence of two or more
tunneling interactions, ensure the fermionic statistics of the un-
derlying electron operators is faithfully represented when com-
puting correlation functions.

104 Interestingly, the actual values for the corrections to the topo-
logical entanglement entropy that we will find appear to be
independent of primitivity considerations: the primitive gap-
ping vectors (MR,ML) and the non-primitive gapping vectors
(2MR, 2ML) give identical subleading corrections to the en-
tropy.

105 It is possible to be more general by replacing each σz by uni-
modular matrices, UR, UL, i.e., matrices with unit determinant,
such that there exists an invertible, integer matrix W such that
WT (KR ⊕ UR)W = KL ⊕ UL. We shall not explore this pos-
sibility here.

106 The careful reader might be worried about the periodicity condi-
tions on the fields. Inverting W ( 8

15
) shows that the fields φ̃R/L

I,j−1

are independently 2π-periodic. Thus, they can be used to define
ϕ̃

R/L
I,j−1 via Eqn. (24), which have the periodicity of Eqn. (26).

When the couplings between wires j − 2 and j − 1 and between
j−1 and j are implemented, the remaining gapless fields on wire
j have 2π periodicity.


