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We propose to realize a two-dimensional chiral topological superconducting (TSC) state from the
quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through
the proximity effect to a conventional s-wave superconductor. This state has a full pairing gap in
the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such
chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces
of the doped magnetic topological insulator. We further propose several transport experiments to
detect the chiral TSC. One unique signature is that the conductance will be quantized into a half-
integer plateau at the coercive field in this hybrid system. In particular, with the point contact
formed by a superconducting junction, the conductance oscillates between e2/2h and e2/h with the
frequency determined by the voltage across the junction. We close by discussing the feasibility of
these experimental proposals.

PACS numbers: 74.45.+c 73.43.-f 71.10.Pm 73.40.-c

I. INTRODUCTION

The search for topological states of matter has become
a central focus in condensed matter physics. Chiral topo-
logical superconductors (TSC) in two-dimensions (2D)
with an odd-integer Chern number are predicted to host
a Majorana zero mode in the vortex core, which obeys
non-Abelian statistics1,2 and has potential applications
in topological quantum computation3. A chiral TSC with
Chern numberN breaks time-reversal symmetry, and has
a full pairing bulk gap andN topologically protected gap-
less chiral Majorana edge modes (CMEMs), which can
be viewed as a superconducting analogy of the quantum
Hall (QH) state4–6. As a minimal topological state in
2D, the N = 1 chiral TSC is of particular interest, as
its edge state has only half the degrees of freedom of the
QH state with Chern number C = 1. Intensive efforts
have been made to search for the chiral TSC in 2D7–17,
however, it has not yet been confirmed in experiments.

In principle, a QH state with Chern number C in prox-
imity with an s-wave superconductor (SC) can be natu-
rally viewed as a chiral TSC with even number N = 2C
CMEMs. Therefore, it is theoretically possible to re-
alize a chiral TSC with odd number of CMEMs near
a QH plateau transition12. However, the strong mag-
netic field required in a QH state will severely hinder
the superconducting proximity. Instead, the quantum
anomalous Hall (QAH) state has a finite Chern number
C in the absence of an external magnetic field18,19, which
has been theoretically predicted in magnetic topological
insulators (TIs) with ferromagnetic (FM) ordering20–30

and experimentally realized (for C = ±1) in both Cr-
doped31–35 and V-doped36 (Bi,Sb)2Te3 magnetic TI thin
films. More recently, a new zero-plateau QAH state with
C = 0 and the plateau transitions among C = ±1, 0 states
have been theoretically predicted37 and experimentally
observed38,39. Without requiring a large external mag-

netic field, the plateau transition from the C = ±1 QAH
to the zero-plateau C = 0 state is a unique parent system
for realizing a N = ±1 chiral TSC.

In this paper, we propose to realize the N = ±1 chiral
TSC in a magnetic TI near the QAH plateau transition
via the proximity effect to an s-wave SC. The optimal
condition for realizing the chiral TSC is to have inequiv-
alent SC pairing amplitudes on top and bottom surfaces
of the doped magnetic TI. We then propose several trans-
port experiments to detect this chiral TSC. Generally,
the conductance could be quantized into a half-integer
plateau at the coercive field in this hybrid system (Fig. 1),
as a signature of the neutral CMEM backscattering. In
particular, with a point contact formed by a SC junction
(Fig. 4), the conductance oscillates with a frequency de-
termined by the voltage across the junction. Lastly, we
briefly discuss the temperature dependence on the trans-
mission of CMEM and the feasibility of these experimen-
tal proposals.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the effective model
for the SC proximity effect of the QAH state in a mag-
netic TI thin film. Section III presents the results on the
phase diagram, edge transport and experimental propos-
als on point contacts. Section IV presents discussion on
the feasibility of experimental realization of chiral TSC
in a magnetic TI. Section V concludes this paper. Some
auxiliary materials are relegated to appendixes.

II. MODEL

To start, we consider the SC proximity effect of the
QAH state in a magnetic TI thin film with FM order.
Without the proximity effect, the low energy physics
of the system only consists of the Dirac-type surface
states (SS)37. The 2D effective Hamiltonian is H0 =
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FIG. 1. (color online). The hybrid QAH-SC device. In region
II, a chiral TSC state is induced through the proximity effect
to an s-wave SC layer on top of the QAH in magnetic TI. A
back-gate voltage Vbg is applied to control the Fermi level in
region II. Voltages V1 and V2 are applied on leads 1 and 2,
respectively. The SC layer is grounded through a lead in its
bulk.
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T and

H0(k) = kyσxτ̃z − kxσy τ̃z +m(k)τ̃x + λσz, (1)

where ckσ annihilates an electron of momentum k and
spin σ =↑, ↓, and superscripts t and b denote SS in the
top and bottom layers, respectively. σi and τ̃i (i = x, y, z)
are Pauli matrices for spin and layer, respectively. λ is
the exchange field along z axis induced by the FM or-
dering. Here λ ∝ 〈S〉 with 〈S〉 being the mean field
expectation value of the local spin, and the value of λ
can be changed during the magnetization reversal pro-
cess in magnetic TIs. m(k) = m0 + m1(k2

x + k2
y) de-

scribes the hybridization between the top and bottom
SS. The Chern number of the system is C = λ/|λ| for
|λ| > |m0|, and C = 0 for |λ| < |m0|. Correspond-
ingly, the system has |C| chiral edge state37. In proximity
to an s-wave SC, a finite pairing amplitude is induced
in the QAH system. The Bogoliubov-de Gennes (BdG)

Hamiltonian becomes HBdG =
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Here µ is chemical potential, ∆1 and ∆2 are pairing gap
functions on top and bottom SS, respectively.

In a simple case for µ = 0 and ∆1 = −∆2 = ∆, a
basis transformation40 decouples the BdG Hamiltonian
into two models with opposite chirality, and

HBdG =

(
H+(k) 0

0 H−(k)

)
, (3)

where H±(k) = kyσx∓ kxσyςz + (m(k)±λ)σzςz ∓∆σyςy
with ςx,y,z the Pauli matrices in Nambu space. The topo-
logical property of H+ is clearly seen by a further basis

transformation into a block diagonal form:

H+(k) =

(
h+(k) 0

0 −h∗−(−k)

)
, (4)

where h±(k) = kyσx − kxσy + (m(k) + λ ± |∆|)σz char-
acterizes a px ± ipy SC1,7. The BdG Chern number of
h±(k) depends only on the sign of mass m(k)+λ±|∆| at
the Γ point37. Therefore, the Chern number of H+(k) is
N+ = −2 for |∆| < −m0−λ, N+ = −1 for |∆| > |m0+λ|
and N+ = 0 for |∆| < m0 +λ. Similarly, the Chern num-
ber of H−(k) is N− = 2 for |∆| < λ −m0, N− = 1 for
|∆| > |m0 − λ| and N− = 0 for |∆| < m0 − λ. The to-
tal Chern number of the system is then N = N+ +N−.
Fig. 3a shows the phase diagram of the system. The
phase boundaries are determined by ∆ ± (m0 ± λ) = 0,
which reduce to the critical points λ = ±|m0| between
the C = ±1 QAH and the zero plateau normal insula-
tor (NI) for ∆ = 0. An infinitesimal SC gap drives the
QAH phase into a N = ±2 TSC. More importantly, the
N = ±1 TSC state emerges in the neighborhood of the
transition between the QAH phase and NI phase.

III. RESULTS

A. Phase diagram

Now we turn to the optimal condition for realizing the
N = ±1 TSC. First, consider the phase diagram for
µ = 0 and general values of ∆1 and ∆2. The phase
boundaries are determined by the bulk BdG gap closing
in Eq. (2). Assuming ∆2 = α∆1 and α is real, the phase
boundaries are given by ∓(1−α)∆1λ+λ2 = m2

0+α∆2
1, as

shown in Fig. 2. For ∆1 = ∆2, the Chern number jumps
directly from N = ±2 to N = 0, and N = ±1 TSC
phases disappear due to accidental particle-hole symme-
try in H0 with µ = 0. As ∆2 decreases, the N = ±1
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FIG. 2. Phase diagram of the QAH-SC hybrid system with
typical parameters. (a) ∆1 = ∆, ∆2 = 0, µ = 0. (b) ∆1 =
∆2 = ∆, µ = 0. (c) ∆1 = ∆, ∆2 = 0, µ = 0.7. (d) ∆1 =
−∆2 = ∆, µ = 0.7. Here ∆1, ∆2, µ are in the units of |m0|.
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TSC phase space emerges and becomes the widest at
∆2 = 0. In particular when ∆1∆2 < 0, a helical TSC
phase with helical Majorana edge states emerges on the
λ = 0 line (Fig. 3a). The general case for complex α
is studied in Appendix A, where the topology of phase
diagram remains unchanged. Next, for the case µ 6= 0,
which corresponds to the SC proximity effect of a doped
or electrically gated QAH system, the proximity effect is
effectively enhanced by the finite density of states at the
Fermi level12. As shown in Fig. 2, the phase space of
N = ±1 TSC near the ∆ = 0 axis enlarges from µ = 0
to µ 6= 0. Therefore, the optimal condition for N = ±1
TSC is µ 6= 0 and ∆2 = 0. This leads us to design
the transport device in Fig. 1. The s-wave SC is only
grown on top of the magnetic TI in region II to ensure
the proximity pairing gap of the top SS is larger than that
of the bottom SS, while the Fermi level can be tuned by
the back-gate. The size of the SC layer should be larger
than the back-gate electrode so that there is no metal-
lic regions in the device. Similarly, one can also employ
another device geometry by using a global back-gate and
two top-gates in region I and III, to tune the Fermi levels
in region I, II, and III separately.

B. Edge transport and half-plateau

To identify the N = 1 TSC in the QAH-SC hybrid
system, one can probe the neutral Majorana nature of
CMEM or trap the vortex core zero mode. Several
methods have been proposed to measure the Majorana
fermions8,41–46. Here, we base our discussion on a recent
proposal studying the CMEM backscattering46. The ba-
sic setup is shown in Fig. 1, consisting of a magnetic TI in
proximity with a grounded top SC layer in region II and
two current leads at the corners. When the magnetic do-
mains of magnetic TI are aligned in the same direction,
the magnetic TI is in a QAH state with a single chi-
ral edge state propagating along the sample boundary.
During the flipping of the magnetic domains at the co-
ercive field, λ decreases and the magnetic TI enters the
NI with a zero-plateau in Hall conductance σxy over a
finite range of magnetic field37–39, as shown in Fig. 3b.
Either perpendicular or in plane external magnetic field
could induce such plateau transition39. When the SC
proximity effect is sufficiently strong, the superconduct-
ing region II experiences the BdG Chern number varia-
tion N = −2 → −1 → 0 → 1 → 2 as λ decreases in the
hysteresis loop (dashed line in Fig. 3a). Therefore, the
transport setup Fig. 1 is a QAH/NI-TSC/NSC-QAH/NI
junction. As we will discuss in details below, the edge
transport features of the junction uniquely convey the
topological properties of the SC in region II.

The QAH edge state can be viewed as two CMEMs
since a C = 1 QAH state is topologically equivalent
to a N = 2 TSC. Therefore, in the case of QAHC=1-
TSCN=2-QAHC=1 junction (Fig. 3j), the edge current
will be perfectly transmitted. By contrast, if the junction

is QAHC=1-TSCN=1-QAHC=1 (Fig. 3i), the chiral edge
state in the QAH region separates into two CMEMs at
the TSC boundary8,43. One CMEM is perfectly trans-
mitted, while the other is totally reflected. The edge
transport of the junction is governed by the generalized
Landauer-Büttiker formalism, which includes the contri-
butions from both the normal scattering and Andreev
scattering47,48. The general relationship between current
and voltage on lead 1 and 2 shown in Fig. 1 is I1 =
(e2/h)[(1−R+RA)(V1−V 0

sc)− (T ′−T ′A)(V2−V 0
sc)], and

I2 = (e2/h)[(1−R′+R′A)(V2−V 0
sc)−(T −TA)(V1−V 0

sc)].
Here V 0

sc = 0 is the voltage of the grounded SC layer, I1
and I2 are currents flowing into leads 1 and 2, respec-
tively. R, T , RA and TA are the normal reflection, nor-
mal transmission, Andreev reflection and Andreev trans-
mission probabilities for an electron injected from the
left, while R′, T ′, R′A, and T ′A are for an electron coming
from the right. The two-terminal conductance is then
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FIG. 3. (color online). (a) Phase diagram of the QAH-
SC hybrid system for µ = 0 and ∆1 = −∆2 ≡ ∆. Only
∆ ≥ 0 is shown. (b) Without SC proximity effect, the
σxy = −1 → 0 → 1 QAH plateau transition occurs at the
coercivity when the magnetization flips. (c) With SC prox-
imity effect to region II in hybrid device Fig. 1, σ12 shows
plateau transition 1 → 1/2 → 0 → 1/2 → 1 in the hysteresis
loop. The half-integer plateau in σ12 manifests the N = 1
TSC. (d)-(j) The edge transport configuration at A, B, C, D,
C′, B′ and A′ in (c). There is no backscattering for N = ±2
TSC in (d),(j), and Majorana backscattering forN = ±1 TSC
in (e),(i). Red and blue arrows represent (c ± c†) CMEMs,
respectively. NSC: normal, topologically trivial SC.
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defined as σ12 ≡ I/(V1 − V2) = (I1 − I2)/2(V1 − V2).
For the QAHC=1-TSCN=1-QAHC=1 junction in Fig. 3i,
the probabilities of normal scattering and Andreev scat-
tering are equal46, and we have R = RA = T = TA =
R′ = R′A = T ′ = T ′A = 1/4, resulting in a half-quantized
conductance

σ12 =
e2

h
(T +RA) =

e2

2h
. (5)

Moreover, since the SC layer is not floating but grounded,
the quantized net incoming current ISC = (V1 + V2)e2/h
will be flowing from the SC layer to ground. Here we
point out that the supercurrent due to the phase fluctu-
ation of SC order parameter may give a small correction
to conductance, which scales as (`/L)3, where ` is the
width of CMEM, and L is the size of SC. For an esti-
mation, ` ∼ 0.5 µm, therefore such correction is neglible
for L > 50 µm. In contrast, the N = 2 TSC junction in
Fig. 3j exhibits a quantized conductance σ12 = e2/h46.

The entire plateau transition of σ12 in the hybrid junc-
tion device is shown in Fig. 3c. In correspondence to
the QAH plateau transition of σxy in Fig. 3b, σ12 also
exhibits plateaus quantized at e2/h and 0 when region
II is N = ±2 TSC and N = 0 NSC, respectively.
In addition, an intermediate half-quantized plateau at
e2/2h could occur at the coercivity under the condition
|∆|+|m0| > |λ| > |m0|, which is a unique signature of the
N = ±1 TSC in region II. We emphasize that a plateau
usually indicates a stable phase instead of a fine-tuned
state. The size of backscattering region is not necessar-
ily mesoscopic. In fact, the size L of the TSC region
sets a temperature scale kBTint ∼ vM/L, above which
the interference effect vanishes due to thermal averaging,
where vM is the Fermi velocity of CMEM. For an esti-
mation, L ∼ 200 µm, vM ∼ 2.0 eV Å, Tint ∼ 10 mK.
Therefore, the half-plateau is robust at large L and finite
temperature T > Tint. The plateau transitions and cor-
responding edge transport configuration in the hysteresis
loop are illustrated in Fig. 3c-j. In particular, four 1/2-
plateaus occur around the critical magnetic fields ±H∗1
and ±H∗2 shown in Fig. 3c.

C. Point contact

Another useful transport configuration is a point con-
tact formed by two SC islands which allow the transmis-
sion of CMEMs, as shown in Fig. 4a. A voltage Vsc is
applied onto island TSC1, while TSC2 is grounded. If
either TSC1 or TSC2 is a N = 2 TSC, the edge current
will be perfectly transmitted. Non-trivial physics occurs
when both TSC1 and TSC2 are N = 1 TSC. An incident
edge electron from b1 splits into two CMEMs, one is per-
fectly transmitted along the edge, while the other is scat-
tered at the point contact with transmission amplitude t,
which depends on the phase difference δφ ≡ φ1−φ2 of two
TSCs (see Appendix B). The I-V relation in this geome-
try is I1 = (e2/h)[(1−R+RA)(V1−Vsc)− (T ′−T ′A)V2],

(a)

0.5

1.0
(b) ξ=0.2

ξ=2

ξ=1

ξ=5 ξ=20

weakly coupled

strongly coupled

σ
12

Period=h/2eVsc

QAH

 = 1

a1

a2b1

b2

QAH

 = 1

 = 1

 = 1

TSC1

TSC2

t

r

V  SC

I2 

V2 

I1 

V1

1γ

2γ1φ

2φ

2
(

/
)

e
h

τ

FIG. 4. (a) The point contact configuration of two SC is-
lands with SC phases φ1 and φ2, across which the reflection
and transmission amplitudes of the CMEMs are r and t. (b)
The conductance σ′12 as a function of τ for different coupling
strengths ξ. A dc current flows between a1 and a2, an ac volt-
age between them is measured, with frequency f = 2eVsc/h.

and I2 = (e2/h)[(1−R′ +R′A)V2 − (T − TA)(V1 − Vsc)].
where R = RA = R′ = R′A = r2/4, T = T ′ = (1+ t)2/4,
TA = T ′A = (1 − t)2/4, r is reflection amplitude and
r2 + t2 = 1. Therefore, I = e2(1 + t)(V1 − V2 − Vsc)/2h.
Note that the current is proportional to the tunneling
amplitude t, not the tunneling probability. If Vsc = 0, we
have σ12 = (1 + t)e2/2h, which directly measures t of the
neutral CMEMs. A finite Vsc leads to a time dependent
δφ, which in turn affects t. A simple tunneling model for
the CMEM is (also see Appendix B)

Htunnel = iσz∂x − κ(x) sin(δφ/2− φ0)σy, (6)

where κ(x) is nonzero in a finite interval, and the basis
is the CMEMs (γ1, γ2) shown in Fig. 4a. The transmis-
sion amplitude t at zero-energy in this model is t(δφ) =
1/ cosh[ξ sin(δφ/2− φ0)], where ξ =

∫
dxκ(x)/2. Within

this model, t is purely real. With a fixed Vsc across the
point contact, δφ varies linearly with time τ with a slope
dδφ/dτ = 2eVsc/~. We can define a new conductance

σ′12 ≡
I

V1 − V2 − Vsc
=
e2

2h
[1 + t(δφ)] , (7)

which is a periodic function in time with the Josephson
junction frequency f = 2eVsc/h. Fig. 4b shows σ′12 as a
function of time for different values of ξ. The time oscilla-
tion shape of σ′12 are different for a weakly coupled point
contact (small ξ) and a strongly coupled one (large ξ).
However, σ′12 always oscillates between e2/2h and e2/h,
since there is always at least one perfectly transmitted
CMEM, which is also a unique feature of the N = 1
TSC state.

D. Temperature dependence

We further consider the temperature dependence of
the above CMEM transmission (see Appendix D). It is
straightforward to see by a dimensional counting that
t(δφ) in the above free Majorana fermion model is
marginal, therefore it remains constant at low temper-
ature T . When the leading four-fermion interaction (ir-
relevant) is included, the tunneling amplitude acquires
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a weak temperature dependence. For Vsc = 0, in this
case σ′12 = σ12, the renormalization group analysis gives
a power-law correction δt ∼ −λ2

pT
6 to t, where λp is

the bare fermion interaction strength. The conductance
σ′12 ∝ (1 + t) will therefore decrease as T increases. This
perturbative result is no longer valid above a characteris-

tic temperature of Tc ∼ λ
−1/3
p , when the correction δt is

comparable to t. For higher temperature Tc < T � |∆|,
t will flow towards 0, and the two TSC islands will behave
like a single connected TSC analogous to that shown in
Fig. 1. In this regime, one can formulate a similar point-
contact tunneling model between the left and right edges
of the new TSC as in Eq. (6), but with an additional
vortex tunneling through the bulk TSC. At high tem-
perature, the leading contribution to t then comes from
the vortex tunneling, which leads to t ∼ λ2

σT
−7/4, where

λσ is the bare vortex tunneling strength. Therefore, the
half-quantized plateau in σ12 remains robust in the high
temperature regime Tc < T � |∆|.

IV. DISCUSSION AND EXPERIMENTAL
REALIZATION

Finally, we discuss the feasibility of our proposals.
Experimentally, to observe the N = ±1 chiral TSC
and all of the four half-quantized conductance plateaus,
a good proximity effect between SC and magnetic TI
is necessary. Moreover, the critical field H⊥c of SC
should be larger than the coercivity H∗1,2 in magnetic
TI. From Ref. 38 and 39, the estimated H∗1 ∼ 0.05 T
and H∗2 ∼ 0.2 T. The candidate SC materials are Nb and
NbSe2. The bulk Nb is a type I SC with Tsc = 9.6 K and
H⊥c ∼ 0.2 T, while a thin film Nb becomes a type II SC
with upper critical field H⊥c2 ∼ 1 T. NbSe2 is a type II
SC and shows good proximity effect with Bi2Se3

49 even
at 4.2 K and 0.4 T, where the proximity effect induced
SC gap is ∆ ∼ 0.5 meV. The width of the CMEM ` can
be estimated as vF /∆ ∼ 0.52 µm, where the Fermi ve-
locity vF ∼ 2.6 eV Å31. For a typical junction voltage
Vsc ∼ 1 µV, f ∼ 0.48 GHz, which is easily accessible in
experiments.

V. CONCLUSION

In summary, we propose to realize the N = ±1 chiral
TSC in a magnetic TI near the QAH plateau transition
via the proximity effect to an s-wave SC. We show that
inequivalent SC pairing amplitude on top and bottom
surfaces in doped magnetic TIs will optimize the N = ±1
chiral TSC phases. Several edge transport measurements
have been proposed to identify such N = 1 TSC in the
QAH-SC hybrid system. In particular, the conductance
could be quantized into a half-integer plateau at the co-
ercive field in this hybrid system, as a unique signature of
the neutral CMEM backscattering. We emphasize that
such an experiment can work at reasonable temperature

and does not depend on the interference effect of CMEM.
We hope the theoretical work here can aid the search for
chiral TSC phases in hybrid systems.
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Appendix A: Phase diagram under complex
α = ∆2/∆1

In the paper we have only considered the case α =
∆2/∆1 is real. In general, in the absence of time re-
versal symmetry (as is in our model), α = |α|eiφα is
complex. Correspondingly, the phase diagram will be
modified quantitatively, but the topology of the phase
boundaries remains unchanged compared to those shown
in Fig. 2 of the paper.

By a proper choice of basis we can always set
∆1 = ∆ real. As an illustrative example, we con-
sider here the case |α| = 1, namely α = ∆2/∆1 =
eiφα . Via a unitary transformation (ctk↑, c

t
k↓, c

b
k↑, c

b
k↓) →

(ctk↑, c
t
k↓, e

iφα/2cbk↑, e
iφα/2cbk↓), ∆2 is transformed into

a real number ∆′2 = ∆1 = ∆, while the hy-
bridization m(k) between the top and bottom SS be-
comes a complex number e−iφα/2m(k). Therefore, we
can always set two of the three parameters ∆1, ∆2

and m0 to real numbers. Diagonalizing the BdG
Hamiltonian HBdG yields the energy spectrum E2 =

k2+
[
λ±
√

[m(k) sin(φα/2)±∆]
2

+m(k)2 cos2 (φα/2)
]2

.

The phase boundaries are given by the gap closing of the
energy spectrum:

λ±
√

(m0 sin(φα/2)±∆)2 +m2
0 cos2 (φα/2) = 0, (A1)

namely, the following hyperbolas:

λ2 −
(

∆±m0 sin(φα/2)
)2

= m2
0 cos2 (φα/2) . (A2)

The phase diagram is shown in Fig. 5. As one can see, the
topology of the phase diagram does not change much. In
particular, when φα = 0 and π, the phase diagram is as
indicated in Fig. 2b and Fig. 3a of the paper, respectively.
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0

m0 sin φα
2

m0 cos φα
2

m0-m0 λ
λ

∆

N=2 TSC

N=1 TSC

N=1 TSC

N=-1 TSC

N=-1 TSC

N=-2 TSC

N=0 NSC

FIG. 5. The phase diagram for ∆2 = eiφα∆1 and µ = 0.
When φα = 0, the N = ±1 TSC phases disappear, while
when φα = π, the phase spaces of N = 1 and N = −1 TSC
touch each other, as indicated in Fig. 2b and Fig. 3a of the
main text, respectively.

Appendix B: Derivation of the effective tunneling
Hamiltonian

Without loss of generality, consider the case |∆| > λ−
m0 > 0. The QAH has Chern number C = 1 and the
SC in region II has BdG Chern number N = 1, both
of which come from the lower block H−(k) of the BdG
Hamiltonian HBdG. When the pairing amplitude of the
superconductor is ∆ = |∆|eiφ = ∆1 = −∆2 with a phase
φ, H−(k) can be rewritten as

H−(k) =

(
h′+(k) 0

0 −h′∗−(−k)

)
, (B1)

h′±(k) =

(
m(k)− λ± |∆| −ikx ± ky

ikx ± ky −m(k) + λ∓ |∆|

)
, (B2)

under the following new basis 1√
2
(e−iφ/2ck↓ +

eiφ/2c†−k↑, e
−iφ/2ck↑ + eiφ/2c†−k↓,−e−iφ/2ck↓ +

eiφ/2c†−k↑,−e−iφ/2ck↑ + eiφ/2c†−k↓), where we have
used the notation

ck↑ =
ctk↑ − cbk↑√

2
, (B3)

and

ck↓ =
ctk↓ + cbk↓√

2
. (B4)

The Majorana edge state between the QAH (where |∆| =
0) and the TSC (where |∆| > λ − m0 > 0) is given by
h′+(k).

As shown in Fig. 4 of the paper, the lower TSC1 and
the upper TSC2 have superconducting phases φ1 and φ2

respectively. For simplicity, we shall approximate m(k)
as m0, which does not change the topological physics. If
the upper edge of the lower TSC1 is set as y = 0, the
Hamiltonian of the corresponding Majorana edge state
can be derived as

H1 =

∫
dx iγ1(x)∂xγ1(x), (B5)

where

γ1(x) =
e−iφ1/2c1(x) + eiφ1/2c†1(x)√

2
, (B6)

c1(x) =

∫ ∞
−∞

e(|∆|Θ(−y)+m0−λ)y
[
eiπ/4c↑(x, y)

+e−iπ/4c↓(x, y)
]
dy, (B7)

with Θ(y) defined as the Heaviside function. Similarly,
the lower edge of the upper TSC2 at y = y0 > 0 has a
low energy Hamiltonian

H2 = −
∫
dx iγ2(x)∂xγ2(x), (B8)

where

γ2(x) =
e−iφ2/2c2(x) + eiφ2/2c†2(x)√

2
, (B9)

c2(x) =

∫ ∞
−∞

e(λ−m0−|∆|Θ(y−y0))y
[
e−iπ/4c↑(x, y)

+eiπ/4c↓(x, y)
]
dy. (B10)

We shall assume the point contact extends in the interval
0 < x < L, and the two edges have a nonzero hopping
and pairing term:

HI = −
∫ L

0

dx
[
Jhc
†
1(x)c2(x)

+Jp(∆
∗
1 + ∆∗2)c1(x)c2(x) + h.c.] , (B11)

where ∆1,2 = |∆|eiφ1,2 . When projected into the low
energy Hilbert space of γ1 and γ2 via the substitutions

c1 → eiφ1/2γ1/
√

2, c2 → eiφ2/2γ2/
√

2, (B12)

this term becomes:

HI = 2

∫ L

0

dx iκ(x) sin

(
δφ

2
− φ0

)
γ1(x)γ2(x)

= 2

∫ L

0

dx iλ(x)γ1(x)γ2(x), (B13)

where

δφ = φ1 − φ2, (B14)

κ(x) = |Jh/2 + iIm(Jp)| , (B15)

φ0 = arg [Jh + i2Im(Jp)] . (B16)

For simplicity we have defined

λ(x) ≡ κ(x) sin

(
δφ

2
− φ0

)
. (B17)

The total tunneling Hamiltonian is then Htunnel = H1 +
H2 +HI as given in Eq. (6) of the paper. The eigenwave-
function ψ = (η1, η2)T at energy E can then be obtained
by solving the following Shrödinger equation:(

i∂x iλ(x)
−iλ(x) −i∂x

)(
η1

η2

)
= E

(
η1

η2

)
(B18)
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The solution for a wave incident from x = −∞ with
momentum k is E = k, and

(η1(x), η2(x))

=


(
e−ikx, λ sinh(

√
λ2−k2L)
G[L] eikx

)
(x ≤ 0)(

G[L−x]
G[L] , λ sinh[

√
λ2−k2(L−x)]
G[L]

)
(0 < x ≤ L)(√

λ2−k2e−ikx
G[L] , 0

)
(x > L)

(B19)

where function G[x] =
√
λ2 − k2 cosh(

√
λ2 − k2x) −

ik sinh(
√
λ2 − k2x). At low energies k � λ, the wave-

function can be approximately written as

(η1(x), η2(x))

=
1

coshλL

(
cosh

[∫ ∞
x

λ(x′)dx′
]
, sinh

[∫ ∞
x

λ(x′)dx′
])

,

(B20)

from which the transmission and reflection amplitudes
can be extracted out as

t =
1

cosh
(∫
dxλ(x)

) =
1

cosh [ξ sin(δφ/2− φ0)]
, (B21)

r = tanh

(∫
dxλ(x)

)
= tanh [ξ sin(δφ/2− φ0)] ,

(B22)

where ξ =
∫
dxκ(x). Note that t is always real and pos-

itive at low energies. For scattering at a finite energy
E = k, the transmission amplitude t is generally com-
plex.

Appendix C: S-matrix and conductance in general
Josephson junction setup

Here we formulate the scattering matrix of edge states
in the setup of Fig. 4a, and derive the conductance σ′12.
The edge fermions at four ends of the sample are denoted
by a1,2 and b1,2 as shown in Fig. 4a. With transmission
coefficient t and reflection coefficient r at the point con-
tact, the scattering matrix S due to the point contact
is 

a1,k + a†1,−k
a1,k − a†1,−k
a2,k + a†2,−k
a2,k − a†2,−k

 = S


b1,k + b†1,−k
b1,k − b†1,−k
b2,k + b†2,−k
b2,k − b†2,−k



=

 r 0 t 0
0 0 0 1
t∗ 0 −r∗ 0
0 1 0 0



b1,k + b†1,−k
b1,k − b†1,−k
b2,k + b†2,−k
b2,k − b†2,−k

 . (C1)

Upon basis transformation from Majorana fermions to
charged fermions on QAH edges, we have

a1,k

a†1,−k
a2,k

a†2,−k

 =
1

2

 r r t+ 1 t− 1
r r t− 1 t+ 1

t∗ + 1 t∗ − 1 −r∗ −r∗
t∗ − 1 t∗ + 1 −r∗ −r∗



b1,k
b†1,−k
b2,k
b†2,−k

 ,

(C2)

based on which the normal/Andreev transmis-
sion/reflection probabilities are given as T = |t + 1|2/4,
TA = |t− 1|2/4, and R = RA = |r|2/4. According to the
generalized Landauer-Büttiker formula, the conductance
defined in the main text is

σ′12 =
1 + Re(t)

2

e2

h
. (C3)

Note that the conductance σ′12 merely depends on the
real part of Majorana transmission coefficient t, phys-
ically it is due to the fact that charged fermions are
treated as combinations of Majorana fermions with trans-
missions t and perfect transmission 1.

Appendix D: Temperature dependence and
renormalization group analysis

In this section we analyze the temperature dependence
of Majorana transmission coefficient t by renormalization
group technique in detail50,51. Specifically, we focus on
its real part Re(t), since it is directly related to the con-
ductance σ12. Our starting point is the action for the
model in Eq. (6) of the paper,

S0 =

∫
dτ

∫
dx[γ1i(∂τ + ∂x)γ1 + γ2i(∂τ − ∂x)γ2

+ 2ξδ(x) sin(δφ/2− φ0)iγ1γ2]. (D1)

Since the Majorana tunneling occurs locally at x = 0,
the scaling dimension of the tunneling strength ξ van-
ishes, i.e. [ξ] = 0. Therefore, ξ is invariant when the
temperature T of the system changes, and so does the
transmission coefficient t.

The temperature dependence of t comes from higher
irrelevant terms at the point contact. The leading irrel-
evant term is a four fermion interaction of the following
form:

Hp =

∫
dxλpδ(x)γ1∂xγ1γ2∂xγ2. (D2)

It represents the tunneling of one pair of Majorana
fermions from one edge to the other. The scaling dimen-
sion of λp is [λp] = −3, hence it is irrelevant and scales as
λeff
p ∼ λpT

3 when T → 0. Increasing the temperature T
will enhance the effective interaction strength λp, which
affects the transmission coefficient t.

The contribution of Hp to the transmission coefficient
t can be calculated perturbatively as follows. Suppose
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both ξ and λp are small, so that perturbation theory can
be used. We shall regard HI = 2iξδ(x) sin(δφ/2−φ0)γ1γ2

and Hp given above as the perturbation. Consider an
in-state |i〉 = γ1,−k|Ω〉 of Majorana fermion γ1, and a
transmitted out-state |f〉 = γ1,−k′ |Ω〉, where |Ω〉 is the
system ground state. The transmission coefficient t is
then given by

t ≈ 〈f |Tτe−i
∫∞
−∞(HI+Hp)dτ |i〉 , (D3)

where Tτ stands for the time ordering. The zero-order
t(0) is simply δkk′ . The first-order contribution t(1) is

t(1) = 〈f | − i
∫

(HI +Hp)dτ |i〉 . (D4)

Since HI is odd in γ1 and γ2, its first-order contribution
vanishes. The second term of Hp is purely imaginary
and therefore does not contribute to the conductance σ′12.
The second-order correction

t(2) ∼ −1

2
〈f |Tτ

∫
(HI +Hp)(τ)(HI +Hp)(τ

′)dτdτ ′ |i〉 .

(D5)
The H2

I term gives a constant contribution ∼
−ξ2 sin2(δφ/2 − φ0), in agreement with calculations in
Appendix B. The cross term HIHp vanishes because it
is odd in γ1 and γ2. The H2

p term results in a tempera-
ture dependent correction to the real part of transmission
coefficient t as

δRe(t) ∼ −δkk′
(
λeff
p

)2
= −δkk′λ2

pT
6. (D6)

Therefore, the transmission coefficient t generically de-
creases as temperature T increases. When the tempera-

ture T is above a characteristic temperature Tc ∼ λ−1/3
p ,

the interaction λp at the point contact dominates, so that
t becomes small and r becomes large. In this case, the

above perturbative treatment is no longer valid. How-
ever, this case can be effectively viewed as a breaking up
of original Majorana edge states γ1 and γ2 and a remerge
of them into two new Majorana edge states ψ1 and ψ2

on the left and right of the point contact, and of the
two TSCs merging into a single TSC. In the temperature
range Tc � T � |∆|, we can do a perturbation calcula-
tion about the high temperature fixed point before the
superconducting phase is destroyed.

This scenario is very similar with our setup in Fig. 1a,
except that the two edges are brought together at the
point contact. Since the region between the edges in this
case is a SC, there are both fermion tunnelings and vortex
tunnelings between edges52. The effective action for this
point contact is

S ′ =

∫
dτ

∫
dy [ψ1i(∂τ + vm∂y)ψ1 + ψ2i(∂τ − vm∂y)ψ2

+λψδ(y)iψ1ψ2 + λσδ(y)σ1σ2] , (D7)

where σ1 and σ2 are the vortex operators on edges with a
scaling dimension [σ1] = [σ2] = 1/16. Dimension count-
ing renders [λψ] = 0 and [λσ] = 7/8, so the vortex-vortex
tunneling is the most relevant. Therefore, at a high tem-
perature T , the vortex-vortex tunneling term gives the
temperature dependence of transmission coefficient t

t ∼ λ2
σT
−7/4. (D8)

The power-law relation is valid above a characteristic

temperature T ′c ∼ λ
8/7
σ , provided the SC gap |∆| is much

higher. In fact, this confirms the robustness of the half-
quantized plateau. For in the setup with reasonable finite
temperature, the edges are far away from each other, so
the tunneling strengths including λσ are sufficiently tiny,
resulting in an extremely low T ′c.
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