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We describe a kinetic model of recombination of non-equilibrium quasiparticles generated by
single photon absorption in superconducting current-carrying nanowires. The model is developed
to interpret two-photon detection experiments in which a single photon does not possess sufficient
energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-
recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed
strong bias current, wavelength and temperature dependencies of hotspot relaxation in tungsten
silicide superconducting nanowire single-photon detectors.

I. INTRODUCTION

The detection mechanism of a superconducting
nanowire single-photon detector (SNSPD) relies on the
local photon-induced suppression of superconductivity1.
This region of suppressed superconductivity is usually
referred to as a hotspot (HS). Hotspot dynamics are cru-
cially important for the operation of SNSPDs because
they determine the spectral sensitivity2 and limit the re-
set time of the detectors3. The formation and subsequent
dynamics of hotspots play central roles in the detection
mechanism. Despite significant progress in the develop-
ment of SNSPDs, many fundamental questions remain
open. These relate both to formation and evolution of a
hotspot following the absorption of a photon and to the
detection mechanism. Here we introduce a model that
describes relaxation of strongly non-equilibrium distri-
butions of interacting quasiparticles (QPs) and phonons
inside a generated hotspot. We show that this model pro-
vides interpretation of recent two-photon experiments4

describing in detail the evolution of relaxing hotspots.
It quantitatively reproduces the measured current, wave-
length and temperature dependence of the hotspot relax-
ation time.

A recent experimental study of photo-detection
mechanisms in a superconducting nanowire single-photon
detector5 considers the four detection scenarios. The first
is the normal-core hotspot model (a), where the photon
energy creates a normal domain inside the superconduc-
tor, which the supercurrent must bypass. The second
(b) is the diffusion-based hotspot model, where the non-
equilibrium quasiparticles (QPs) diffuse outward from
the point of absorption, creating a band of depleted (bro-
ken) superconductivity. The third (c) is the vortex nu-
cleation model, where a vortex-antivortex pair is formed
in the hotspot. This is a modification of model (a). Fi-
nally, in the vortex crossing model (d), either a vortex
or a vortex-antivortex pair uses an area of weakened su-
perconductivity to cross the wire and annihilate. This is

a modification of the diffusion model (b), where super-
conductivity is not broken, while the detection mecha-
nism is through photon-enhanced vortex unbinding. The
main conclusion5 is that the single photon detection ex-
periment is consistent with a detection model (d) that
relies on the vortex unbinding in the region of suppressed
superconductivity6–9.

By contrast, the characteristics and time evolution of
the region of suppressed superconductivity in the hotspot
forms the focus of this work. This important question
was not addressed in detail earlier primarily because
of the difficulty of separating the role of different fac-
tors in single photon experiments. In our recent work4

the relaxation dynamics of hotspots were studied in the
two-photon detection regime. This technique ideally suits
the objective to study weakened superconductivity in
the hotspot. In this situation the energy of a single
photon is not sufficient to create a response pulse, and
single photon detection efficiency is negligible. In the
two-photon detection regime, the response pulse can be
efficiently triggered only if two incident photons gener-
ate two hotspots overlapping spatially and temporally.
Nonetheless following photon absorption a strongly non-
equilibrium hotspot is formed. This exactly corresponds
to the situation of scenario (b) above, where hotspot rep-
resents the volume where superconductivity is suppressed
but not broken. Arrival of the second photon of the same
energy but with variable time delay, tD, relative to the
first photon results in a detection click only provided that
there is a significant spatial and temporal overlap of the
two hotspots. The exact mechanism leading to a detec-
tion click is not important for understanding the dynam-
ics of hotspot relaxation. The experiment is essentially
a modification of the well-known pump-and-probe tech-
nique where the probe photon merely registers the state
of relaxation of the hotspot, which was generated by the
pump photon. Interpreting this experiment we therefore
may concentrate on specific aspects of cooling dynamics
of non-equilibrium distribution of QPs within the hotspot
region in the current-carrying superconducting nanowire.
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In Section II we give a description of the model,
defining important stages of relaxing hotspots and in-
troducing the main assumptions. Section III contains
the results of a theoretical simulation of relaxation dy-
namics of hotspots in current-carrying superconducting
nanowires. In Section IV, a comparison between theory
and experiment is given, followed by a general discussion.

II. HOTSPOT IN A CURRENT-CARRYING
SUPERCONDUCTING NANOWIRE

In typical SNSPDs, the electron diffusivity in
nanowires in the normal state, D, is below 1 cm2/s, and
the parameter kF l ≥ 1, where kF is the Fermi wave-
vector and l is the electron mean free path. Nanowires are
strongly disordered, sometimes even being on the edge
of a superconductor-insulator transition. Spectral and
transport properties of strongly disordered superconduc-
tors on the edge of a superconductor-insulator transition
are currently a topic of great interest both from exper-
imental and theoretical points of view10–12. The transi-
tion is driven by the increase in the number of incoherent
pairs at the expense of the ones that participate in the
condensate. We assume that an SNSPD, in spite of being
close to the transition, has its global superconductivity
preserved. Under these circumstances the order parame-
ter ∆ in an SNSPD may exhibit strong local fluctuations
on the scale of the order parameter, indicating a spon-
taneously formed inhomogeneity10. In a typical hotspot,
LHS � ξ0, where LHS is the linear size of the hotspot
and ξ0 is the coherence length. For this reason we will
consider non-equilibrium dynamics and transport in an
SNSPD in the model of a dirty BCS superconductor, ne-
glecting local fluctuations. The rough estimates based
on the measured diffusion coefficients show that for typ-
ical SNSPD’s kF l falls in the interval 1 ≤ kF l < 10.
Thus, nanowire materials are on a metallic side of metal-
insulator transition, and the use of the disordered super-
conductor model is at least qualitatively justified. While
a priori justification of the model validity in view of the
system being far from the asymptotic limit kF l� 1 may
be difficult, the convincing qualitative and quantitative
agreement that we will demonstrate in this work provides
strong a posteriori justification. The role of specific fea-
tures of strong disorder beyond the validity of the model
may be discussed on a qualitative level. For example,
random local fluctuations of the order parameter, may
significantly influence thermal diffusivity of quasiparti-
cles through local Andreev reflections.

We start by discussing the density of states(DOS)
in a superconductor carrying supercurrent. In the dirty
limit the expression for DOS can be derived from the
Usadel equation, which becomes13

ε+ iΓ cos θ = i∆
cos θ

sin θ
(1)

where ε is the energy, ∆ is the order parameter, and θ

FIG. 1: Normalised density of states in a disordered
current-carrying superconductor for different depairing ener-
gies Γ/∆= 0.05 (red), 0.1 (blue), 0.2 (green), 0.3(cyan). The
black arrow indicates the direction of increasing pair breaking
energy.

is the pairing angle in the trigonometric representation
of Green’s functions. The de-pairing energy due to the
supercurrent flow is Γ = h̄D/2(∇Φ)2 = 4πTC(psξ0/h̄)2,
where ∇Φ is the phase gradient, ps is the condensate mo-
mentum and ξ0 =

√
h̄D/2πTC is the coherence length

for the disordered superconductor. More generally we
may write Γ = Γ0 + h̄D/2(∇Φ)2 adding the current in-
dependent component, Γ0. The latter may be due to
the presence of a magnetic field , spin-flip scattering or
introduced phenomenologically for a strongly disordered
superconductor. The order parameter, the de-pairing en-
ergy and the pairing angle θ depend on temperature, T ,
and the magnitude of the supercurrent. θ is also a func-
tion of ε. The dimensionless density of states in units
of 2N(0), where N(0) is the normal state DOS per spin
at the Fermi level, is ρ(ε,Γ,∆) = Re [cos θ(ε/∆,Γ/∆)].
Figure 1 shows DOS in a disordered current-carrying su-
perconductor for a range of normalised pair-breaking en-
ergies. When Γ/∆ 6= 0 the gap in the spectrum of ele-
mentary excitations differs from the order parameter. A
change in supercurrent affects both the de-pairing energy
Γ and the order parameter, ∆ as well as their ratio.

Another implication of strong disorder is the en-
hanced electron-electron scattering leading to fast ther-
malisation. In typical NbN SNSPD wires, the inelas-
tic scattering time, which may be attributed to electron-
electron interaction, is τee ∼ 7ps1. This is considerably
shorter than all other relevant times describing hotspot
dynamics. Since NbN and WSi thin films have similar
transport properties, we assumed that WSi films also
have strong electron-electron scattering. In what follows
we will use the concept of quasi-equilibrium distribution,
which may be characterised by a slowly varying temper-
ature, both spatially and temporarily. The relaxing dis-
tribution of QPs in the current-carrying superconductor
is a particularly interesting example. If the magnitude
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of the supercurrent is fixed, then with the temperature
of excitations slowly changing, both the de-paring energy
and the order parameter must change accordingly, defin-
ing the QP relaxation path, which must be consistent
with the constant magnitude of supercurrent.

The relation between current, order parameter and
temperature for a dirty superconductor can be found
from Usadel equations. This can be done from the gen-
eral solution of Kupriyanov and Lukichev14 for a 1D
nanowire numerically, or following Romijn et al15, who
derived an approximate analytical result coinciding with
the exact solution for the dirty limit l << ξ0 (l is the
electron elastic mean free path) and the arbitrary tem-
perature interval within 1% accuracy. For consistency
we must consider the case Γ0 = 0, because both spin-
flip scattering and magnetic field were disregarded in the
derivation14,15. In strongly disordered thin supercon-
ducting nanowire films, the rounding off of the density
of states that is seen in experiments16,17 is attributed
to extra de-paring energy due to disorder rather than
any specific pair-breaking mechanism. Correspondingly,
when evaluating the density of states we will keep the
parameter Γ0 nonzero .

Below we will use the approach by Romijn et al15.
We have

jB
jC(0)

=
21
√

3ζ(3)

4π3/2
T̄ϕ1/2

[ ∞∑
n=0

∆̄2

∆̄2 + (2n+ 1)2T̄ 2

− 2

π
ϕ

∞∑
n=0

∆̄2(2n+ 1)2T̄ 2

(∆̄2 + (2n+ 1)2T̄ 2)5/2

]
(2)

where

ϕ = π

[ ∞∑
n=0

(
T̄√

∆̄2 + (2n+ 1)2T̄ 2
− 1

2n+ 1

)
− 1

2
ln T̄

]

×

[ ∞∑
n=0

(2n+ 1)2T̄ 3

(∆̄2 + (2n+ 1)2T̄ 2)2

]−1
(3)

where jB is bias current density. The normalization
coefficient, jc(0), enters the Ginzburg-Landau expres-
sion for critical current density, jc = jc(0) (1− T/Tc).
Here T̄ = T/TC is temperature in units of TC and
∆̄ = ∆/πTC is the order parameter in units πTC . ϕ
is a dimensionless (in units of critical temperature) part
of the de-pairing energy associated with supercurrent15,
ϕ = (h̄D/2TC) (∇Φ)2.

Figure 2 a shows the dependence of current on the
square order parameter at different temperatures calcu-
lated using equation (2). Setting the current to a specific
value in equation (2), we calculate the temperature de-
pendence of the order parameter at that bias current.
This is equivalent to intersecting the curves in Figure 2
a with horizontal lines (only the solution corresponding
to higher order parameter is stable). This dependence is
shown in Figure 2 b. The temperature in Fig.2 b is in
units of TC , the order parameter is in units ∆(0) (which

FIG. 2: (a) Dependence of a current in a superconducting
nanowire on square order parameter in the interval of tem-
peratures from 0.3TC to 0.8TC with 0.1TC increment from
top to bottom. (b) Order parameter as a function of QP
temperature in a dirty superconducting nanowire carrying a
current. Arrow shows the direction of current increase from
0.22 to 0.76IC with an increment of 0.09IC

FIG. 3: Dimensionless temperature, TCB/TC , (a) and order
parameter, ∆CB/∆(0) (b) at critical (end) points of relax-
ation curves in Fig.2 b as a function of dimensionless bias
current, IB/IC

is its value at zero temperature and zero current), and the
set of curves is for dimensionless bias current I/Ic=0.22,
0.31, 0.40, 0.49, 0.58, 0.67, 0.76 (increasing in the di-
rection of the arrow). The temperature and the order
parameter at the lower end of each curve are the criti-
cal temperature and the order parameter at the edge of
the transition from superconducting to normal state at
a particular current. Finally Fig.3a shows the calculated
temperature at the critical (end) point, TCB , for the set
of relaxation curves in Fig.2 a, Fig.3 a for the tempera-
ture and Fig.3(b) for the order parameter. The data in
Figs.3 a and b if plotted as ∆C,IB/∆(0) versus TCB/TC
will form the solid curve ”supporting” the set of curves
in Fig.2 b from the bottom.

Figure 4 introduces definitions which we will use
in the paper. For illustration purposes we have cho-
sen the top curve from figure 2 b, which corresponds
to the relaxation path at bias current IB = 0.22IC . We
will assume that in a disordered wire, the QP system
comes to a quasi-equilibrium at an elevated tempera-
ture, T , instantaneously due to intense electron-electron
collisions. Subsequent relaxation in which excess en-
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ergy is dissipated due to phonon emission and escape
into a substrate is characterized by much slower rates.
Therefore, at any instance of time the relaxation pro-
cess is fully described by the varying temperature of the
non-equilibrium electronic distribution. Phonons, that
are emitted during the relaxation process are assumed
to escape from the film. This simplest version is the
one-temperature model. The justification for this model
is that the nanowire is very thin, typically only a few
nanometers thick, so that phonons are likely to escape
from the film before they are re-absorbed by QPs or
scatter in anharmonic processes. A more sophisticated
model would include phonon re-absorption and phonon-
phonon interactions. For strong phonon-phonon interac-
tions this more sophisticated model would evolve into the
two-temperature model, where the phonon distribution is
described as a quasi-equilibrium Planck distribution with
the transient phonon temperature TB < Tph(t) < T (t)
differing from both the bath and the QPs temperature
and relaxing with the relaxing hotspot.

Before photon absorption at a site where a hotspot
is created, a segment of the wire is at equilibrium (bath)
temperature TB . The corresponding state of this segment
on the curve in Fig.4 is shown by a solid circle. When a
photon of energy Eλ is absorbed, part of its energy χEλ is
deposited into electronic system and the latter is heated
to excitation temperature Tex. The amount of energy,
that is deposited into the QP system following the photon
absorption event determines the initial state of the ex-
cited hotspot. There are the two scenarios, where a large
fraction of photon energy may be lost before the detec-
tion event occurs. On a shorter timescale τε < t < L2/D,
where τε is the energy relaxation time, superconductivity
may be broken in a small volume hotspot, with a lateral
size which is less than the wire width, W , and hence does
not significantly disrupt the supercurrent flow. Rapid
thermalization inside the small size normal hotspot con-
tributes to energy loss into the substrate due to escaping
phonons. As a result, the expanding normal spot cools
down and becomes superconducting before it reaches the
edges. In the second case energy loss may occur during
the primary energy down-conversion process. It is known
that energy leakage from a thin film due to athermal
phonons emitted in this process can be substantial18–21,
exceeding 60% in experiments with 40 nm thick W film
on Si substrate18. For a few nanometer thick films in
typical SNSPDs, even with disorder-enhanced phonon
re-absorption, χ may be a few tenths due to escape of
athermal phonons.

Temperature Tex characterizes the initial temper-
ature of an excited hotspot at an internal quasi-
equilibrium after photon absorption. The hotspot starts
cooling in a relaxation process which proceeds along the
path indicated by an arrow in the direction of what we
call the ”relaxation edge”. At any point of the relax-
ation process, the temperature and order parameter lie
on the curve shown in Figure 4, which marks the re-
laxation path of the superconducting nanowire in the ∆

FIG. 4: Different states of a nanowire and relaxation path of
the hotspot

vs T plane. By definition, when the relaxing system of
QPs cools down to the relaxation edge at cut-off tem-
perature, Tco, absorption of another Eλ photon can heat
the segment only up to TCB , thus taking the segment
exactly to the edge of superconductor to normal metal
transition. This is indicated in figure 4 by a transition
to the lower end (”end” point) of the relaxation curve.
The question of whether vortices play a crucial role in
the detection mechanism of SNSPDs has received great
interest recently5–7,22–24. Vortex generation can be eas-
ily incorporated into our model by slightly modifying the
end points of relaxation. However, whether or not vortex
generation is important, its inclusion should not radically
modify our description of hotspot dynamics. The cut-off
temperature, Tco is an important characteristic of the re-
laxing hotspot. Once the hotspot cools below Tco, the
absorption of a second photon with overlapping hotspot
will not trigger a superconductor-normal metal transi-
tion, and hence will not be observed in the experiment.
Correspondingly, the time it takes for a hotspot to cool
down from the excited state at Tex to the relaxation edge
state at Tco has a meaning of its relaxation time. Hotspot
relaxation is non-exponential, depending on the positions
of Tex and Tco on a chosen relaxation curve.

Variation of de-pairing energy along the relaxation
path is given by Γ = Γ0 + ϕTC , with ϕ changing accord-
ing to (3). In figure 5 the temperature dependence of the
ratio of de-pairing energy to order parameter is shown at
different currents. These curves show relaxation paths at
different currents in the Γ/∆ vs T plane. Along the ver-
tical axis the dimensionless de-pairing energy in units of
ambient order parameter is shown, and temperature is in
units of TC . The solid section of the lowest curve, corre-
sponding to a bias current of 0.22Ic, connects the excited
state and the relaxation edge for the same conditions as
in Fig.4.

The expression for the QPs energy of a wire segment
of volume VHS has the form

EHS(T, IB) = 2N(0)VHS

∫ ∞
0

dερ(ε,Γ,∆)
ε

exp (ε/T ) + 1
(4)
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FIG. 5: Ratio of pair-breaking energy to order parameter as a
function of temperature in a dirty superconducting nanowire
carrying a current. The current increases from 0.22 to 0.83 IC
with an increment of 0.06 IC in the direction of the arrows: (a)
- Γ0 = 0, (b) - Γ0 = 0.2∆(0). Variations along the relaxation
paths are shown for IB = 2µA (continuous curves)

The dependence of EHS on T and IB comes through
the Fermi distribution function and indirectly via cor-
responding functional dependencies of de-pairing energy
Γ and order parameter ∆. Using the expression for
EHS(T, IB) we may determine the excitation tempera-
ture Tex from the balance equation

EHS(Tex, IB) = EHS(TB , IB) + χEλ (5)

This balance reflects that after photon absorption the en-
ergy of a hotspot is the sum of the thermal energy at TB
and the deposited energy χEλ bringing the temperature
of the internally equilibrated electronic system to Tex.
Similarly, the balance for the relaxation edge is

EHS(TCB , IB) = EHS(Tco, IB) + χEλ (6)

assuming that χ is independent of temperature, bias cur-
rent and photon wavelength. From (5) and (6) it follows
that Tex = Tex(IB , TB , Eλ) and Tco = Tco(IB , Eλ) > TB .
Finally we define cut-off current Ico as the current above
which the detector operates in the single-photon regime.

EHS(TCB , Ico) = EHS(TB , Ico) + χEλ (7)

The cut-off current is a function of bath temperature and
wavelength, Ico = Ico(TB , λ).

Combining (5), (6) and (7) we arrive at the criteria
determining the boundaries of the parameter space for
the two-photon detection regime

TB < Tco(IB , Eλ) < Tex(IB , TB , Eλ) < TCB (8)

These criteria are easy to fulfill in WSi making this ma-
terial especially suitable for studies of the two-photon
detection regime.

III. DYNAMICS OF HOTSPOT RELAXATION
IN SUPERCONDUCTING NANOWIRES

The physics underlying the formation of a normal re-
gion and its recovery in a superconducting nanowire fol-

lowing the absorption of a photon or other sources of en-
ergy deposition, for example due to impact with a particle
or a molecule, is not fully understood. One of the most
common descriptions (scenario a in Section I) assumes
the initial formation of a normal (non-superconducting)
region with a diameter less than the width of a nanowire.
The supercurrent then is deflected, flowing around the
normal spot so that its density on the sides increases
above the critical current density, creating a normal re-
gion spanning across the wire. This scenario is realis-
tic when the bias current is close to the critical current.
However, the formation of the normal core hotspot after
absorption of the first photon in a two-photon experi-
ment at significantly lower bias currents will certainly
not cause the current density on the sides of the normal
core to exceed the critical value. In a recent experiment
in NbN wires, the normal core hotspot model was found
unlikely to be responsible for single photon detection of
IR, visible or UV photons5.

In a two-photon experiment, a small normal core
hotspot may potentially exist during the first few picosec-
onds after photon absorption. However, it cannot disrupt
supercurrent flow because the bias current is small rel-
ative to the critical current of the wire. Because of the
relatively small photon energy, the normal core, which
cools as it expands, becomes superconducting before it
spans across the width of the nanowire. There is no pho-
ton detection event recorded after arrival of the first pho-
ton. In this situation we may disregard the evolution of
the normal hotspot over the very short period of time
before its conversion back to the superconducting state.
Correspondingly, it does not matter whether the hotspot
in two-photon experiments is initially normal. The non-
equilibrium QP distribution can thus be characterized by
a transient temperature below the critical value, T , and
volume, VHS , spanning across the nanowire. It is im-
portant that the second pulse only probes the state of
relaxation of the non-equilibrium hotspot, providing in-
formation on whether the cut-off temperature has been
reached. Therefore, the dynamics of a relaxing hotspot
differ from the mechanisms leading to recovery of an
SNSPD after a photodetection event. In a photodetec-
tion event, a normal region is created in the device, and
the subsequent Joule heating25 leads to much more en-
ergy being deposited into the device than the photon
energy. The device recovers as it cools. Most of this
recovery is via different processes than we discuss here.
But once superconductivity is restored in the device, the
remainder of the recovery should follow similar physics
to those we outline here.

The dynamics of a non-equilibrium hotspot in a
superconducting nanowire can be accurately described
within the kinetic equation formalism26–28. The main
simplifying assumptions of our model are: i) dirty su-
perconductor limit, ii) strong electron-electron scatter-
ing. The state of the phonon system is important for
relaxation process. Therefore, we will consider the two
limiting cases. In the first we assume weak anharmonic
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interactions, so that τph−ph � max{τesc, τph−e}, where
τph−ph is the characteristic inelastic phonon-phonon re-
laxation time, τesc is the phonon escape time from the
film and τph−e is the characteristic phonon re-absorption
time by electronic system, either via breaking Cooper
pairs or absorption by QPs. As a result, the non-
equilibrium phonon distribution in the film is deter-
mined by phonon escape and re-absorption rates. For
fast phonon escape, τesc → 0, and the distribution re-
mains in equilibrium at the bath temperature. Thus, this
approach is the one-temperature (QPs) model. Within
this model at any point with position x along the wire
and time t we may characterize QPs system by the
transient temperature T (x, t). In the second limiting
case, τph−ph � {τesc, τph−e}, and phonons are at quasi-
equilibrium characterised by their own transient temper-
ature TB < Tph(t) < T (t). This is the two-temperature
model.

To discuss the dynamics of a cooling hotspot we
write down the kinetic equation for the electron distribu-
tion function in a dirty superconductor. The distribution
function can be written in the form26

f̂ = f 1̂ + f1σ̂z

where 1̂ is identity matrix and σ̂z is the Pauli matrix.
For a strongly disordered nanowire with strong electron-
electron scattering we may disregard f1 and look for a
solution of the form f = 1− 2n(ε, T ), modelling the elec-
tronic system as being at quasi-equilibrium described by
the Fermi function n(ε, T ) with T = T (x, t) > TB . Under
this assumption, the kinetic equation can be written in
the form

−D ∂

∂x

[
ε

T

∂n

∂ε
Tr
(
1̂− ĝRĝA

) ∂T
∂x

]
+

ε

T

∂n

∂ε
Tr
(
ĝRσ̂z − σ̂z ĝA

) ∂T
∂t

+
∂n

∂ε
Tr

(
∂∆̂

∂t

(
ĝR − ĝA

))
= −2I1

ph(n) (9)

where

ĝR(A) =

(
gR(A) fR(A)

−f+R(A) −gR(A)

)
, ∆̂ =

(
0 −∆

∆∗ 0

)
,

σ̂z =

(
1 0
0 −1

)
(10)

and I1
ph(n) is the collision integral describing all

quasiparticle-phonon interactions in a superconductor,
phonon emission, absorption, pair-breaking and quasi-
particle recombination. gR(A) and fR(A) are the qua-
siclassical retarded and advanced Green functions of a
superconductor. Calculating traces we arrive at

−D ∂

∂x

{
ε

T

∂n

∂ε

[(
gR − gA

)2 − (fR − fA) (f+R − f+A)]
×∂T
∂x

}
+

2ε

T

∂n

∂ε

(
gR − gA

) ∂T
∂t

+
∂n

∂ε

[
∂∆

∂t

(
f+R − f+A

)

+
∂∆∗

∂t

(
fR − fA

)]
= −2I1

ph(n) (11)

The expression for the collision integral Iph1 is

Iph1 = − πλep
16h̄(vspF )2

∫
dε′(ε− ε′)2

[
2
(
gRε′ − gAε′

)
×(

gRε − gAε
)
−
(
fRε′ − fAε′

) (
f+Rε − f+Aε

)
−
(
fRε − fAε

)
×(

f+Rε′ − f
+A
ε′

)]
[(1 + 2Nε′−ε) (fε − fε′)− fεfε′ + 1] (12)

where λep is the electron-phonon coupling constant, vs is
the mean sound velocity and pF is the Fermi momentum.

It is convenient to re-write the kinetic equation
using trigonometric parametrization of Green functions

ĝR(A) =

(
cos θR(A) eiϕ sin θR(A)

e−iϕ sin θR(A) − cos θR(A)

)
arriving finally

at

−D ∂

∂x

{
ε

T

∂n

∂ε

[(
Re cos θRε

)2 − (Im sin θRε
)2] ∂T

∂x

}
+
∂n

∂ε

[
ε

T
Re
(
cos θRε

)
− ∂|∆|

∂T
Im
(
sin θRε

)] ∂T
∂t

=
1

τ0

∫ ∞
0

dε′
(ε+ ε′)2

T 3
C

[
Re
(
cos θRε

)
Re
(
cos θRε′

)
+

Im
(
sin θRε

)
Im
(
sin θRε′

)]
[nεnε′ −Nε+ε′ (1− nε − nε′)]

−I1,aph(n)− I1,eph(n) (13)

where we introduced a characteristic relaxation time τ0
according to 1/τ0 = λepT

3
C/h̄(vspF )2. The two collision

integrals I1,a
ph(n) and I1,e

ph(n) describe quasi-particle
scattering with absorption and emission of a phonon re-
spectively, while the explicitly written collision integral
accounts for recombination. The ”angle” θR defining the
retarded Green function is the solution of the Usadel
equation (1).

In what follows we consider the case D → 0. This
assumption is consistent with experimental data in WSi
SNSPDs4. Neglecting spatial gradients, integrating the
kinetic equation (13) over ε and taking into account con-
servation of quasiparticle numbers in phonon absorption
and emission processes, i.e.

∫
dεI1,a,e

ph(n) = 0, we ob-
tain

∂T̄

∂t̄
= T̄ 4

∫ ∞
0

∫ ∞
0

dzdz′(z + z′)2

(ez + 1) (ez′ + 1)
×[

1−
N
(
(z + z′)T̄ /T̄B

)
N0(z + z′)

]{
%1

(
zT̄

α(T̄ )
, β(T̄ )

)
×

%1

(
z′T̄

α(T̄ )
, β(T̄ )

)
+ %2

(
zT̄

α(T̄ )
, β(T̄ )

)
%2

(
z′T̄

α(T̄ )
, β(T̄ )

)}
{∫ ∞

0

dzez

(ez + 1)
2

[
z%1

(
zT̄

α(T̄ )
, β(T̄ )

)

−∂|∆|
∂T

%2

(
zT̄

α(T̄ )
, β(T̄ )

)]}−1
(14)
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Here N(ε) is the non-equilibrium phonon distribution
function, N0(z) = 1/(ez − 1) is the Planck distribu-
tion function and t̄ is the normalised time in units of
τ0. We also use the notations %1(ε/∆(T ),Γ(T )/∆(T )) =
Re
(
cos θRε

)
and %2(ε/∆(T ),Γ(T )/∆(T )) = Im

(
sin θRε

)
explicitly taking into account the dependence of the so-
lution θRε of the Usadel equation (1) on ε/∆(T ) and
Γ(T )/∆(T ). Correspondingly we introduce functions α
and β as α(T̄ ) = ∆(T )/TC and β(T̄ ) = Γ(T )/∆(T )
to impose a constraint on relaxation, which must pro-
ceed along the specific path as described above. Equa-
tion (14) is an integro-differential equation describing re-
combination of quasiparticles within the hotspot. In its
derivation we replaced nn′(1 +N)−N(1− n)(1− n′) by
nn′(1−N/N0(T )), which is true for locally equilibrated
QPs. The initial condition for equation (14) is given by
(5). It can be solved numerically both to find the tem-
perature evolution while the hotspot cools down and to
determine the moment of time when the relaxation edge
is reached so that T (tHS) = Tco.

To derive the expression for phonon distribution N ,
we write down the kinetic equation for phonons, neglect-
ing terms with spatial gradients due to slow phonon dif-
fusion.

∂N

∂t
= −Iesc{N} − Iph−ph{N} − Iph−e{N} =

−N −N0(TB)

τesc
− N −N0(Tph)

τph−ph
− N −N0(T )

τph−e
(15)

The escape time for a phonon from the film into the sub-
strate for thicker film can be estimated using the familiar
expression τesc = 4d/ηtvs, where d is the film thickness
and ηt is the phonon transmission coefficient into a sub-
strate. For thin films with dominant phonon wavelengths
exceeding the film thickness this expression cannot be
justified and can only be used for rough estimates. In this
situation the ratio γ = τesc/τph−e determining phonon
bottle-neck must be considered as a fitting parameter.
The expression for phonon-electron time is

1

τph−e(ε, t)
=

1

τB

∫ ∞
0

dε′

∆
[1− n(ε′, t)− n(ε− ε′, t)]×[

Re
(
cos θRε′

)
Re
(
cos θRε−ε′

)
+ Im

(
sin θRε′

)
Im
(
sin θRε−ε′

)]
+

2

τB

∫ ∞
0

dε′

∆
[n(ε′, t)− n(ε+ ε′, t)]

[
Re
(
cos θRε′

)
−

Re
(
cos θRε+ε′

)
Im
(
sin θRε′

)
Im
(
sin θRε+ε′

)]
= 0 (16)

and τB is characteristic pair-breaking time29. The first
and second terms in (16) describe phonon re-absorption
by electronic excitations and condensate respectively.
Because electron distribution is evolving on a slow time-
scale, τph−e contains the corresponding time-dependence.
We use relaxation time approximation for the phonon-
phonon collision integral and introduce τph−ph as an ex-
tra parameter of the two-temperature model.

The time derivative in Eq.(15) can be disregarded
because we are interested in the slow variation of phonon

distribution relative to both phonon escape and re-
absorption by electronic excitations. Neglecting this
derivative and taking the limit τph−ph −→ ∞ we solve
Eq.(15) and obtain for the one-temperature model

N(ε, t) =

[
N0(ε, TB) +N0(ε, T (t))

τesc
τph−e(ε, t)

]
[
1 +

τesc
τph−e(ε, t)

]−1
(17)

For the two-temperature model taking τph−ph → 0 we
obtain

N(ε, t) = N0(ε, Tph) (18)

In this case we need to determine phonon temperature,
Tph. The latter is to be found from the balance between
the energy dissipated into a phonon system by QPs and
the energy transferred by escaping phonons into a sub-
strate. In the quasistationary conditions the rate of en-
ergy loss from QPs to phonons in electron-phonon inter-
actions is equal to the energy gain by phonons in phonon-
electron interactions Correspondingly we obtain∑

k,j

h̄ωk,jIesc{N} =
∑
k,j

h̄ωk,jIph−e{N}∫ ∞
0

dωω3τ−1esc [N0(ω, Tph)−N0(ω, TB)] =∫ ∞
0

dωω3τ−1ph−e(ω, T ) [N0(ω, Tph)−N0(ω, T )](19)

A simple solution of (19) can be found by neglecting the
dependence of the phonon’s characteristic time on its en-
ergy and electron temperature, replacing τph−e(ε, T ) by
some average number, τ̄ph−e. The solution is then

Tph =

[
T 4
B

1 + γ
+

γT 4

1 + γ

]1/4
=

[
T 4
B +

γ

1 + γ

(
T 4 − T 4

B

)]1/4
=

[
T 4 − 1

1 + γ

(
T 4 − T 4

B

)]1/4
(20)

As it follows from (20) phonon temperature lies in the in-
terval [TB , T ]. We will consider γ as a constant, although
this approximation is not entirely accurate, because γ
slightly changes along the relaxation path. Substituting
(17) instead of N into the expression (14) yields for the
one temperature model

∂T̄

∂t̄
= T̄ 4

∫ ∞
0

∫ ∞
0

dzdz′(z + z′)2

(ez + 1) (ez′ + 1)
×[

1 +
τesc

τph−e((z + z′)T̄ , t̄)

]−1 [
1−

N0

(
(z + z′)T̄ /T̄b

)
N0(z + z′)

]
×{

%1

(
zT̄

α(T̄ )
, β(T̄ )

)
%1

(
z′T̄

α(T̄ )
, β(T̄ )

)
+ %2

(
zT̄

α(T̄ )
, β(T̄ )

)
×%2

(
z′T̄

α(T̄ )
, β(T̄ )

)}{∫ ∞
0

dzez

(ez + 1)
2

[
z%1

(
zT̄

α(T̄ )
, β(T̄ )

)
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−∂|∆|
∂T

%2

(
zT̄

α(T̄ )
, β(T̄ )

)]}−1
(21)

The expression (21) contains the well-known phonon

bottle-neck factor
[
1 + τesc/τph−e((z + z′)T̄ , t̄)

]−1
ac-

counting for the effect of phonon escape from the film
relative to phonon re-absorption. In the two-temperature
model, slow escape of phonons from the film also re-
sults in a progressively slowing recombination rate. This
effect is seen as a substantial decrease of the term[

1−
N0

(
(z + z′)T̄ /T̄ph

)
N0(z + z′)

]
with γ →∞ because the tem-

perature of slowly escaping phonons Tph → T .

IV. COMPARISON WITH EXPERIMENT

The full description of the experiment and the com-
plete set of data is presented in our original work4. In
the two photon experiment a photon count rate (PCR)
as a function of delay time tD was studied for a vari-
ety of different bias currents and bath temperatures. In
our experiment we biased the superconducting nanowire
single photon detector in a regime where it is sensitive
to photon pairs. Therefore, the detector clicks only when
two photons create two spatially overlapping hotspots. If
the two hotspots are created at different times, then the
second hotspot must be created before the first hotspot
relaxes.

The experimentally observed Lorenzian limeshapes
of Pclick(tD) curves can be derived within a model that
accounts for spatial and temporal profiles of temperature
inside the hotspot, and in particular its expansion due
to out-diffusion. With a non-homogeneous temperature
distribution in the hotspot, the concept of cut-off
temperature must be re-examined, because energy
density is different in different parts of the hotspot.
Correspondingly, breaking superconductivity in the
part of the initial (pump) hotspot depends on the
details of spatial overlap of hotspots created by the
first and the second photons. This is a complicated
situation to model. Within our current model, which
neglects diffusion, the QP temperature is homogeneous
throughout the hotspot, and the detector clicks as
long the two hotspots have nonzero spatial overlap. If
temperature is homogeneous throughout the hotspot
then the normalised photon count rate is PCR =

1/2LHS
∫ LHS/2

−LHS/2
dxΘ [T (tD)− Tco] Θ [LHS − |x|] =

Θ [T (tD)− Tco], where Θ(x) is the Heaviside func-
tion, that implies that PCR has a rectangular, not a
Lorentzian, profile as a function of time delay tD. The
dependence of PCR on tD can be correlated to the
hotspot relaxation dynamics. Indeed, it drops by a
factor 2 at t = tHS determined from T (tHS) = Tco ,
defining Θ(0)=1/2. In our experiment, tHS was deter-
mined from the half width at half maximum (HWHM)
of the Pclick(tD) curves. Thus, the measured HWHM

of the Pclick(tD) curve relative to a level of Pclick(∞)
can be interpreted as the hotspot relaxation time. The
rectangular shape of the theoretical PCR versus tD
curve is a consequence of our idealised model, which also
assumes an unrealistic step-like shape of the PCR versus
bias current curve. We anticipate that a model correctly
accounting for the sigmoidal shape of PCR versus IB
observed in real devices would also predict bell-shaped
PCR versus tD curves that resemble the experimental
data. In the near future, we plan to improve our model
by accounting for the non-ideal shapes of PCR as a
function of both IB and tD, hopefully leading to a better
understanding of detection mechanisms and hot spot
dynamics.

The material parameters for tungsten silicide films
depend on growth, stoichiometry and annealing, and
many of them are not known. If we take the mean sound
velocity in W, vs=3.2·105cm/s, which is also close to
the measured values for the transverse acoustic waves
in tungsten silicide films30, and the transmission coeffi-
cient for WSi/Si interface, ηt '0.5, we obtain for a rough
estimate τesc '10.0 ps. The pair-breaking time in WSi
is also unknown. The range of variation of pair-breaking
time in elemental superconductors with similar magni-
tudes of the order parameter is from 4.2 ps in Nb and 22
ps for Ta to 169 ps in In and 205 ps in Tl on the other
end29. It is unlikely that γ � 1. According to Osof-
sky et al31 the strong increase in TC in WSi alloy when
Si content is increased occurs as a result of weakening
in screening leading to a substantial enhancement of an
attractive potential and corresponding increase of Eliash-
berg function. Using the McMillan empirical formula32

for electron-phonon coupling constant λ̃ep from the ex-
perimentally determined transition temperature TC , and
Debye temperature we estimate that λ̃WSi

ep /λ̃Wep ≈ 2.0 for
a tungsten silicide alloy with TC = 4.5 K. Calculation of
Fermi surfaces of tungsten silicide alloys33 reveals that
for a tungsten-rich simple cubic W3Si (i.e a composition
with high critical temperature) the density of states at
the Fermi level is N(0) ' 23.5 · 1021cm−3eV−1. In order
to express the Eliashberg function of an alloy in terms
of its electron-phonon coupling constant we also use the
Debye model for the phonon spectrum. We finally arrive
at the rough estimate τWSi

ph−e '2.7τTaph−e ≈60 ps and hence
the expected interval 0.1 ≤ γ ≤ 1. The one-temperature
model is justified in the limit γ � 1 as seen from (20).
Using the expression (20) for γ ≥ 1 is an approximation
assuming equilibration of phonons.

A. Hotspot relaxation depending on photon
wavelength

The experimental data exhibit a strong dependence
of hotspot relaxation on the wavelength of incident pho-
tons. In figure 6 we plot the excitation and cut-off tem-
peratures of quasi-particles as a function of bias cur-
rent for hotspot excitation by photons of different wave-



9

FIG. 6: Hotspot excitation, Tex, (solid lines) and cut-off, Tco,
(dashed lines) temperatures as a function of bias current for
photons of different wavelengths, λ = 1200, 1350, 1450, 1550
and 1650 nm. Bath temperature is TB=250 mK.

lengths. The vertical arrows close to the vertical dotted
line, corresponding to a specific bias current, connect the
excitation and cut-off temperatures. The lengths of these
arrows indicate the lengths of relaxation paths for differ-
ent photons. It is seen that the lengths of the relaxation
paths are strong functions of photon wavelength and bias
current.

The initial and final conditions for a relaxing hotspot
are set by the initial excitation temperature, relaxation
edge and relaxation path. These are determined by
the energy deposition parameter, δ, which we define
as the ratio of the fraction of photon energy, that is
deposited in the electronic system of the hotspot, to
the unperturbed condensate energy within its volume,
δ = χ/2N(0)VHSk

2
BT

2
C . It is expressed in terms of a com-

bination of three parameters, χ, N(0) and VHS . The den-
sity of states N(0) can be independently evaluated, for
example in electronic heat capacity measurements at low
temperatures. This data however is not available. It can
be roughly estimated using the Einstein relation and the
measured diffusion coefficient. The diffusion coefficient
in our WSi film is D ≈ 0.75cm2/s as determined from
the measured temperature derivative of the second criti-
cal field. The square resistance of our film is 476 Ω. Thus
N(0) = 20.3·1021eV−1cm−3, which is consistent with the
reported values for electronic heat capacity coefficient of
tungsten34 and is close to calculation33. Estimating the
minimum hotspot area to be W × LHS=130×100 nm4,
where LHS is the length of hotspot, we may finally relate
δ to energy loss, χ, due to escaping athermal phonons.
The latter may also be evaluated21 providing further sup-
port for consistency of the model.

The energy deposition parameter δ determines the
properties of the depleted superconductivity region in
energy-current tomography experiments5. At first sight
it is surprising that at as high photon energy as 3 eV

FIG. 7: Temperature evolution in the relaxing hotspot.

in a single- and 8 eV in a multi-photon experiment, su-
perconductivity in their NbN wire is not broken. In-
deed, if energy E is homogeneously deposited into the
electronic system within volume VHS , the temperature
of this volume after thermalization is determined from
the balance equation, E = 2N(0)VHS

∫
dεερ(ε)n(ε). At

T → TC and ρ → 1 this determines the condition for
the volume of hotspot, which is still in superconducting
state, VHS ≥ E(π2/6N(0)k2BT

2
C). This estimate is cor-

rect for zero bias current. In current-carrying supercon-
ducting wire, the critical temperature depends on bias
current, IB , and is smaller than the zero-current critical
temperature, TCB < TC . Correspondingly, the volume
of the hotspot still in the superconducting state must
exceed the estimate above. Taking the material parame-
ters for NbN film from35 we obtain VHS ≥ 3.0 ·10−4µm3.
For 4 nm thick and 100 nm wide nanowire the length
of hotspot, capable of accommodating the whole of pho-
ton energy must reach L ' 0.75 µm. The time it takes
for the expanding QP cloud to fill this volume in 1D
diffusion with D = 0.4cm2/s is L2/2D = 7.0 ns. This
time is more than two orders of magnitude larger than
the relaxation time of optically induced hotspots in NbN
superconducting nanowires (∼20ps)35–37. The hotspot
lateral size, LHS , derived from the statistical weight of
two photon detection events4, is much smaller than ∼ 1
µm. Consequently, in order to have superconductivity
suppressed, but not broken, only a fraction of photon en-
ergy must be deposited in the electronic system in WSi
SNSPD. It can be estimated that in experiments5 with
W=220 nm wide section of NbN wire in order to have
depleted superconductivity in the hot spot of ∼W 2 area
at bias currents IB ∼ 0.5 − 0.6 Ic and E ' 3 − 5 eV,
the fraction of photon energy deposited into electronic
excitations also must not exceed 10-20%.

An example of the calculated evolution of temper-
ature (in units TC) in the hotspot along the relaxation
path for λ = 1200 nm, TB = 250 mK and IB = 2.6µA
is shown in figure 7. Using our model, we quantitatively
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FIG. 8: Hotspot lifetime as a function of bath temperature
at fixed bias current IB=2.0 µA for γ=0-top curve, γ=0.3
middle curve, γ = 3 - bottom curve.

reproduced the wavelength dependence of tHS with only
three fitting parameters. The agreement between theory
and experiment is good4. For all wavelengths we used the
same set of three parameters, the energy deposition fac-
tor δ, the phonon bottle-neck parameter γ and τ0. The
two latter parameters in combination only fix the match-
ing of the data along the vertical axis, and do not affect
the shapes of the curves. To check the effect of different
γ’s we calculate tHS as a function of temperature for a
fixed current for different γ’s. The simulated curves are
shown in figure 8. It is seen from figure 8 that changing
γ from 0 to 3 results in ≤ 15% difference between the
curves relative to γ = 0.3 over the whole interval. The
variations of tHS over the whole temperature range are
3.6, 3.3 and 2.8 for γ= 3, 0.3, 0 respectively. Thus, not
knowing the exact value of γ results in ∼ 15% uncertainty
in determining τ0. At the same time a strong (∼3) vari-
ation of tHS over the whole range of temperatures seen
in Fig.8 is altered by no more than 15%. Thus the factor
γ is not important in determining the shapes of the tHS
curves.

The interpretation of the strong increase in relax-
ation time with the increase of bias current is straight-
forward. Indeed, the main result of the model is
to show that hotspot relaxation occurs due to self-
recombination. The relaxing hotspot is strongly non-
linear. Non-linearity is inevitable for the process of self-
recombination. Moreover, a hotspot in an SNSPD is an
exceptional example of a non-equilibrium non-linear su-
perconducting system, where all properties of the system
(including spectrum of elementary excitations) continu-
ously change along the relaxation path. A strong increase
of relaxation time for larger bias currents is related to the
increase of the difference between the initial temperature
and the relaxation edge as seen from Fig.7, where the
slopes of the relaxation edge curves greatly exceed those
for the initial temperature for all photon wavelengths. A
dramatic slowdown (as seen in Fig.7) occurs at the latest

FIG. 9: TCB , Tex(IB) for TB=2.0 K (blue), 1.75 K (green)
and 0.25 K (orange) and Tco as a function of bias current for
λ = 1550 nm

stages of the self-recombination process. The initial rate
of self-recombination is so high for all bias currents that
small variations in the initial hotspot temperature have
no significant impact on its relaxation time.

Complete relaxation depends on bath temperature.
In the example in Fig.7 bath temperature is 250 mK
' 0.056TC and complete relaxation will take time, which
may exceed τ0 by several orders of magnitude. At low
bath temperatures, the bottle-neck term in expression
(14) is negligible, because in all situations the ratio
N
(
(z + z′)T̄b

)
N0(z + z′)

is very small and can be neglected. This

is seen from Fig.7 where Tco remains well above TB .
Under these circumstances the one-temperature model
works very well.

B. Hotspot relaxation depending on bath
temperature

When the bath temperature increases it may come
closer and closer to the cut-off temperature defining the
relaxation edge. The cut-off temperature itself does
not depend on the bath temperature. In this situ-
ation the second term in the bottle-neck expression,
N
(
(z + z′)T̄ /T̄B

)
N0(z + z′)

, becomes more and more important

when T → Tco affecting self-recombination rate and fur-
ther slowing it down. Raising the bath temperature
therefore results in an increase of tHS . In this situation
neglecting this term (as at low bath temperatures) can
no longer be justified and a more realistic model of the
phonon distribution function is necessary.

In Fig.9 the black curve is TCB , i.e. critical tem-
perature at which the nanowire with current breaks nor-
mal. Above this curve we enter the single-photon regime,
so that absorption of photon energy Eλ heats the sec-
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tion of nanowire above TCB thus resulting in a photon
count. The three lower curves give the initial tempera-
ture Tex(IB) as a function of bias current for bath tem-
peratures 2.0, 1.75 and 0.25 K from top to bottom. It
is seen that the two-photon counting regime corresponds
to bias currents not exceeding the value of cut-off cur-
rent, Ico, determined by Tex(Ico) = TC(Ico). Thus with
bath temperature increasing the two-photon regime can
be realized at lower currents. This is exactly what was
observed in the experiment.

Theoretical simulations of tHS vs bias current at dif-
ferent temperatures of the bath, based on the developed
model and the same set of three fitting parameters, δ,
γ and τ0 as used for wavelength dependence, show good
agreement with experiments at lower bath temperatures.
However, it deteriorates at higher temperatures. Despite
theory correctly predicting higher bath temperature be-
haviour quantitatively the agreement is not as good as
that at low TB . This is a natural reflection of the impor-
tance of the detailed description of phonon distribution.
The latter is likely to be better characterised by an ele-
vated quasistationary temperature T ′B > TB . One of the
possible reasons for this is the relatively high laser power
required to improve counting statistics in two-photon de-
tection, resulting in a ”dark” background temperature of
the wire exceeding the bath temperature. In order to test
the effect of elevated ”bath temperature” we use as the
fourth fitting parameter the bath temperature offset, ∆T ,
so that T ′B = TB + ∆T . The use of this extra fitting pa-
rameter results in excellent agreement with experiment4.

C. Cut-off current fitting

In this subsection we discuss the cut-off current for
single photon detection for the two reasons. The con-
cept of cut-off current plays a central role in any physical
model of an SNSPD. The main two families of curves
from the two-photon detection experiments are: i) the
functional dependencies of hotspot relaxation time versus
bias current obtained for the range of photon wavelengths
(1200 - 1650 nm) at a fixed bath temperature (250 mK)
and ii) the functional dependencies of hotspot relaxation
time versus bias current obtained for the range of bath
temperatures (0.25 - 2.5 K) at a fixed wavelength (1500
nm). As was demonstrated in our work4, using the ex-
perimental datasets and plotting relaxation time tHS as
a function of bias current normalised to cut-off current
results in all the curves exhibiting the same universal
trend. It is also true for theoretical curves when they
are re-plotted as a function of the normalised bias cur-
rent. However, to prove that the four families of curves
(the two for experiment, and the two for theory) follow
the universal trend we must account for the differences
between definitions of the cut-off currents in experiment
and theory. Another reason is that experimental mea-
surements of Ico versus bath temperature for a fixed pho-
ton wavelength and versus photon wavelength at a fixed

FIG. 10: Single photon system detection efficiency (a) and
PCR (b) as a function of temperature and wavelength re-
spectively

bath temperature form a supplementary and indepen-
dent set of data that can be analysed to obtain further
support for the introduction of temperature offset.

Fig.10 shows single photon system detection effi-
ciency (a) and PCR (b) as a function of temperature
and wavelength respectively. Cut-off current was deter-
mined as the inflection point of each curve, following the
procedure reported in the Supplementary Information of
Ref.38 . The theoretical definition in expression (7) refers
to the onset of single photon sensitivity, corresponding to
ideal signal detection efficiency SDE or PCR curves in the
form of step functions. Assuming that both definitions
result in the same functional dependencies, they can be
compared after normalisation to the value of cut-off cur-
rents at TB = 0.25 K for Ico(TB) and cut-off current at
λ=1200 nm for Ico(λ) respectively. The results of such a
comparison are shown in Fig.11. In Fig.11(a) the experi-
mental results (dotted line) for Ico(TB) differ from simu-
lation, but practically coincide if the data are plotted as
a function of T ′B = TB+0.5 K. Comparison of simulated
and measured cut-off currents provides extra support to
the argument that the effective phonon background tem-
perature in the wire differs from the bath temperature.
Temperature offset is not important in Fig.11b as it was
not important for low bath temperatures in Ref.4.

The simulated cut-off current dependence on pho-
ton wavelength depicted in Fig.11 can be compared to
current-photon energy tomography experiments5. Linear
dependence was observed in the measured combinations
of bias current IB and photon energy Eλ = nhc/λ, for
which the detection probability equals 1 % after the ab-
sorption of n photons over broad energy range 0.8 - 8 eV.
The role of suppressed superconductivity was emphasized
on the basis of current-carrying capacity of the wire being
linearly dependent on the number of remaining Cooper
pairs in the region of depleted superconductivity, and
therefore on the photon energy. However, the legitimacy
of the extrapolation of the observed linear dependence
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FIG. 11: Normalised cut-off current as a function of bath
temperature for λ=1550 nm - (a) and wavelength for TB=250
mK - (b)

towards the lower photon energy limit Eλ could not be
supported by any of the intuitive arguments. The non-
linearity of IB(Eλ) curve a priori cannot be excluded.

Theoretical simulation of cut-off current as a func-
tion of photon energy over the extended range beyond the
experimental range of wavelengths in Fig.11(b) is given
in Fig.12. As seen from this figure, linear extrapolation
of the experimental data for Eλ → 0 is not consistent
with predictions of the kinetic model. The obvious rea-
son is the strong change in the density of states, and
therefore density of condensate, due to the increase of
de-pairing energy Γ/∆ as bias current approaches the
critical value. This results in the development of a sub-
stantially non-linear response. Thus, the reference cur-
rent, I0, obtained within the kinetic scenario as a lin-
ear intercept with the bias current axis, has no physi-
cal meaning. Such a reference current as seen from the
figure 12 is smaller than IC . Moreover, the difference
in temperature dependencies of ”artificial” reference and
critical currents is expected within the detailed theory
of hotspot dynamics. Linear bias current - photon en-
ergy dependence appears to be an approximation, which
is justified for a limited photon energy range and bias

FIG. 12: Cut-off current as a function of photon energy. Solid
line - theory, solid boxes - experiment, dashed line - linear
extrapolation

currents outside the range 1− IB/IC � 1. Non-linearity
becomes more and more pronounced in the limit Eλ → 0
and IB → IC . Thus, discrimination between mechanisms
of single photon detection5 requires more experimental
and theoretical efforts.

So far in fitting theory to experiment we have used
4 parameters; energy deposition parameter δ, phonon
bottle-neck parameter γ, characteristic relaxation time,
τ0, and temperature offset, ∆T . We have shown that
temperature offset is not important at low bath temper-
ature, thus a good fit of tHS(IB) for photons of different
wavelengths was achieved with the use of only three fit-
ting parameters. Fitting of tHS(IB) for different bath
temperature required the use of a fourth parameter, ∆T .
All simulations were done for the ”intrinsic” material
under the assumption of zero extra de-pairing energy,
Γ0 = 0. If extra de-pairing energy is of non-zero value,
it can obviously affect the theoretical results. In order
to understand the effect of finite Γ0 we repeated all sim-
ulations for a large extra de-pairing energy. We chose
Γ0 = 0.2∆(0). Figure 13 shows the comparison of sim-
ulations for Γ0 = 0 - solid curves, and Γ0 = 0.2∆(0) -
dash-dotted curves. It is seen from Fig.13 that the sets
of dash-dot curves describing the situation with extra
de-pairing energy closely fits the set of solid curves for
Γ0 = 0. To achieve this we changed only two parame-
ters - τ0 by a factor of 0.75 relative to the case Γ0 = 0,
and temperature offset ∆T = 250 mK compared to 500
mK for Γ0 = 0. It is not surprising that with an extra
de-pairing energy due to disorder a good fit is provided
with the reduced temperature offset, keeping the over-
all de-pairing intensity similar for both cases. An extra
de-pairing energy also induces shifts of excitation and
cut-off temperatures, Tex and Tco resulting in appropri-
ate adjustment in timescale, controlled by the value of
the parameter τ0.

Summarizing, variation of parameters γ, τ0, Γ0 over
a broad phase space do affect the dynamics of a relaxing
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FIG. 13: Hotspot relaxation time, tHS , dependence on depar-
ing energy Γ0. (a) tHS as a function of bias current for differ-
ent bath temperatures from 0.25 to 2.0 K with an increment
0.25 K. An arrow indicates increasing bath temperature. Solid
curves - Γ0 = 0, δ = 325 meV−1, γ = 0.3, τ0 = 496ps, ∆T =
500 mK; dash-dot curves, - Γ0 = 0.2∆(0),δ = 325 meV−1,
γ = 0.3, τ0 = 375ps, ∆T = 0.25k. (b) tHS as a function
of bias current for different wavelengths - 1200, 1350, 1450,
1550, 1650 nm, TB = 250 mK. An arrow indicates increasing
wavelength. Solid curves - Γ0 = 0, γ = 0.3, τ0 = 439 ps,
δ = 325 meV−1; dash-dot curves - Γ0 = 0.2∆(0), γ = 0.3, τ0
= 330 ps, δ = 325 meV−1 (red)

hotspot. However, the role of these parameters is largely
in determining the timescale for the hotspot relaxation.
The most profound effect is connected with the energy
deposition parameter, δ, which directly determines the
dynamical path and causes the hotspot relaxation time
to vary by more than one order of magnitude.

D. Diffusion enigma

Our theoretical model explains our experimental
data completely ignoring QP diffusion. In fact, the model
was developed under the evidence drawn from the data
that diffusion effects are not important, at least over time
scales of the order of one nanosecond. This behaviour
presents an enigma, which deserves special discussion.
While experiment strongly indicates that diffusion effects
surprisingly contribute a little to the hotspot relaxation
this on its own is not an evidence of model limitations

originating from finite values of the parameter kF l. In
this section, we discuss possible physical explanations for
this behaviour within the framework of our model.

The simplest estimate can be arrived at assuming
constant thermal diffusivity of QPs, hence using a linear
heat diffusion model. If at t = 0 the hotspot occupies the
volume ∼ W 2d and its temperature is Tex, then due to
1D diffusion and expansion of hotspot volume it rapidly
decreases, so that at t = 0.2W 2/D̃ and t = 0.4W 2/D̃ its

maximum is at'0.57 and 0.42 Tex respectively. Here D̃ is
the thermal diffusivity coefficient. Assuming D̃ ∼ 0.5D,
which is a reasonable estimate for T ≥ Tco, we evaluate
0.2W 2/D̃ ∼ 90 ps. If we take for example λ = 1550 nm
and IB = 3.4 µA, then Tco/TC=0.44. Thus, after ∼180
ps the maximum temperature in the centre of the hotspot
would be below the relaxation edge Tco, which would re-
sult in the full recovery of the hotspot. Even the shortest
relaxation time at IB = 3.44µA, which was measured at
the lowest bath temperature TB=0.25 K and is ≈ 500 ps,
is considerably longer. This means that linear diffusion
alone, without any self-recombination, would be capable
of rapid cooling of the hotspot. Moreover, if diffusion
dominates, the dependence tHS(TB) must be absent, be-
cause in all situations Tco > TB , and neither thermal
diffusivity, D̃, nor cut-off temperature, Tco, depend on
bath temperature. At the lowest bias currents, diffusion
expansion predictions for cooling of the hotspot below the
cut-off temperature are comparable to the measured re-
laxation time. However, the observed strong dependence
of hotspot dynamics on bath temperature contradicts the
predictions of the linear thermal diffusion model and thus
rules it out from playing a significant role.

In photon detection experiments the order parame-
ter is suppressed inside the hotspot. Some of the excited
QPs will be trapped because of Andreev reflections at
the boundaries. It is seen from Figs. 2 b, 3 and 8 that
the suppression of the order parameter close to Tco rel-
ative to its zero temperature value is not strong, being
in the range of 10− 15% for small bias currents and de-
creasing to approximately 5% for higher bias currents.
Trapping of QPs slows down the overall diffusion. How-
ever, because of relatively high cut-off temperatures (in
the range 0.4-0.6 TC) the fraction of QPs experiencing
Andreev reflection is not large, and the majority of QPs
having energies above the edge of the gap outside the
hotspot can freely diffuse out of the hotspot. Therefore
within the dirty superconductor model, which we used in
this paper, and the linear expansion model this diffusion
enigma cannot be fully resolved.

The factors that are likely to be important, either
on their own or acting together, are strong disorder and
non-linear character of diffusion. There are indications of
a high density of sub-gap states in strongly disordered su-
perconductors near the metal-insulator transition16. Ob-
servations in strongly disordered TiN and NbTiN films
were shown to be consistent with a model using strong
pair breaking, dependent on the level of disorder. While
pair-breaking energy results in a non BCS density of
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states, this approach does not describe any changes in
transport properties of QPs, which are necessary to ad-
dress the diffusion problem; thus pair-breaking cannot
resolve this diffusion problem. Near the superconductor-
insulator transition, a strongly fluctuating local order
parameter10 may be the missing link which is responsible
for the dramatic change in transport. This may be due to
hopping of QPs in the sub-gap region, or Andreev reflec-
tions from strong, random fluctuations in the local order
parameter (random Andreev reflections) greatly reduc-
ing QP diffusivity and trapping them within the stable
volume of the hotspot.

Finally, it turns out that for a typical hotspot the
linear heat transport model itself cannot be justified.
Indeed, in the divergence term in Eq.(13) the effective
diffusion coefficient itself is a strong function of coordi-
nate through the spatial dependencies of both the tem-
perature and the order parameter. After differentiation
there appear the terms proportional to ∂2T/∂x2 and
1/T (∂T/∂x)2 with coefficients depending on T and ∆.
The term with the first derivative is zero at the cen-
tre of the hotspot. Away from the centre it greatly in-
creases and has opposite sign to the term with the second
derivative, thus weakening its contribution, which makes
it appear that diffusivity in the centre of the hotspot is
suppressed. Nonlinearity becomes especially strong close
to the edges of the hotspot, where it must influence both
the spatial and temporal profiles of the temperature and
the order parameter.

The nonlinear diffusion problem is mathematically
very complicated. A simplified nonlinear thermal diffu-
sion equation can be derived from Eq.(13) under a local
approximation for Green functions or from the Larkin
and Ovchinnikov kinetic equation27. Numerical solution
of this problem confirms the effect of a slowdown of ther-
mal expansion of the hotspot, so that the nonlinearity
in thermal transport can account for the lesser role of
diffusion in a relaxing hotspot. Despite the experimen-
tal evidence of the dominant role of self-recombination
in relaxation of the hotspot, QP diffusion is nonetheless
important. Even if relatively slow, it inevitably results
in a slight spatial expansion of the hotspot and hence the
spatial profile of the temperature. The most important
variations for the two-photon experiment are those near
the cut-off temperature. Depending on the spatial over-
lap of the two photon pulses the second photon’s ability
to cause a click for a fixed time delay is determined by
whether the local temperature, T (x, t), in the profile cre-
ated by the two photons is larger or smaller than Tco.
With time delay tD increasing, the overlap area where
T (x, t) ≥ Tco shrinks. Therefore, the shape of tHS(tD)
curves is likely to be directly linked to diffusive prop-
erties. The numerical analysis of nonlinear diffusion in
hotspots is therefore an important problem and will be
published elsewhere.

E. Two-photon detection in NbN SNSPD

The first two-photon detection experiments in NbN
SNSPDs1,36,37 revealed the hotspot relaxation time
tHS ∼ 20 ps, which is a factor of 4 shorter than the
shortest relaxation time that was measured in our WSi
SNSPD4. Furthermore, tHS was measured at a single37

or very limited range of bias currents (0.48 to 0.55IC)36,
at a higher bias currents relative to the critical current
than in WSi. In this range, according to predictions of
our model, tHS must rapidly increase with the current, so
the detection of such a short time might look surprising.
An interesting question is whether this is an indication
of different hotspot dynamics in NbN, or if it is due to
a significant difference in material properties, which was
not well understood and not predicted.

In this situation it becomes worth to analyse the
results36,37 applying our model. We first note that the
energy deposition factor δ for NbN is likely to be smaller
than in WSi. Comparing NbN to WSi we see that the
mean value for N(0) of typical NbN SNSPD thin film
is close to what we used for WSi. Diffusion coefficients
in both materials are also close, and it is reasonable to
assume the same rate of establishing local equilibrium
in the hotspots in both materials. Thus, the diffusing
clouds of non-equilibrium QPs fill nearly the same vol-
umes in nanowires with the same width and thickness
for both materials. The energy loss factor χ for WSi
was estimated from the best fit value of δ. In the ab-
sence of the appropriate data on two-photon detection in
NbN, we cannot establish the best fit δ for the SNSPDs
in Refs36,37. Instead we may exploit some indirect data.
The strongest material dependence comes through the
inverse proportionality of δ to a square of the critical
temperature; this alone is responsible for a factor ∼ 5 re-
duction. On the other hand, in the experiment37 on NbN
SNSPD on sapphire, a rough estimate of phonon escape
time from the wire indicates a smaller athermal phonon
loss, and correspondingly, a bigger fraction χ. In an ex-
periment of Il’in et al39 the phonon bottle-neck parame-
ter was found to be γ = 0.6, twice the value that we used
for WSi SNSPD (which is better acoustically matched to
the Si substrate). Taking the ratio χNbN/χWSi ∼ 2
and TC = 10 K for NbN we arrive at δ ≈ 129 meV−1.
The smaller value of energy deposition factor means that
even using more energetic photons36,37, the biasing of an
SNSPD at a considerably higher currents is required in
NbN.

Like we did for WSi (see Fig.2 b), we calculated the
relaxation paths for a NbN SNSPD operating in the two-
photon regime at different bias currents. Fig.14 shows
hotspot relaxation paths for bias currents of 0.22, 0.47,
0.51 and 0.55 of IC . The bath temperature in the ex-
periments was 4 K. As is seen for the lowest bias current
Tex < Tco. Even with ideal temporal and spatial overlap
of hotspots the absorption of two photons will not result
in a click, because the deposited energy is not sufficient
for breaking superconductivity. In order for a click to
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FIG. 14: Hotspot relaxation paths for NbN nanowires at dif-
ferent currents.

occur for this bias current, the bath temperature must
exceed the abcsissa of the diagonal cross on the relax-
ation path. It is clear that the bias currents are limited
on low side, i.e. the bias current must be sufficiently
large so that Tex > Tco. Tex and Tco in Fig.14 were cal-
culated for δ = 129 meV−1. At the highest bias current
IB/IC=0.55, the SNSPD operates in the single-photon
regime, because Tex > TCB . Thus to operate in the two-
photon detection regime, the NbN SNSPD must be bi-
ased at IB/IC < 0.55. Comparing the relaxation paths
at the two intermediate currents IB/IC = 0.51 and 0.47
we see that the length of relaxation path (distance from
Tex to Tco) rapidly decreases with only a small (∼ 10 %)
decrease in bias current from 0.51 to 0.47 of IC . This
results in substantial shortening of tHS , similar to our
results for the WSi SNSPD. Calculating Te transients for
both curves, we find that tHS at IB = 0.55IC is a fac-
tor of 1.9 shorter than tHS at IB = 0.47IC . Finally,

fitting tHS=20 ps requires τ0|NbN '52 ps. According to
Kaplan29 we have τ−10 ∼ T 3

C . Thus, assuming a similar
electron-phonon coupling constant for both materials we
expect τ0 in NbN to scale down by factor ' 10 yield-
ing the number close to 50 ps which is consistent with
the estimate above. Although in the absence of detailed
experimental data for NbN this estimate cannot serve
as proof of the same hotspot dynamics, nonetheless it is
reassuring for its consistency with the model.

V. SUMMARY

In summary we developed a theoretical model of
relaxation of the hotspots in superconducting current-
carrying nanowires. We have shown that in tungsten
silicide SNSPDs the hotspot generated by a photon be-
low the threshold for single-photon detection relaxes in
a self-recombination of non-equilibrium QPs. Strong de-
pendencies of hotspot relaxation time on bias current,
bath temperature and photon wavelength are explained
by specific dynamics of the hotspot, and are dominated
by self-recombination, rather than diffusive expansion.
The model satisfactorily explains all major experimental
results. The reasons for the greatly suppressed role of
quasiparticle diffusion are likely to be related to strongly
non-linear heat transport in a disordered superconduct-
ing nanowire close to a metal-insulator transition.
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