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Abstract 

Static field properties of magneto-electric hexaferrites have been explored extensively in the past 
five years. In this paper dynamic properties of magneto-electric hexaferrites are being explored. 
In particular, effects of the linear magneto-electric coupling (α) on ferrimagnetic resonance 
(FMR) and magneto-elastic excitations are being investigated. A magneto-elastic free energy 
which includes Landau-Lifshitz mathematical description of a spin spiral configuration is 
proposed to calculate FMR and magneto-elastic excitations in magneto-electric hexaferrites. It is 
predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts 
that are proportional to magneto-electric static and dynamic fields. The calculated FMR fields are 
in agreement with experiments. Furthermore, it is predicted at low frequencies (~MHz ranges), 
near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode 
besides the ordinary FMR mode which can only be accounted by dynamic magneto-electric 
fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale 
as α, the shifts in the new discovered FMR mode scale as α2.  

    Also, magneto-elastic dispersions were calculated and it is predicted that the effect of the α 
coupling are the following: 1. The strength of admixture of modes and splitting in energy between 
spin waves and transverse acoustic waves is proportional to α. 2. The degeneracy of the two 
transverse acoustic wave modes is lifted even for relatively low values of α. Interestingly, at low 
frequencies near zero field FMR frequencies the surface spin wave mode branch flip-flops with 
the volume spin wave branch whereby one branch assumes real values of the propagation 
constant and the other purely imaginary upon the application of a static electric field. 

I Introduction 

Magneto-Electricity has been discovered in single phase bulk [1-10] and thin film [11] of 
hexaferrites. The linear magneto-electric (ME) coupling parameters, α, of hexaferrites at room 
temperature are fairly high [1-11] in comparison to other types of single phase materials [12-17] 
and laminated composite structures [18]. Potential for new applications in medical sensors, 
recording media, computer and electronic integrated circuits (IC) and wireless communication 
networks appear to be promising. In a ME material the application of a magnetic field, H, induces 
an electric polarization, P, and this is referred to as a direct ME effect [19]. In the converse [19] 
ME effect the application of an electric field, E, induces magnetic polarization or M. Landau-
Lifshitz [20] proposed in 1957 the possibility of linear relationship between the electric field, E, 
and magnetic field, H. Dzyaloshinski [21] showed that such linear relationship between E and H 
may be possible, if spins at different sites were non co-linear. The notion of non-collinearity of 
the spins was re-enforced theoretically by Moriya [22] in considering mechanisms of the local 
magnetic anisotropy and exchange coupling between spin sites extending single ion models [23] 
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for magnetic anisotropy. Experimental confirmation of magneto-electricity was discovered in 
Cr2O3 by Astrov [24] and Folen and Rado [25]. 

Since the discovery of magneto-electricity various theoretical models [26-31] have been proposed 
to explain magneto-electricity in terms of spin non-collinearity and specifically with spin spiral 
configurations. Most of these models apply to single phase ME materials and not pertaining 
necessarily to hexaferrites. A thermodynamic argument was proposed [32] to model magneto-
electricity in hexaferrites. The model may simply be summarized briefly as follows. The ME 
coupling parameter, α, in hexaferrites is anisotropic and it scales as the product of the 
magnetostiction constant and piezoelectric strain coefficient. The thermodynamic argument is of 
sufficient generality that it may be applicable to materials other than hexaferrites. In this paper we 
consider dynamic field excitations in ME hexaferrites and utilize the M-type hexaferrite magnetic 
structure as a model for our calculations. This is the simplest magnetic and crystal structure [33] 
to analyze and still exhibiting ME effects [10]. The arguments to be presented here apply equally 
well to other hexaferrites [35-36] and in fact our theoretical results are also applicable to Z-type 
hexaferrites.  

 The spin spiral configuration in this system is due to a number of factors. M-type hexaferrites 
consist of four spinel “blocks” (RSR*S*), where the S block contains octahedral (2a) and 
tetrahedral (4f) sites and R block octahedral (2a) and nearly octahedral (bypyramidal-2b). The * 
implies 180 degrees rotation relative to the unmarked block [35]. Strong exchange coupling aligns 
spins anti-parallel to each other in each block forming a ferrimagnetic magnetic structure. 
However, Sr substitutes in the usual barium sites located in the R or R* block near one of the 
octahedral sites [35] distorting or straining the chemical bonds near that site. The effects of Sr 
substitutions on local strains and spin coupling between sites are described in Ref [10]. Since Co 
and Ti ions only substitute into octahedral sites located in the R or R* block and in the periphery 
(12k sites) of the R blocks, there are two ramifications: 1) The local magnetic anisotropy in the R 
block is much stronger than usual, but, more importantly, it assumes a uniaxial axis at oblique 
angle to the c-axis. 2) The exchange coupling between R and R* blocks is weakened, since Ti 
ions are not magnetic and are located at the 12k sites. It is the weakening of the exchange 
coupling that allows for the local anisotropy a preferential alignment of the local spins and still 
maintaining the out of phase spin alignment from block to block. We believe that this is the recipe 
for a spin spiral configurations and the phenomena of magnetoelectricity in M-type hexaferrites. 
This physical picture may be applicable to other types of hexaferrites as well (Y and Z-type). As 
stated above we are interested in the dynamic field excitations, magnetic or elastic, in ME 
hexferrites. Dynamic field excitations include ferromagnetic resonance, magnetic susceptibilities 
and wave propagation in a magneto-elastic medium as in a ME hexaferrite.   

 

II Free Energy Representation of Spin Spiral Configuration 

 

The quantum representation of the spin spiral by Dzyaloshinski [21] and Moriya [22] included the 
following interaction form 
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)( ji SSD ×•  ,              (1) 

where D
r

 is a vector proportional to exchange and local spin orbit and crystal fields interaction 
parameters at local sites i and j. In order for this interaction term to contribute to potential energy, 
spins at different sites could not be parallel to each other as in a spin spiral configuration, for 
example. Landau-Lifshitz [20] introduced a semi-classical description of the above quantum form 
as follows (CGS) 

),()/( 2
3 MM

M
KcmergsF LL

LL ×∇•−=  (2) 

where FLL is the free energy of a spin spiral configuration as derived by Landau-Lifshitz [20], 
LLK  is a anisotropy energy parameter in units of ergs/cm2 and is proportional to the parameter D 

in eq. 1. M  is the magnetization vector representing the spin variables over a relative large 
volume compared to a unit cell. Clearly, eq. 1 is microscopically applicable to single spins, 
whereas eq. 2 applies to macroscopic levels of interaction. Assuming that the transition from 
microscopic to macroscopic representations may be acceptable, we explore the predictions of eq. 
2. For simplicity, M

r
 may be expressed as follows 

)sincos(|| zazaMaMM yxz ββ −+= ⊥ , (3) 

where ax ,ay  and az  are unit vectors in the x, y and z directions, M||   is the component of the 
magnetization along the c-axis or the z-axis, see Fig. 1, ⊥M  is the component perpendicular to 
the c-axis, λπβ /2=  , and λ is the wavelength of the helical or spin spiral configuration along 
the c-axis.  

 
Fig. 1 Spin Spiral configuration along C-axis for M-type ME hexaferrites and perpendicular to C-axis for Z-type ME 

hexaferrites. 

 

In order for this description to be valid λ >> c, where c is the lattice constant along the c-axis 
(~23A). Substituting eq. 3 into eq. 2 yields  
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This is recognized as a classical uniaxial magnetic anisotropy energy term with a uniaxial axis 
along the c-axis [37]. This is interesting in that the macroscopic Landau-Lifshitz representation 
basically averages all local uniaxial anisotropy energies into one single expression (eq. 4), 
although the local uniaxial axis is at an oblique angle with respect to the c-axis, see Fig. 1. This is 
not surprising in view of the fact that the sum of uniaxial anisotropy energies still results into one 
single uniaxial energy term as above. We will adopt the Landau-Lifshitz macroscopic 
representation and designate the uniaxial anisotropy energy parameter as Kss or θK . Clearly , Kss  is 

related to the parameters KLL , K and D (eqs. 1-4). The corresponding uniaxial magnetic 
anisotropy magnetic field, Hss  , is defined as 2Kss /M and it applies to a spin spiral configuration 
in a ME hexaferrite (α≠0). For the case α=0 in normal hexaferrites it is meaningful to define also 
a uniaxial anisotropy field, H θ , equal to 2K θ /M. Thus, Kss plays a dual role depending on the 

value of α, 0 or ≠ 0. 

   

 III Free Energy of ME Hexaferrite 

  

The total free energy, F(ergs/cm3), is comprised of magnetic, FM, and electric, FE, free energies or  

F = FM + FE ,      (5) 

where 
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Fig. 2. Magnetic field orientations relative to the C-axis. 
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The external magnetic field, H, is applied normal to the film plane and parallel to the c-axis, see 
Fig. 2. The second term in FM is the demagnetizing energy and the third term the macroscopic 
uniaxial anisotropy energy as described in section II. The energy parameter Kss is analogous to the 
parameter ϑK  usually designated in typical hexaferrites [35]. The subscript “ss” is to remind the 
reader that this parameter corresponds to a spin spiral configuration. The fourth term is the 
ordinary semi-classical exchange coupling term and is often referred to as the exchange stiffness 
constant and the fifth term is the magnetic anisotropy energy corresponding to magnetization 
directions in the azimuth plane (normal to the c-axis). Typically, the magnetic anisotropy field 
associated with this energy term is in the order of 20-50 Oe [38]. Finally, the last term is the 
magneto-electric coupling energy term. The coupling parameter α is treated as a scalar. In general 
it is anisotropic and may be represented as a tensor [32]. For now it suffices for the purpose of 
demonstrating the formalism of the calculations. The polarization vector is a complicated function 
of the internal strain, as it must be for a ME medium like the hexaferrites. In a ME medium the 
strain coefficient tensor [d] couples [P] to the stress tensor [T] or 

[P] = [d][T],      (7) 

where [d] for hexagonal crystal structure is of the form [39] 
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The stress tensor [T] for hexagonal structure is also cited in Ref. [39] and utilizing eq. (7) yields 
the polarization components as follows 

zxx CdP ∈= 445     ;      zyy CdP ∈= 445     ;       tVCdP ezzz /0333 χε+∈≈ . 

The strain fields are zyzx ∈∈ , and zz∈ , V is the DC voltage applied across a film or a slab, and t is 

the thickness of the film or slab. Usually, the magneto-electric coupling is expressed as HE
rr

•′− α . 
The connection between the two alphas is simply  emαχχα =′  , where χm and χe are the magnetic 
and electric susceptibilities, respectively.  The free energy for the electric system including strain 
fields is shown below [32] 
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The first term is the polarizing electric energy and the remaining terms are elastic energy terms 
for a hexagonal crystal structure. The C’s are the elastic stiffness modulus constants and ij∈   are 
the strain fields defined in terms of elastic displacements Ui as 

i

i
ii x
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∂=∈     ;    
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j
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ij x
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x
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+
∂
∂=∈    . 

The subscripts indicate directions x,y and z. According to Ref. [32] the ME coupling α can be 
expressed in terms of the product of magnetostriction constants and piezoelectric strain 
coefficients. This implies that there is an alternative way to express the free energy that couples 
the magnetic system to the electric system. Either the coupling between the two systems is via α 
as in eqs. (6) and (9) or omit α in eq. (6) and introduce magnetostriction and piezoelectric strain 
parameters in eqs. (6) and (9). Let’s now consider the alternative expression for the free energies. 
Extending Landau-Lifshitz [20] formalism to hexagonal crystal structures the magneto-elastic 
coupling   
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 (10)                                      

                                                   

The ai coefficients may be related to the magnetostriction constants [40]. For example, the 
coefficients ai may be expressed in terms of the B1 and B2 magnetostriction coefficients for cubic 
symmetry crystals (see Ref. [41]). The key point of eq. (10) is that the strain is coupled to the 
magnetic system, where αi are the directional cosines of M

r
 relative to the x,y and z coordinate 

system. The other half of the alternative methodology is to introduce the piezoelectric coupling in 
eq. (9) which couples the electric field or system to the strain. Basically, the mediator that couples 
the magnetic system to the electric system is the strain field. Thus, for example, the excitation of 
an electric field is coupled via the piezoelectric strain coefficient to the strain field. The strain 
field in turn is coupled to the magnetic system via the magnetostriction coupling as in eq. (10). 
For hexagonal crystal symmetry the piezoelectric coupling energy term takes on the following 
form  
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∈+∈+∈−

∈+∈+∈+−∈+∈−=−  (11)                                         

                                

Thus, the addition of eqs. (10) and (11) to the free energy F would replace the coupling energy 
term containing α . Clearly, more parameters are introduced, but it is needed to explain, for 
example, anisotropic coupling between the two systems. However, anisotropic coupling could 
also be analyzed using a tensor α rather than a scalar α.  We will not dwell on the merit of the two 
methodologies, but simply choose eq. (6) as a starting point. The object is to introduce the 
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formalism to calculate dynamic excitations in ME hexaferrites. Our formalism would also apply 
for either methodologies (eqs. (10) and (11) versus the inclusion of α coupling explicitly) as well. 
So far, we have assumed that ME hexaferrites exhibit piezoelectricity only. One should be aware 
that some ME hexaferrites may also be characterized as being ferroelectric. In that case terms like 
second, fourth order and higher even powers [42] of P may be added to the free energy. 
Furthermore, in polycrystalline ME hexaferrite of the Z-type [19] the material behaved 
electrostrictive implying that the relationship between strain and electric field was quadratic [42]. 
In such cases eqs. 10-11 would have to be modified in order to allow for the quadratic 
dependence on strain. The static fields equilibrium conditions and ferromagnetic resonance 
(FMR) may be calculated directly from the free energy [32] as follows.  

1. Static Fields Equilibrium Conditions 

In Fig. (2) directions of the various fields relative to the film surface and c-axis are shown. The 
equilibrium position of static M may be determined for H fields below and above magnetic 
saturation. At non-saturation the internal static field, 0H , is zero, but at saturation 00 ≠H . The 
total internal magnetic field, ii hHH += 0 , may be determined by taking the magnetic gradient of 
F, where ih  is the internal dynamic magnetic field [37]. Thus, 

PaM
M
HMHFhHH zz

ss
ZMii απ ++−=−∇=+= )4(0 , (12) 

where 

,2
M
KH ss

ss =   Mz = M0z +mz , )cos(0 θMM z =  , paPP zz += , and tVP ez /0χε= . 

Upper case variables are static fields which are not time dependent and lower case variables are 
dynamic fields which are time dependent and they will be utilized later when FMR is discussed. 
Equating 0H

r
 to static fields yields the equation that 

zess atVHMHH )/coscos4( 00 χαεθθπ ++−= .   (13) 

The internal static field is that field that aligns the internal magnetization, 0M
r

, along or parallel to 

0H
r

, and, therefore, 00 ≥H . It is unphysical concept for H0 to be less than zero. Setting H0 = 0 
yields the equilibrium static condition for non-magnetic saturation as 

ssHM
H
−

=
π

θ
4

cos .      (14) 

 Above equilibrium condition may be derived also from Smit-Beljers [43] methodology requiring 

,0=
∂
∂

θ
F whereby F is expressed in terms of θ and φ . In our representation, F is expressed 

explicitly in terms of static and dynamic fields. Typically, Pz is relatively small compared to Hss 
and it has been omitted in above equilibrium condition. The magnetization component along H is 
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simply θcosMM H =  assuming single domain rotation, for example. Eq. (14) applies for 

ssHM ≥π4  and the ME films being single crystal. For polycrystalline films the magnetic 
anisotropy field would average to zero and Hss may be omitted in eq. (14).  For MH ss π4≥ , the 
spontaneous magnetization alignment would be in the positive or negative z-directions as in M-
type hexaferrites, but not in Z-type. Perhaps, magnetic multi-domain analysis may be more 
appropriate [44] for M-type hexaferrites. In summary, at magnetic saturation 

.40 ssHMHH +−= π  

 Similarly, H0 may be derived for H in the film plane and it is equal to H, as in the case of Z-type 
hexaferrites, see Refs. [35] for description of different types of hexaferrites. In Fig. 3 MH is 
plotted as a function of H for H parallel and perpendicular to the slab plane of a Z-type hexaferrite 
[45]. Clearly, the hard axis of magnetization was pointed along the c-axis or perpendicular to the 
slab plane, and the magnetic anisotropy energy is characterized as being planar. The deduced 
parameters from this data were the following: GM 31004 =π  and OeH 6500≈θ . Typically, for Y 
and Z-type hexaferrites θH > 9000 Oe [35]. The fact that technical magnetic saturation is not 
reached implies that it takes more field to align the canting of the spins at each site (see Fig. 3). 
Equivalently, H cannot overcome exchange fields between sites. 

                                                                                                                                                                  

 
Fig. 3 Vibrating sample magnetometer (VSM) measurements of the magnetization versus magnetic field for H 

parallel (||) and perpendicular )(⊥  to the plane of the ME slab material (Z-type hexaferrite). 

 

2. Ferrimagnetic Resonance Excitations in ME Hexaferrites 
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For H values below magnetic saturation H0 = 0 and, hence, FMR may not be observed. In 
saturating fields FMR condition may be derived from the equation of motion of the dynamic 
components of the magnetization. The normal modes of FMR excitations are mx and my  for H 
applied normal to the film plane and mx and mz for H in the film plane (H along the y-axis). The 
equation of motion for M is then 

00
1 HmhMHM

dt
dM

ii ×+×≡×=
γ

    , where    Oeradg /)104.12( 6××= πγ  , g ~ 2. (15)                          

and 

mMM += 0    ;  zMaM =0    ;  zess atVHMHH )/4( 00 χαεπ ++−=    ;   

pap
M
mHmh zz

z
sszi ααπ +++−= )4(   . 

The equation of motion is linearized by omitting terms consisting of the product of two dynamic 
variables, pz and mz, since they are assumed to be small compared to linear terms in mx or my  and 
px or py. As such, the equation of motion simplifies to  

′= 0Hmmj yxγ
ω  , and 

′−= 0Hmmj xyγ
ω   ,   where MHH πδ400 −=′   and 

y

y

x

x

m
p

m
p ααδ ==  . 

Thus, the FMR condition becomes 

MtVHMHH ess πδχαεπ
γ
ω 4/4 00 −++−=′= .  (16) 

In the limit that α = 0 and no spin spiral configuration (Kss =0) the FMR condition for H applied 
perpendicular to the film plane simplifies to the well-known result that [37] 

MH π
γ
ω 4−= . 

For 0≠α , the FMR condition is given in eq. (16). There are two observations to be made in this 
limit: 1) The FMR condition in eq. (16) contains a static field FMR resonance shift ( tVe /0χαε  ) 
from the application of a DC voltage V. The dynamic field shift ( Mπδ4 ) in eq. (16) is somewhat 
different from previous reports [1-10]. 2) For H = 0, eq. (16) predicts the so-called zero field 
FMR [41], if Hss > 4πM for single domain excitations. However, if magnetic multi-domains are 
formed for H = 0, zero field FMR is predicted for arbitrary values of Hss . The zero field FMR 
resonance conditions are approximated as follows: 

MtVMH ess πδχαεπ
γ
ω 4/4 0 −+−≈  ,   (16a) 
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For single magnetic domain                                           

MtVH ess πδχαε
γ
ω 4/0 −+≈  ,     (16b) 

For magnetic multi-domains [44].                                                        

  In-plane FMR may be considered with the modification of the free energy. The Zeeman energy 
term or magnetizing energy term includes H along the y-axis, for example. Without going through 
the same formalism as above the FMR condition is quoted for in-plane FMR assuming Z-type 
hexaferrite as (we have data [45] for this hexaferrite). Since α≠0, we may write 

                                                                                                    

)4)(44()( 2 MHMHMH ss πδπδπ
γ
ω −−++= .  (17) 

In the limit that H = 0 eq. (17) implies that 2)(
γ
ω <0, assuming δ >0. 

In the limit α= 0 eq. (17) reduces to the well-known result that [37]  

))(4()( 2 HHMH θπ
γ
ω ++= . 

It is pointed out that there is no static magnetic field shifts in the FMR condition as in eq. (16) 
upon application of DC voltage. This a direct result of the fact that α is assumed to be a scalar 
rather than a tensor. Let’s now analyze recent [45] FMR resonance data, see Fig. 4, on Z-type 
hexaferrite utilizing the data [44] of Fig. 3. The deduced value of the g factor was g =1.90. The 
fact that g<2 implies that orbital contribution from Co substitutions contribute to the lowering of g 
value.                                                                                                                                                   

 

Fig.4 FMR of Z-type hexaferrite for H in the slab plane (see Fig. 3 also). dP/dH is the field 
derivative  of the power absorbed by the sample in arbitrary units. 
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IV Magneto-elastic Excitations in ME Hexaferrites  

 

The mediator that couples the magnetic system to the electric system is the strain fields in ME 
hexaferrites. Thus, elastic waves may be excited via the electric system, since the electric system 
is coupled to elastic waves by the piezoelectric strain coupling. The counterpart to piezoelectricity 
is the magnetostriction coupling in the magnetic system. The point of this exercise is to show that 
the ME α coupling takes into account all of these internal couplings “automatically”. The proof of 
the latter statement is to substitute eqs. (10-11) into eqs. (6-9) and omit the α coupling term in eq. 
(6) and show that the same results are obtained either way. We will consider the simpler approach 
– scalar α coupling term only. The dispersion relation between frequency and propagation 
constant, k, is calculated for H perpendicular to the film plane whereby spin wave modes, elastic 
waves and electromagnetic propagation modes are excited. Although propagation of the waves is 
assumed to be perpendicular to the film plane or parallel to the c-axis, the formalism is applicable 
for arbitrary direction of k. The formalism involves the coupling of three sets of equations: 
magnetic equations of motion, elastic equations of motion and Maxwell’s equations. The algebra 
encountered in coupling all three sets of equations is formidable, but electromagnetic effects due 
to Maxwell’s equations can be included in ad-hoc manner [37] simplifying the formalism. Proof 
of the ad-hoc approach is given in the appendix. 

The magnetic equations of motion can be readily extended to include elastic strain fields and spin 
wave fields using eqs. (15) as a starting point. 

yyx pMk
M

AHmmj α
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20 ,   (18) 

xxy pMk
M

AHmmj α
γ
ω ++−= )2( 2

20 ,  (19) 

where                                                                                    

zxx Cdp ∈= 445 , and 

zyy Cdp ∈= 445   . 

The Hamilton-Jacobi principle [46] is applied to obtain the elastic equations of motion and they 
are 

z
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where                                                                                                    

ρ  is the crystal density, A is the exchange stiffness constant [47] and Ui are elastic 
displacements. It can be shown that the same set of eqs. (18-22) can be derived by using eqs. (10-
11). Assuming solutions of the form )( kztje −ω  and demanding non-trivial solutions of the field 
variables a dispersion relation is obtained by expanding the following determinant and setting it to 
zero. 
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Expanding the above determinant yields the following dispersion relation 
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                                                                                                                                                      (24) 

The term )( 2332 k
C
ρ

ω −  multiplies the above eq. 24 so that it factors out and is equal to zero. 

Thus, the longitudinal acoustic mode is uncoupled to spin waves or the other two transverse 
acoustic branches or modes, and the dispersion relation is written as  

LkvCk ≡=
ρ

ω 33 . 
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The longitudinal acoustic velocity is identified as 
ρ

33CvL = . The two transverse branches or 

modes are degenerate for frequencies above and below the approximate FMR frequency or the 
crossing region between the spin wave branch and the two transverse acoustic modes, see Fig. 5. 

The transverse acoustic velocity is then
ρ
44CvT =  . The following parameters were assumed for 

the plot of Fig. 5: ====×= −
5

6 ,14004,2,3.5,/104.0 dGMgcmergsA πρ 1.1x10-11 m/v, C44 = 
1.0x1012 ergs/cm3, C33 =3C44. The conversion of d5 to CGS units is 3x104. The uniform mode 
(k=0) FMR excitations occurs at H0 =3500 Oe corresponding to a FMR frequency of 9.8 GHz. 
The spin wave branch (SW1) intersects the two transverse acoustic branches, but only one is 
dynamically coupled to SW1 branch, splitting the two branches at the intersection. The other spin 
wave branch SW2 consists only of imaginary propagation constants, see Figs. 5-6. As such, this 
spin wave branch represents attenuating spin wave magnetization fields. It is often referred to in 
the literature [48] as a surface spin wave mode, since the spin wave is mostly localized near the 
surface due to attenuation. Increasing α de-localizes the spin-wave near the surface, compare Figs. 
5 and 6 for imaginary k values.  

 

Fig. 5  Plot of dispersion relation between frequency and Re and Im(k) for α = 1. 
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Fig. 6 Plot of dispersion relation between frequency and Re and Im(k) for α = 10. 

 The splitting of the cross coupling between one of the TA and SW1 branches is proportional to 
the product of α , d5  and C44. For example, we varied the value of α between 0.3 and 10.0 (CGS 
units) and calculations of the dispersion indicate: (1) The spitting increased proportionally with α 
. (2) For low values of k the modes are an admixture of spin waves and acoustic transverse 
modes. The longitudinal acoustic mode is unaffected by the magnetic modes (see Figs. 5-6). 
However, in some special experimental conditions the longitudinal mode can be made to interact 
with the magnetic modes. Interaction between spin waves and longitudinal acoustic waves may be 
actuated by applying H in the film plane. For this field configuration the normal modes of 
magnetic FMR precession are mx and mz . Whereas mx may couple to Ux , mz may couple to Uz 
via the ME coupling. Thus, all of the acoustic branches would couple to the spin wave branch. 
We anticipate that the coupling between branches would not be uniform, since usually 4433 CC ≠
and 35 dd ≠ [39]. However, invoking an anisotropic α would allow for interaction between 
volume spin wave modes and longitudinal acoustic branches or modes. 

 Clearly, the spin wave dispersion no longer obeys the k2 law for frequencies near FMR, 
especially for high values of α (see Fig. 6). For example, in a standard standing spin wave (SWR) 
resonance experiment [49] the resonant field positions usually obey the n2 law, n is the SW order 
number. It is noted that this branch admixes with the TA branch such that it’s dispersion increases 
faster than k2 as it transitions to a TA mode. In fact, at high frequencies and high α values the two 
TA modes are no longer degenerate. Excitations of standing spin wave modes may be possible in 
ME films of ~1 micron in thickness and exposing the film to an h field excitation. Standing TA 
modes may be excited in a similar manner by exposing the ME sample to e field excitations. 
However, these dispersions imply that the nature of the fields within the ME sample may 
transition from one type of field excitation to another form of field excitation depending on the 
frequency of operation. 
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In the calculation of the dispersion relationships as shown in Figs. 5-6 H0 was fixed at 3500 Oe 
and, therefore, H = 4500 Oe. It is possible in ME hexaferrites to choose a sample such that 4πM ~ 
Hss so that zero field FMR may be observed. The advantage of this situation or experimental 
condition is that internal static and dynamic fields induced by the ME effect begin to compete 
with fields that allow for ordinary zero field FMR. For example, for α =3.2 the dispersions are 
shown in Fig. 7. FMR occurs for H0 = 100 Oe or 280 MHz. This plot is very reminiscent of Fig. 6 
except that FMR is at much lower fields or frequencies. Here again the two TA modes are no 
longer degenerate, and the same observations about Fig. 6 also applies here. With the application 
of a static electric field of E ~ 20,000 v/m, we see a dramatic change in the dispersions. For 
example, a voltage of 20 mv across the film thickness would be sufficient to generate a static 
magnetic field of 20 Oe. Basically, SW1 branch has flip-flopped with the SW2 branch, see Figs. 7-
8. Also, FMR frequency was lowered to 224 MHz. In addition to the ordinary FMR mode at 

0H=
γ
ω (280 MHz), there is an extraneous FMR mode at approximately 44

2
40 )( CdMH α

γ
ω −≈ .  

It is predicted that for the parameters chosen above, the FMR frequency of the extraneous mode 
occurs at approximately ~ 40 MHz which corresponds to the lower resonance at k = 0. Thus, it 
appears that there are two FMR modes at k = 0. Ordinarily, there is only one uniform precession 
mode at k = 0. Also, the character of the wave (either spin wave or acoustic) changes upon 
application of a static electric field. Thus, the effect of the α coupling is quite pronounced and it 
has the greatest impact on dispersions, at low frequencies (~MHz ranges). We believe that these 
type of effects are important to potential new applications and future ME experiments. 

 

 

 

Fig. 7 Frequency versus propagation constant, k, for α=3.2, H0=100, and E = 0. 
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Fig. 8 Frequency versus propagation constant, k, for α=3.2, H0=80, and E = 20,000v/m ( ~ 20 Oe). 

 

As in Figs. 5-6 the TA1 acoustic mode transitions into a surface spin wave mode, see Figs. 7-8. 
The electromagnetic (em) branch has been omitted so far in the dispersion relation above. The 
inclusion of the em branch would modify only the SW branches, since k ~ 3rad/cm at 10 GHz, for 
example. The k values of the acoustic branches extend well beyond 3 rad/cm at the same 
frequency so that no coupling between the em branch and acoustic branches is expected. 
However, at low frequencies, where zero field FMR may be excited, the em branch may couple to 
all branches.  The dynamic magnetic field, h

r
, in the magnetic equation of motion is coupled to the 

electric field, er , in Maxwell’s equations giving rise to the em branch. By uncoupling Maxwell’s 
equations h

r
may be expressed in terms of mr . As such, Maxwell’s equations are directly coupled 

into the magnetic equations of motion. A simpler way (see appendix) to introduce 
electromagnetic modes or branches in eq. (24) is to make the “transformation” in the dispersion 
relation of eq. (24) that 

εω

π

2

200

1

4
k
MHH

−
+⇒  . 

V Conclusions and Discussions 

There have been many reports about ME effects on static field changes of electrical polarization 
and magnetization upon the application of static fields. We have introduced a formalism by which 
static and/or dynamic internal fields can be accounted for upon application of static or dynamic 
electric or magnetic fields. The static field measurements [45] seem to confirm the view proposed 
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by Landau-lifshitz that the spin spiral configuration can be described by a simple uniaxial 
magnetic anisotropy energy term only. Experimentally [45], the inclusion of the uniaxial 
magnetic anisotropy field in the FMR condition is consistent with a g value of ~ 2 for ME 
hexaferrites. Our calculations predict FMR resonance shifts in the order of 5-20 Oe with the 
application of a static electric field or DC voltage in the order of 1 volt or less in films. This 
prediction should be compared with measured shifts of 0.2 Oe in Ref. [50] using impure bulk 
lithium ferrites at very high DC voltages (~ 500 volts). Furthermore, it is predicted at low 
frequencies (~MHz ranges), near zero magnetic field FMR frequencies, there is an extra uniform 
precession FMR mode besides the ordinary FMR mode which can only be accounted by magneto-
electric α coupling fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to 
the α coupling scale as α, the shifts in the new discovered FMR mode scale as α2 . For example, 
for k = 0 there are two FMR resonant modes: one FMR mode is characterized as an ordinary 
mode resonating at 280 MHz and the extraneous mode resonates at 40 MHz. 

    Also, magneto-elastic dispersions were calculated and it is predicted that the effect of the α 
coupling are the following: 1. The strength of admixture of modes and splitting in energy between 
spin waves and transverse acoustic waves is proportional to α. 2. The degeneracy of the two 
transverse acoustic wave modes is lifted even for relatively low values of α. Interestingly, at low 
frequencies near zero field FMR frequencies the surface spin wave mode branch flip-flops with 
the volume spin wave branch whereby one branch assumes real values of the propagation 
constant and the other purely imaginary upon the application of a static electric field. 

  Magneto-elastic excitations in ME hexaferrites may be generated or established with the 
application of localized dynamic e and h fields setting up standing modes in finite 
dimensionalities of samples. The effect of α on the dispersion is quite dramatic at low as well as at 
high frequencies even for values of α not exceedingly high (in MKS units α ~ 10-8 ). We believe 
that the impact of ME hexaferrites to modern day technologies and science will be felt in the near 
future even though the upper limit in α values has not been reached yet.  

 

                                                                                                                                                                     
Appendix 

Re-writing the equations of motion with h
r

 included one obtains 

  

yyyx MhpMk
M

AHmmj −−+= α
γ
ω )2( 2

20  , and 

xxxy MhpMk
M

AHmmj +++−= α
γ
ω )2( 2

20 . 
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The equations expressed as above lend themselves readily to the calculation or determination of 
magnetic susceptibilities in a tensor form [χm]. After uncoupling Maxwell’s equations and 
assuming propagation in the z-direction the relationships between h

r
 and mr  become [35] 

1

4

2

2

−
=

εω

π
k

mh x
x   , 

1

4

2

2

−
=

εω

π
k

m
h y

y    , and 

zz mh π4−=   . 

In a linear excitation mz ~ 0. By substituting above relationships into the equations of motion for 
the normal modes one obtains 

yyx pMk
M

A
k
MHmmj α

εω

π
γ
ω −+

−
+= ]2)

1

4[( 2
2

2

20   , and 

 

xxy pMk
M

A
k
MHmmj α

εω

π
γ
ω ++

−
+−= ]2)

1

4[( 2
2

2

20 . 

This proves that the above ad-hoc transformation may be substituted in the dispersion relation, eq. 
(24).   
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