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Abstract

Static field properties of magneto-electric hexaferrites have been explored extensively in the past
five years. In this paper dynamic properties of magneto-electric hexaferrites are being explored.
In particular, effects of the linear magneto-electric coupling (o) on ferrimagnetic resonance
(FMR) and magneto-elastic excitations are being investigated. A magneto-elastic free energy
which includes Landau-Lifshitz mathematical description of a spin spiral configuration is
proposed to calculate FMR and magneto-elastic excitations in magneto-electric hexaferrites. It is
predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts
that are proportional to magneto-electric static and dynamic fields. The calculated FMR fields are
in agreement with experiments. Furthermore, it is predicted at low frequencies (~MHz ranges),
near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode
besides the ordinary FMR mode which can only be accounted by dynamic magneto-electric
fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the a coupling scale
as o, the shifts in the new discovered FMR mode scale as o’

Also, magneto-elastic dispersions were calculated and it is predicted that the effect of the a
coupling are the following: 1. The strength of admixture of modes and splitting in energy between
spin waves and transverse acoustic waves is proportional to a. 2. The degeneracy of the two
transverse acoustic wave modes is lifted even for relatively low values of a. Interestingly, at low
frequencies near zero field FMR frequencies the surface spin wave mode branch flip-flops with
the volume spin wave branch whereby one branch assumes real values of the propagation
constant and the other purely imaginary upon the application of a static electric field.

I Introduction

Magneto-Electricity has been discovered in single phase bulk [1-10] and thin film [11] of
hexaferrites. The linear magneto-electric (ME) coupling parameters, o, of hexaferrites at room
temperature are fairly high [1-11] in comparison to other types of single phase materials [12-17]
and laminated composite structures [18]. Potential for new applications in medical sensors,
recording media, computer and electronic integrated circuits (IC) and wireless communication
networks appear to be promising. In a ME material the application of a magnetic field, H, induces
an electric polarization, P, and this is referred to as a direct ME effect [19]. In the converse [19]
ME effect the application of an electric field, E, induces magnetic polarization or M. Landau-
Lifshitz [20] proposed in 1957 the possibility of linear relationship between the electric field, E,
and magnetic field, H. Dzyaloshinski [21] showed that such linear relationship between E and H
may be possible, if spins at different sites were non co-linear. The notion of non-collinearity of
the spins was re-enforced theoretically by Moriya [22] in considering mechanisms of the local
magnetic anisotropy and exchange coupling between spin sites extending single ion models [23]



for magnetic anisotropy. Experimental confirmation of magneto-electricity was discovered in
Cr,03 by Astrov [24] and Folen and Rado [25].

Since the discovery of magneto-electricity various theoretical models [26-31] have been proposed
to explain magneto-electricity in terms of spin non-collinearity and specifically with spin spiral
configurations. Most of these models apply to single phase ME materials and not pertaining
necessarily to hexaferrites. A thermodynamic argument was proposed [32] to model magneto-
electricity in hexaferrites. The model may simply be summarized briefly as follows. The ME
coupling parameter, a, in hexaferrites is anisotropic and it scales as the product of the
magnetostiction constant and piezoelectric strain coefficient. The thermodynamic argument is of
sufficient generality that it may be applicable to materials other than hexaferrites. In this paper we
consider dynamic field excitations in ME hexaferrites and utilize the M-type hexaferrite magnetic
structure as a model for our calculations. This is the simplest magnetic and crystal structure [33]
to analyze and still exhibiting ME effects [10]. The arguments to be presented here apply equally
well to other hexaferrites [35-36] and in fact our theoretical results are also applicable to Z-type
hexaferrites.

The spin spiral configuration in this system is due to a number of factors. M-type hexaferrites
consist of four spinel “blocks” (RSR*S*), where the S block contains octahedral (2a) and
tetrahedral (4f) sites and R block octahedral (2a) and nearly octahedral (bypyramidal-2b). The *
implies 180 degrees rotation relative to the unmarked block [35]. Strong exchange coupling aligns
spins anti-parallel to each other in each block forming a ferrimagnetic magnetic structure.
However, Sr substitutes in the usual barium sites located in the R or R* block near one of the
octahedral sites [35] distorting or straining the chemical bonds near that site. The effects of Sr
substitutions on local strains and spin coupling between sites are described in Ref [10]. Since Co
and Ti ions only substitute into octahedral sites located in the R or R* block and in the periphery
(12k sites) of the R blocks, there are two ramifications: 1) The local magnetic anisotropy in the R
block is much stronger than usual, but, more importantly, it assumes a uniaxial axis at oblique
angle to the c-axis. 2) The exchange coupling between R and R* blocks is weakened, since Ti
ions are not magnetic and are located at the 12k sites. It is the weakening of the exchange
coupling that allows for the local anisotropy a preferential alignment of the local spins and still
maintaining the out of phase spin alignment from block to block. We believe that this is the recipe
for a spin spiral configurations and the phenomena of magnetoelectricity in M-type hexaferrites.
This physical picture may be applicable to other types of hexaferrites as well (Y and Z-type). As
stated above we are interested in the dynamic field excitations, magnetic or elastic, in ME
hexferrites. Dynamic field excitations include ferromagnetic resonance, magnetic susceptibilities
and wave propagation in a magneto-elastic medium as in a ME hexaferrite.

IT Free Energy Representation of Spin Spiral Configuration

The quantum representation of the spin spiral by Dzyaloshinski [21] and Moriya [22] included the
following interaction form



De(S,xS,), (1)

where D is a vector proportional to exchange and local spin orbit and crystal fields interaction
parameters at local sites i and j. In order for this interaction term to contribute to potential energy,
spins at different sites could not be parallel to each other as in a spin spiral configuration, for
example. Landau-Lifshitz [20] introduced a semi-classical description of the above quantum form
as follows (CGS)

FLL(ergs/cm3)=—%MO(VxM), )

where F| is the free energy of a spin spiral configuration as derived by Landau-Lifshitz [20],
K, 1s a anisotropy energy parameter in units of ergs/cm’” and is proportional to the parameter D

in eq. 1. M is the magnetization vector representing the spin variables over a relative large
volume compared to a unit cell. Clearly, eq. 1 is microscopically applicable to single spins,
whereas eq. 2 applies to macroscopic levels of interaction. Assuming that the transition from
microscopic to macroscopic representations may be acceptable, we explore the predictions of eq.

2. For simplicity, M may be expressed as follows
M=Ma.+M,(a,cosfz-a,sinfz), (3)

where ay ,a, and a, are unit vectors in the x, y and z directions, M|| is the component of the
magnetization along the c-axis or the z-axis, see Fig. 1, M, is the component perpendicular to

the c-axis, #=2m/A , and X\ is the wavelength of the helical or spin spiral configuration along

the c-axis.
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Fig. 1 Spin Spiral configuration along C-axis for M-type ME hexaferrites and perpendicular to C-axis for Z-type ME
hexaferrites.

In order for this description to be valid A >> ¢, where c is the lattice constant along the c-axis
(~23A). Substituting eq. 3 into eq. 2 yields
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This is recognized as a classical uniaxial magnetic anisotropy energy term with a uniaxial axis
along the c-axis [37]. This is interesting in that the macroscopic Landau-Lifshitz representation
basically averages all local uniaxial anisotropy energies into one single expression (eq. 4),
although the local uniaxial axis is at an oblique angle with respect to the c-axis, see Fig. 1. This is
not surprising in view of the fact that the sum of uniaxial anisotropy energies still results into one
single uniaxial energy term as above. We will adopt the Landau-Lifshitz macroscopic
representation and designate the uniaxial anisotropy energy parameter as K or K, . Clearly, K is

related to the parameters K, , K and D (egs. 1-4). The corresponding uniaxial magnetic
anisotropy magnetic field, Hs , is defined as 2Kss /M and it applies to a spin spiral configuration
in a ME hexaferrite (a#0). For the case a=0 in normal hexaferrites it is meaningful to define also
a uniaxial anisotropy field, H ,, equal to 2K, /M. Thus, K plays a dual role depending on the

value of o, 0 or 2 0.
III Free Energy of ME Hexaferrite
The total free energy, F(ergs/cm’), is comprised of magnetic, Fy, and electric, F, free energies or

F=Fu+Fg, 5)

where

2
F, =—HM_+27M’ —KSS(M j —(isz VM
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Fig. 2. Magnetic field orientations relative to the C-axis.
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The external magnetic field, H, is applied normal to the film plane and parallel to the c-axis, see
Fig. 2. The second term in Fy is the demagnetizing energy and the third term the macroscopic
uniaxial anisotropy energy as described in section II. The energy parameter K is analogous to the
parameter K, usually designated in typical hexaferrites [35]. The subscript “ss” is to remind the

reader that this parameter corresponds to a spin spiral configuration. The fourth term is the
ordinary semi-classical exchange coupling term and is often referred to as the exchange stiffness
constant and the fifth term is the magnetic anisotropy energy corresponding to magnetization
directions in the azimuth plane (normal to the c-axis). Typically, the magnetic anisotropy field
associated with this energy term is in the order of 20-50 Oe [38]. Finally, the last term is the
magneto-electric coupling energy term. The coupling parameter a is treated as a scalar. In general
it is anisotropic and may be represented as a tensor [32]. For now it suffices for the purpose of
demonstrating the formalism of the calculations. The polarization vector is a complicated function
of the internal strain, as it must be for a ME medium like the hexaferrites. In a ME medium the
strain coefficient tensor [d] couples [P] to the stress tensor [T] or

[P]=[d][T], (7

where [d] for hexagonal crystal structure is of the form [39]

&

[d]= ®)

o o
X o o
A o o
o X o
o o
o o o

The stress tensor [T] for hexagonal structure is also cited in Ref. [39] and utilizing eq. (7) yields
the polarization components as follows

Px :d5C44 €. Py :d5C44 ezy ; PZ zd3C33 S +€OZeV/t.

The strain fields are € _,e_ and € _, V is the DC voltage applied across a film or a slab, and t is

zx 2 zz %

the thickness of the film or slab. Usually, the magneto-electric coupling is expressed as— ’E o H .
The connection between the two alphas is simply o’ = y, oy, , where y, and . are the magnetic

and electric susceptibilities, respectively. The free energy for the electric system including strain
fields is shown below [32]

Fy :_P°E+%[C33 Ezz2 +C11(Exx2 +Eyy2)+C44(ezx2 +€zy2)]
)

1 2
+ C12 Exxeyy +C13 ezz (Exx +Eyy)+Z(Cll _CIZ)Exy



The first term is the polarizing electric energy and the remaining terms are elastic energy terms
for a hexagonal crystal structure. The C’s are the elastic stiffness modulus constants and €, are

the strain fields defined in terms of elastic displacements Uj as

_ou, . _ 9y, 9,

e =—°L e =—1
“ox, 7 ox; o

1

The subscripts indicate directions X,y and z. According to Ref. [32] the ME coupling a can be
expressed in terms of the product of magnetostriction constants and piezoelectric strain
coefficients. This implies that there is an alternative way to express the free energy that couples
the magnetic system to the electric system. Either the coupling between the two systems is via a
as in egs. (6) and (9) or omit a in eq. (6) and introduce magnetostriction and piezoelectric strain
parameters in eqs. (6) and (9). Let’s now consider the alternative expression for the free energies.
Extending Landau-Lifshitz [20] formalism to hexagonal crystal structures the magneto-elastic
coupling

F

mag—el

2 2 2 2 2 2 2
=(a,0y" +a;057 )€, Haa,” +aa, )eyy Hao" +ay(a” + )] e, (10)

+a,0, €, +as00,4 €, ta0,L,0, €,

The a; coefficients may be related to the magnetostriction constants [40]. For example, the
coefficients a; may be expressed in terms of the B; and B, magnetostriction coefficients for cubic
symmetry crystals (see Ref. [41]). The key point of eq. (10) is that the strain is coupled to the

magnetic system, where o; are the directional cosines of M relative to the X,y and z coordinate
system. The other half of the alternative methodology is to introduce the piezoelectric coupling in
eq. (9) which couples the electric field or system to the strain. Basically, the mediator that couples
the magnetic system to the electric system is the strain field. Thus, for example, the excitation of
an electric field is coupled via the piezoelectric strain coefficient to the strain field. The strain
field in turn is coupled to the magnetic system via the magnetostriction coupling as in eq. (10).
For hexagonal crystal symmetry the piezoelectric coupling energy term takes on the following
form

F

piezo—el —

_d5C44(ezx Ex+ezy Ey)_d][(cll +C12)(Exx +eyy)+2C]3 Ezz]E‘z

(11)
_d3[C13(€m +€ )+C33 ezz]Ez

Yy

Thus, the addition of egs. (10) and (11) to the free energy F would replace the coupling energy
term containing o . Clearly, more parameters are introduced, but it is needed to explain, for
example, anisotropic coupling between the two systems. However, anisotropic coupling could
also be analyzed using a tensor a rather than a scalar . We will not dwell on the merit of the two
methodologies, but simply choose eq. (6) as a starting point. The object is to introduce the



formalism to calculate dynamic excitations in ME hexaferrites. Our formalism would also apply
for either methodologies (egs. (10) and (11) versus the inclusion of a coupling explicitly) as well.
So far, we have assumed that ME hexaferrites exhibit piezoelectricity only. One should be aware
that some ME hexaferrites may also be characterized as being ferroelectric. In that case terms like
second, fourth order and higher even powers [42] of P may be added to the free energy.
Furthermore, in polycrystalline ME hexaferrite of the Z-type [19] the material behaved
electrostrictive implying that the relationship between strain and electric field was quadratic [42].
In such cases egs. 10-11 would have to be modified in order to allow for the quadratic
dependence on strain. The static fields equilibrium conditions and ferromagnetic resonance
(FMR) may be calculated directly from the free energy [32] as follows.

1. Static Fields Equilibrium Conditions

In Fig. (2) directions of the various fields relative to the film surface and c-axis are shown. The
equilibrium position of static M may be determined for H fields below and above magnetic
saturation. At non-saturation the internal static field, H,, is zero, but at saturation H, #0. The

total internal magnetic field, H, = H, + h,, may be determined by taking the magnetic gradient of

F, where £, is the internal dynamic magnetic field [37]. Thus,

H =H,+h =-V,F=(H-42M, +§I/;S M)a +aP, (12)

where

2K
H =7‘”, M,=My,+m,, M,  =Mcos(8) , P=Pa_+p,andP. =€y V/t.

SS

Upper case variables are static fields which are not time dependent and lower case variables are
dynamic fields which are time dependent and they will be utilized later when FMR is discussed.

Equating H, to static fields yields the equation that
H,=(H—-4nM cos@+ H _cosO@+ ey V/t)a,. (13)

The internal static field is that field that aligns the internal magnetization, M, along or parallel to

H,, and, therefore, H, > 0. It is unphysical concept for Hy to be less than zero. Setting Hy = 0

yields the equilibrium static condition for non-magnetic saturation as

cosf=— 1 (14)
47[M—HSS

Above equilibrium condition may be derived also from Smit-Beljers [43] methodology requiring

%:O,whereby F is expressed in terms of #and ¢. In our representation, F is expressed

explicitly in terms of static and dynamic fields. Typically, P, is relatively small compared to Hg
and it has been omitted in above equilibrium condition. The magnetization component along H is
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simply M, = M cos@ assuming single domain rotation, for example. Eq. (14) applies for
4zM =2 H_ and the ME films being single crystal. For polycrystalline films the magnetic
anisotropy field would average to zero and Hys may be omitted in eq. (14). For H  >47zM , the

spontaneous magnetization alignment would be in the positive or negative z-directions as in M-
type hexaferrites, but not in Z-type. Perhaps, magnetic multi-domain analysis may be more
appropriate  [44] for M-type hexaferrites. In summary, at magnetic saturation

Hy=H—47M + H .

Similarly, Hyp may be derived for H in the film plane and it is equal to H, as in the case of Z-type
hexaferrites, see Refs. [35] for description of different types of hexaferrites. In Fig. 3 My is
plotted as a function of H for H parallel and perpendicular to the slab plane of a Z-type hexaferrite
[45]. Clearly, the hard axis of magnetization was pointed along the c-axis or perpendicular to the
slab plane, and the magnetic anisotropy energy is characterized as being planar. The deduced
parameters from this data were the following: 4zM =3100G and H, = 65000e . Typically, for Y

and Z-type hexaferrites H,> 9000 Oe [35]. The fact that technical magnetic saturation is not

reached implies that it takes more field to align the canting of the spins at each site (see Fig. 3).
Equivalently, H cannot overcome exchange fields between sites.
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Fig. 3 Vibrating sample magnetometer (VSM) measurements of the magnetization versus magnetic field for H
parallel (||) and perpendicular (L) to the plane of the ME slab material (Z-type hexaferrite).

2. Ferrimagnetic Resonance Excitations in ME Hexaferrites



For H values below magnetic saturation Hy = 0 and, hence, FMR may not be observed. In
saturating fields FMR condition may be derived from the equation of motion of the dynamic
components of the magnetization. The normal modes of FMR excitations are m, and m, for H
applied normal to the film plane and my and m, for H in the film plane (H along the y-axis). The
equation of motion for M is then

1 dM

—7=M><Hl.EMO><hl.-+-m><H0 ,where y=g(2rx1.4x10%)rad/Oe ,g~2. (15)
4

and

M=M,+m ; My=Ma, ; Hy=(H-42aM+H_ +oeyV/t)a, ;

mZ

+ + .
v op.)a. +op

hi = (—47”712 + Hss

The equation of motion is linearized by omitting terms consisting of the product of two dynamic
variables, p, and m,, since they are assumed to be small compared to linear terms in my or my and
px Of py. As such, the equation of motion simplifies to

’

.
Jj—m,=mH, ,and

/4
jﬁmy =-mH, , whereHOI =H,—4m0M and 5=%=% .
/4 m, m,
Thus, the FMR condition becomes
CoH, =H-4nM+H_ +ae,yV/t—4mM . (16)
4

In the limit that oo = 0 and no spin spiral configuration (K =0) the FMR condition for H applied
perpendicular to the film plane simplifies to the well-known result that [37]

Lo H-dmm .
4
For a # 0, the FMR condition is given in eq. (16). There are two observations to be made in this

limit: 1) The FMR condition in eq. (16) contains a static field FMR resonance shift (ag, .,V /t )

from the application of a DC voltage V. The dynamic field shift (470M ) in eq. (16) is somewhat
different from previous reports [1-10]. 2) For H = 0, eq. (16) predicts the so-called zero field
FMR [41], if Hys > 4nM for single domain excitations. However, if magnetic multi-domains are
formed for H = 0, zero field FMR is predicted for arbitrary values of Hys . The zero field FMR
resonance conditions are approximated as follows:

Lo H_ —4nM +aeyV It —47M (16a)
y



For single magnetic domain

9zHSS+0a€0;(eV/t—4ﬂ'67\/[ , (16b)
/4

For magnetic multi-domains [44].

In-plane FMR may be considered with the modification of the free energy. The Zeeman energy
term or magnetizing energy term includes H along the y-axis, for example. Without going through
the same formalism as above the FMR condition is quoted for in-plane FMR assuming Z-type
hexaferrite as (we have data [45] for this hexaferrite). Since a#0, we may write

(%)2 = (H +47M + H__ — AnM)(H — 476M). (17)

In the limit that H = 0 eq. (17) implies that (9)2 <0, assuming ¢ >0.
v

In the limit o= 0 eq. (17) reduces to the well-known result that [37]

(%)2 = (H +47M + H,)(H) .

It is pointed out that there is no static magnetic field shifts in the FMR condition as in eq. (16)
upon application of DC voltage. This a direct result of the fact that o is assumed to be a scalar
rather than a tensor. Let’s now analyze recent [45] FMR resonance data, see Fig. 4, on Z-type
hexaferrite utilizing the data [44] of Fig. 3. The deduced value of the g factor was g =1.90. The
fact that g<2 implies that orbital contribution from Co substitutions contribute to the lowering of g
value.

dP/dH (a.u)

05 10 15 20 25 30 35
H (kOe)

Fig.4 FMR of Z-type hexaferrite for H in the slab plane (see Fig. 3 also). dP/dH is the field
derivative of the power absorbed by the sample in arbitrary units.
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IV Magneto-elastic Excitations in ME Hexaferrites

The mediator that couples the magnetic system to the electric system is the strain fields in ME
hexaferrites. Thus, elastic waves may be excited via the electric system, since the electric system
is coupled to elastic waves by the piezoelectric strain coupling. The counterpart to piezoelectricity
is the magnetostriction coupling in the magnetic system. The point of this exercise is to show that
the ME o coupling takes into account all of these internal couplings “automatically”. The proof of
the latter statement is to substitute egs. (10-11) into egs. (6-9) and omit the a coupling term in eq.
(6) and show that the same results are obtained either way. We will consider the simpler approach
— scalar a coupling term only. The dispersion relation between frequency and propagation
constant, k, is calculated for H perpendicular to the film plane whereby spin wave modes, elastic
waves and electromagnetic propagation modes are excited. Although propagation of the waves is
assumed to be perpendicular to the film plane or parallel to the c-axis, the formalism is applicable
for arbitrary direction of k. The formalism involves the coupling of three sets of equations:
magnetic equations of motion, elastic equations of motion and Maxwell’s equations. The algebra
encountered in coupling all three sets of equations is formidable, but electromagnetic effects due
to Maxwell’s equations can be included in ad-hoc manner [37] simplifying the formalism. Proof
of the ad-hoc approach is given in the appendix.

The magnetic equations of motion can be readily extended to include elastic strain fields and spin
wave fields using egs. (15) as a starting point.

. 24 ,
J;mx =m, (H, +Fk )—Mop,, (18)
iZm :—mx(H0+%k2)+M0px, (19)

where
px = d5C44 sz s and
py = d5C44 ezy *

The Hamilton-Jacobi principle [46] is applied to obtain the elastic equations of motion and they
are
0°U, om

- a'dsc44 a_; ) (20)

dZUX p—

dr* =C

4 "N 2
0z*

P
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d’U, o°U, om,
p7:c44az—2_adsc44¥’ 21

d’U, 9°U.

O 22

where

p is the crystal density, A is the exchange stiffness constant [47] and U; are elastic

displacements. It can be shown that the same set of eqs. (18-22) can be derived by using eqs. (10-
11). Assuming solutions of the form e/‘“™ and demanding non-trivial solutions of the field
variables a dispersion relation is obtained by expanding the following determinant and setting it to

Z€10.

- jﬁy) H, +%k2 0 jked C,, 0
H, %kz j% jked C,, 0 0
det| Jjkod C,, 0 o = Cu g 0 0 —0.  (23)
P
0 jked C,, 0 o~ Su g 0
Yo,

0 0 0 0 w - Sup
i P

Expanding the above determinant yields the following dispersion relation

2 2
(@~ Sy, + 2 ey~ 2 2 - S e )m, + 22 ke Mad o 10 M (0,00t =0
p M y p M p p

2

(24)

The term (@’ —&kz) multiplies the above eq. 24 so that it factors out and is equal to zero.
o)

Thus, the longitudinal acoustic mode is uncoupled to spin waves or the other two transverse
acoustic branches or modes, and the dispersion relation is written as



The longitudinal acoustic velocity is identified as v, = .|—2 . The two transverse branches or
ol

modes are degenerate for frequencies above and below the approximate FMR frequency or the
crossing region between the spin wave branch and the two transverse acoustic modes, see Fig. 5.

. . C :
The transverse acoustic velocity is thenv, = |[—* . The following parameters were assumed for

Yo,
the plot of Fig. 5: 4= 0.4><10_6ergs/cm,p =5.3,g=24nM =1400G,d, = 1.1x1o™ m/v, Cy =

1.0x10" ergs/cm3 , C33 =3C44. The conversion of ds to CGS units is 3x10*. The uniform mode
(k=0) FMR excitations occurs at Hy =3500 Oe corresponding to a FMR frequency of 9.8 GHz.
The spin wave branch (SW)) intersects the two transverse acoustic branches, but only one is
dynamically coupled to SW; branch, splitting the two branches at the intersection. The other spin
wave branch SW, consists only of imaginary propagation constants, see Figs. 5-6. As such, this
spin wave branch represents attenuating spin wave magnetization fields. It is often referred to in
the literature [48] as a surface spin wave mode, since the spin wave is mostly localized near the
surface due to attenuation. Increasing o de-localizes the spin-wave near the surface, compare Figs.
5 and 6 for imaginary k values.

ME Dispersion Diagram

SW.

0O
o

16 10 5 2 4 6
Imag-k (rad/cm) x10° real-k (rad/cm) x10°

Fig. 5 Plot of dispersion relation between frequency and Re and Im(k) for o = 1.
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ME Dispersion Diagram

1 Il I L fal 1 ! L 1
10 8 6 4 2 "0 2 4 6 8
Imag-k (rad/cm) x 10° real-k (rad/cm) x 10°

Fig. 6 Plot of dispersion relation between frequency and Re and Im(k) for o = 10.

The splitting of the cross coupling between one of the TA and SW, branches is proportional to
the product of a , ds and Ca4. For example, we varied the value of a between 0.3 and 10.0 (CGS
units) and calculations of the dispersion indicate: (1) The spitting increased proportionally with a
. (2) For low values of k the modes are an admixture of spin waves and acoustic transverse
modes. The longitudinal acoustic mode is unaffected by the magnetic modes (see Figs. 5-6).
However, in some special experimental conditions the longitudinal mode can be made to interact
with the magnetic modes. Interaction between spin waves and longitudinal acoustic waves may be
actuated by applying H in the film plane. For this field configuration the normal modes of
magnetic FMR precession are my and m, . Whereas my may couple to Uy , m, may couple to U,
via the ME coupling. Thus, all of the acoustic branches would couple to the spin wave branch.
We anticipate that the coupling between branches would not be uniform, since usually C;; # C,,

and d, #d,[39]. However, invoking an anisotropic o would allow for interaction between

volume spin wave modes and longitudinal acoustic branches or modes.

Clearly, the spin wave dispersion no longer obeys the k* law for frequencies near FMR,
especially for high values of a (see Fig. 6). For example, in a standard standing spin wave (SWR)
resonance experiment [49] the resonant field positions usually obey the n” law, n is the SW order
number. It is noted that this branch admixes with the TA branch such that it’s dispersion increases
faster than k” as it transitions to a TA mode. In fact, at high frequencies and high a values the two
TA modes are no longer degenerate. Excitations of standing spin wave modes may be possible in
ME films of ~1 micron in thickness and exposing the film to an h field excitation. Standing TA
modes may be excited in a similar manner by exposing the ME sample to e field excitations.
However, these dispersions imply that the nature of the fields within the ME sample may
transition from one type of field excitation to another form of field excitation depending on the
frequency of operation.
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In the calculation of the dispersion relationships as shown in Figs. 5-6 Hy was fixed at 3500 Oe
and, therefore, H = 4500 Oe. It is possible in ME hexaferrites to choose a sample such that 4tM ~
Hgs so that zero field FMR may be observed. The advantage of this situation or experimental
condition is that internal static and dynamic fields induced by the ME effect begin to compete
with fields that allow for ordinary zero field FMR. For example, for a =3.2 the dispersions are
shown in Fig. 7. FMR occurs for Hy = 100 Oe or 280 MHz. This plot is very reminiscent of Fig. 6
except that FMR is at much lower fields or frequencies. Here again the two TA modes are no
longer degenerate, and the same observations about Fig. 6 also applies here. With the application
of a static electric field of E ~ 20,000 v/m, we see a dramatic change in the dispersions. For
example, a voltage of 20 mv across the film thickness would be sufficient to generate a static
magnetic field of 20 Oe. Basically, SW,; branch has flip-flopped with the SW; branch, see Figs. 7-
8. Also, FMR frequency was lowered to 224 MHz. In addition to the ordinary FMR mode at

®_u » (280 MHz), there is an extraneous FMR mode at approximately @ oH o —M(od,)’C,,.
/4 /4

It is predicted that for the parameters chosen above, the FMR frequency of the extraneous mode
occurs at approximately ~ 40 MHz which corresponds to the lower resonance at k = 0. Thus, it
appears that there are two FMR modes at k = 0. Ordinarily, there is only one uniform precession
mode at k = 0. Also, the character of the wave (either spin wave or acoustic) changes upon
application of a static electric field. Thus, the effect of the a coupling is quite pronounced and it
has the greatest impact on dispersions, at low frequencies (~MHz ranges). We believe that these
type of effects are important to potential new applications and future ME experiments.

ME Dispersion Qiagram
x 10

sW SW

10 15
real-k(rad/cm) x 10°

15 10 5
Imag-k (rad/cm)

Fig. 7 Frequency versus propagation constant, k, for a=3.2, Hy=100, and E = 0.
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Fig. 8 Frequency versus propagation constant, k, for a=3.2, Hy=80, and E = 20,000v/m ( ~ 20 Oe).

As in Figs. 5-6 the TA; acoustic mode transitions into a surface spin wave mode, see Figs. 7-8.
The electromagnetic (em) branch has been omitted so far in the dispersion relation above. The
inclusion of the em branch would modify only the SW branches, since k ~ 3rad/cm at 10 GHz, for
example. The k values of the acoustic branches extend well beyond 3 rad/cm at the same
frequency so that no coupling between the em branch and acoustic branches is expected.
However, at low frequencies, where zero field FMR may be excited, the em branch may couple to
all branches. The dynamic magnetic field, / , in the magnetic equation of motion is coupled to the
electric field, ¢ , in Maxwell’s equations giving rise to the em branch. By uncoupling Maxwell’s
equations /# may be expressed in terms of 7i . As such, Maxwell’s equations are directly coupled
into the magnetic equations of motion. A simpler way (see appendix) to introduce
electromagnetic modes or branches in eq. (24) is to make the “transformation” in the dispersion

relation of eq. (24) that

Hy=Hy+——0 .

V Conclusions and Discussions

There have been many reports about ME effects on static field changes of electrical polarization
and magnetization upon the application of static fields. We have introduced a formalism by which
static and/or dynamic internal fields can be accounted for upon application of static or dynamic
electric or magnetic fields. The static field measurements [45] seem to confirm the view proposed
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by Landau-lifshitz that the spin spiral configuration can be described by a simple uniaxial
magnetic anisotropy energy term only. Experimentally [45], the inclusion of the uniaxial
magnetic anisotropy field in the FMR condition is consistent with a g value of ~ 2 for ME
hexaferrites. Our calculations predict FMR resonance shifts in the order of 5-20 Oe with the
application of a static electric field or DC voltage in the order of 1 volt or less in films. This
prediction should be compared with measured shifts of 0.2 Oe in Ref. [50] using impure bulk
lithium ferrites at very high DC voltages (~ 500 volts). Furthermore, it is predicted at low
frequencies (~MHz ranges), near zero magnetic field FMR frequencies, there is an extra uniform
precession FMR mode besides the ordinary FMR mode which can only be accounted by magneto-
electric a coupling fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to
the o coupling scale as o, the shifts in the new discovered FMR mode scale as a” . For example,
for k = 0 there are two FMR resonant modes: one FMR mode is characterized as an ordinary
mode resonating at 280 MHz and the extraneous mode resonates at 40 MHz.

Also, magneto-elastic dispersions were calculated and it is predicted that the effect of the a
coupling are the following: 1. The strength of admixture of modes and splitting in energy between
spin waves and transverse acoustic waves is proportional to a. 2. The degeneracy of the two
transverse acoustic wave modes is lifted even for relatively low values of a. Interestingly, at low
frequencies near zero field FMR frequencies the surface spin wave mode branch flip-flops with
the volume spin wave branch whereby one branch assumes real values of the propagation
constant and the other purely imaginary upon the application of a static electric field.

Magneto-elastic excitations in ME hexaferrites may be generated or established with the
application of localized dynamic e and h fields setting up standing modes in finite
dimensionalities of samples. The effect of a on the dispersion is quite dramatic at low as well as at
high frequencies even for values of a not exceedingly high (in MKS units o ~ 10 ). We believe
that the impact of ME hexaferrites to modern day technologies and science will be felt in the near
future even though the upper limit in o values has not been reached yet.

Appendix

Re-writing the equations of motion with 4 included one obtains

’ ,and

. @ 24
j;mx =m,(H, +Wk2)—M047y — Mh

i Cm = m (H, + 2252+ Mop, + M.
14 M

y
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The equations expressed as above lend themselves readily to the calculation or determination of
magnetic susceptibilities in a tensor form [y,]. After uncoupling Maxwell’s equations and

assuming propagation in the z-direction the relationships between /# and 7 become [35]

hx = 422’7/”): 9
k
-1
w'e
47m
hy = 2—y ) and
k 1
w'e
h, =—4mm,

In a linear excitation m, ~ 0. By substituting above relationships into the equations of motion for
the normal modes one obtains

N0, 47M 24 ,
];mxzmy[(H0+1_ e )+M2k ]-Mop, , and
w'e

47M 24
P )+ e kK*1+ Maop. .

w'e

.
];my = _mx[(HO +

1-—

This proves that the above ad-hoc transformation may be substituted in the dispersion relation, eq.
(24).
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