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Using an adaptation of Schwinger Boson Mean Field Theory (SBMFT) for non-uniform systems, we study the
nature of low-energy spin excitations on the square and Bethe lattice at their percolation threshold. The optimal
SBMFT parameters are interpreted as onsite potentials and pairing amplitudes, which enables an explanation
of why emergent local moments develop in this system on dilution [Phys. Rev. Lett. 97, 117204 (2006);
Phys. Rev. Lett. 111, 157201 (2013)] and why the corresponding single particle frequencies are driven to
anomalously low values. We discuss how our mean field calculations suggest the strong link between the
presence of sublattice imbalance and long range antiferromagnetic order, and why linear spin wave theory is
inadequate for capturing this relation. Within the SBMFT framework, we also extract an energy scale for the
interaction between emergent moments, which show qualitative agreement with many-body calculations.

I. INTRODUCTION

The concept of emergence is central to condensed matter
systems. This means that an effective low-energy description
of a system can be made in terms of emergent degrees of free-
dom and interactions between them, which might have differ-
ent properties compared to the original ingredients. For ex-
ample, dilution of quantum magnets in the form of vacancies
or substitution with non-magnetic ions creates emergent lo-
cal moments [1–5] which influence the spin texture [6], mag-
netic susceptibility [1, 7], specific heat [1] and excitation spec-
tra [4, 5]. Recent work also shows how random onsite mag-
netic fields in spin chains create emergent composite spins
which are exponentially localized in space, resulting in a non-
equilibrated "many-body localized" state [8, 9].

The subject of interest here is that of dilution to the percola-
tion threshold i.e. when the non-magnetic impurities are ran-
domly distributed and their number is macroscopically large
enough to create a finitely ramified fractal cluster. In this case
an anomalous energy scale in the low-energy spectrum ap-
pears, lower than the usual rotor states [10]. The presence
of local regions with an excess of one kind of sublattice sites
over another give rise to "dangling spins" [5], whose mutual
interactions create low-energy quasidegenerate states [4]. The
energy splittings are exponentially small in the average sepa-
ration between two such emergent spins.

While many facets of this problem are now understood, a
simple explanation for the decoupling of such a localized mo-
ment [11] from the rest of the background [12] has remained
elusive. A mean field explanation at the level of linear spin
wave theory (LSWT) does not yield meaningful results [13];
the usual Néel state is a not a good starting point, owing to the
presence of coexisting locally disordered and ordered regions
created by dilution. Therefore an attractive possibility for ex-
plaining this effect is the Schwinger Boson Mean Field The-
ory (SBMFT) for quantum antiferromagnets [14, 15], which
is capable of capturing a wide variety of phases.

The purpose of this paper is thus two-fold. Our first aim is
to demonstrate the utility of SBMFT in the context of dilution
disorder. Going beyond limited functional forms for the mean

field parameters, often used for clean systems, we instead nu-
merically optimize all the parameters to minimize the energy,
subject to them satisfying certain constraint equations. We
find excellent qualitative agreement with respect to accurate
many-body ground state calculations carried out with density
matrix renormalization group (DMRG) [16].

The second and main aim of the paper is to interpret the
meaning of (1) the parameters corresponding to the lowest
energy solution and (2) the low lying single particle modes
obtained from SBMFT. This framework explains the funda-
mental reason for the near decoupling of "dangling regions"
in a diluted system. Our calculations have been carried out
for Heisenberg antiferromagnets (HAF) on the square and
coordination-3 Bethe lattice site-diluted to their percolation
threshold; this corresponds to 40.72% and 50% dilution re-
spectively. While the square lattice case has been extensively
studied and is relevant experimentally [17], similar qualitative
insights have been gained by studying the problem by elimi-
nating loops (Bethe lattice) [4].

The dangling regions weakly interact with each other over
the rest of the sites and form an effective unfrustrated low-
energy system of their own that maintains long range order
in this system. We provide evidence for these assertions by
studying the single particle spectrum of SBMFT carefully and
showing the existence of Goldstone modes. These modes are
found to significantly differ from the corresponding LSWT
counterparts; the latter is partially improved by the inclusion
of quartic terms which are treated in a self-consistent Hartree
Fock formalism. Finally, we connect our SBMFT results with
many-body calculations and use the numerical spin-spin cor-
relators from the theory to obtain a bound on the lowest energy
scale within a single mode approximation (SMA) formalism.

II. SCHWINGER BOSON MEAN FIELD THEORY
(SBMFT) FORMALISM

SBMFT [14, 15] has been widely successful in captur-
ing a variety of ordered and disordered phases of Heisen-
berg Hamiltonians on regular lattices [18–21]. In particular,
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SBMFT has had good quantitative agreement with many-body
numerical results for systems with long range magnetic or-
der [22] and in cases where true physical excitations of the
HAF can be created at the mean field level using SBMFT pa-
rameters [23]. However, only few studies exist where SBMFT
or fermionic SU(N) theories have been applied to probe spa-
tially non-uniform states [24–27]. Percolation clusters, with
their non-uniform geometry create a natural setting for study-
ing spatially inhomogeneous mean field states.

Here we study the nearest neighbor S = 1/2 HAF,

H =
∑
〈ij〉

JijSi · Sj (1)

with uniform couplings Jij = J on the square and
coordination-3 Bethe lattice diluted to the percolation thresh-
old. For this Hamiltonian, the SU(2) spin operators are
mapped to two flavors of Schwinger bosons, using the rela-
tions,

S+
i = b†i1bi2 S−i = (S+

i )† 2Szi = (b†i1bi1 − b
†
i2bi2) (2)

where b†im(bim) is the creation (annihilation) operator for a
boson of flavorm (m = 1, 2) at site i. Once this substitution is
performed, the resulting Hamiltonian is quartic in the bosonic
operators and is decoupled by extending the number of fla-
vors from two to N either in the SU(N) [14] or Sp(2N) [15]
approaches.

We outline the former approach [34], which is valid for bi-
partite lattices. Within this formalism, the mean field Hamil-
tonian for each boson flavor m is identical and given by,

HmMF = β†
(

Λ Q
Q† Λ

)
β+

1

J

∑
i<j

|Qij |2−
(
S +

1

2

)∑
i

λi

(3)
where S is the spin length, β is a vector given by βT =
(b1m, ..., bNsm, b

†
i1, ..., b

†
Nsm

), with Ns being the number of
sites on the lattice.

The matrix Λ is diagonal in the site basis with entries given
by Lagrange multipliers λiδij/2 which enforce the ’number
constraint’ on the bosons,∑

m

〈b†imbim〉 = NS, (4)

which is only satisfied on average. This constraint maps the
Hilbert space of the bosons to that of spins. The expectation
〈...〉 for evaluating the boson number expectation is taken in
the Schwinger Boson mean field state.

The matrix Q has entries that are all off-diagonal and are in
general complex-valued. On loop-less lattices like the diluted
Bethe lattice, the bond variables Qij can be chosen to be real
as there are no non-trivial loop fluxes [20, 26] arising from
the phases of the bond variables. Physically, these parameters
denote the strength of the pairing amplitude of bosons; in the
spin language they denote the strength to form a spin singlet
between sites i and j. The optimal Qij values in the mean

field state satisfy Qij = 〈Qij〉 = (J/N)
∑
〈i,j〉,m〈bimbjm〉 ,

where the expectation is again taken in the Schwinger Boson
mean field state and summed over the two flavors m = 1, 2
(for number of flavors N = 2).

In general, the theory allows for extended-neighbor mean
field parameters (i.e. any pair i, j), but in this paper we retain
non-zero {Qij} corresponding only to nearest neighbors. In
practice, this restriction is generally found to give solutions
that qualitatively match results from many-body calculations.

The set of mean field parameters {λi, Qij}, collectively
called an ansatz, completely specifies the solutions of
SBMFT. They are determined variationally by minimizing the
mean field energy 〈HmMF 〉 = emMF , subject to constraints.
emMF is obtained by first solving the eigenvalue problem [28],(

Λ Q
−Q† −Λ

)(
un
vn

)
= ωn

(
un
vn

)
(5)

which gives the single particle Bogoliubov modes labeled n
with frequencies {ωn}. This diagonalization gives 2Ns fre-
quencies which occur asNs ±|ωn| pairs. It is only the positive
set of frequencies that are relevant for the quasiparticle spec-
trum. The wavefunctions corresponding to these frequencies
are denoted as {uin, vin}. A linear combination of the modes
uin, vin is taken to define a length Ns mode on the lattice,

ψ±in = uin ± vin. (6)

where ψ±in are eigenvectors of an Ns ×Ns matrix with eigen-
frequencies {ω2

n}; more details of this matrix have been dis-
cussed elsewhere [29]. For the lowest frequency SBMFT
modes, we found uin (vin) to be zero (non-zero) on one sub-
lattice and non-zero (zero) on the other. For such modes, we
fix the choice of gauge in the definition of {Qij} by defining
all values to be positive or negative, so that the wavefunction
has a staggered sign pattern. The resultant mode, which we
refer to as ψin, is then used to compute all further operator
expectations. This choice of gauge is completely equivalent
to a choice of a uniform sign pattern and does not change the
expectations of any physical observables.

The zero-point quantum energies {~ωn/2} are summed to
get emMF (the mean field energy per flavor),

eMF =

n=Ns∑
n=1

1

2
ωn + eclassical (7)

where equivalence between flavors allows for the dropping
of the flavor index m and eclassical = (1/J)

∑
〈ij〉Q

2
ij −(

S + 1
2

)∑i=Ns

i=1 λi. Connection with the physical Heisenberg
spins is made for N = 2 and the energy for this special case
is given by EHeis = 2eMF +

∑
ij JijS

2.
The optimal ansatz {λ̃i, Q̃ij} satisfies the ’number con-

straint’ and the ’bond constraint’: Q̃ij = 〈Q̃ij〉, which are
implemented by introducing cost functions,

Cλ ≡
∑
i

(〈b†i bi〉 − S)2 CQ ≡
∑
〈ij〉

(Qij − 〈Qij〉)2 (8)
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which are made as small as possible. The constrained opti-
mization of the mean field variables {λi, Qij} is thus trans-
formed to a minimization problem through the cost functions
CQ, Cλ, which we perform efficiently using the Levenberg-
Marquardt algorithm [26, 30]. Typically, we found that these
costs for the solutions reported are in the range of 10−19 −
10−16 (note the square root is above machine precision).

The geometry of the diluted Bethe lattice allows for a sim-
plification in the initial choice of the bond amplitudes {Qij},
thereby improving the speed and scalability (to larger system
sizes) of the optimization algorithm. Specifically, the lack of
loops on the diluted Bethe lattice implies the absence of fluxes
and this allows us to choose all initial {Qij} to be real. The
computational complexity of the algorithm on the Bethe lat-
tice scales as∼ τQτλN3

s , where τλ(τQ) is the number of opti-
mization steps to minimize CQ(Cλ) andN3

s is the complexity
of diagonalizing the mean field Hamiltonian (3) once.

However, for the diluted square lattice the bond amplitudes
Qij , in general, can be complex-valued. This leads to U(1)
fluxes Φ through even-length loops on the lattice, defined in
the following gauge invariant manner,

Φ = Qij(−Q∗jk)Qk`...(−Q∗pi) (9)

where Q∗jk refers to the complex-conjugate of Qjk. The
smallest non-trivial even length loop on the square lattice is
a plaquette. The optimization algorithm is started by allowing
all initial Qij to be complex and both the real and imaginary
parts of the bond amplitudes are updated at every step of the
self-consistent cycle to minimize CQ (8). Since the number of
effective constraints entering CQ double (real and imaginary
part for each bond), the computational cost of optimization is
roughly twice that of the diluted Bethe lattices [35].

The optimal mean field ansatz {λ̃i, Q̃ij} on diluted square
lattices always expels fluxes such that the optimal state has
zero flux through all even length loops on the lattice. This
was verified by starting the optimizer with several initial dis-
tributions of bond amplitudes which threaded non-zero fluxes
through loops on the lattice. As the optimization proceeded,
the flux pattern of the state was tracked and in all cases we
found the ground state to be a zero flux state.

Finally, we remark that we studied specific instances of
both kinds of clusters for generating insights and confirm-
ing our assertions. However, all analyses involving disorder-
averaging were studied only for the Bethe lattice case.

III. SBMFT PARAMETERS AND SINGLE PARTICLE
MODES

The interplay between the various contributions to eMF in
eq. (7) can be understood heuristically. For a uniform one
dimensional chain of length L [36] the frequency {ωn} for
{λi = λ,Qij = Q}, momentum kn and coordination z are
given by ωn =

√
λ2 − (zQ cos(kn))2 [14]. For zQ/λ < 1

we have ωn ∼ λ − cQ2/λ (c absorbs the momentum depen-
dence) implying that ωn is minimized when Q2 is maximized

and λ is minimized. On the other hand, the second and third
terms i.e. "classical terms" in (3) favor the opposite i.e. low
Q2 and high λ. This competition between contributions to the
energy can be complicated, especially in the case of a disor-
dered system, and thus demands a numerical optimization.

Our results for the optimal ansatz for representative Bethe
and square lattices at percolation are shown in Fig.1 (a) and
(c) respectively. In both figures, the thickness of the bonds is
proportional to |Q̃ij | −min{|Q̃ij |} and the radius of the disc
on every site is proportional to λ∗i at that site.

The distribution of optimal {|Q̃ij |} in Fig.1(a),(c) is a pre-
scription for identifying pairs of spins with the strongest spin-
spin correlations. Since the nearest neighbor spin correlations
are proportional to the pairing amplitudes 〈Si ·Sj〉 = 3Q̃2

ij/2,
the mean field ground state exhibits strong dimerization (pair-
ing of nearest neighbor spins into singlets) as was predicted
in DMRG calculations [4]. Dimerizing nearest neighbor spins
for the strongest |Q̃ij | bonds pairs up all but two spins on each
of the clusters in Fig.1(a),(c).

The distribution of {λ̃i} is proportional to the local coordi-
nation of the site; singly coordinated sites have small λ̃i ∼ 0.5
and triply coordinated sites have large λ̃i ∼ 2.5. The {λ̃i}
field acts like an onsite disordered potential for the bosons.
This can be observed in the low frequency wavefunctions ψin
given by Eq. (6), which avoid sites with high values of the
potential, as shown in Fig.1(b),(d). The radius of the discs in
1(b) and (d) are proportional to wavefunction amplitudes and
the sign is encoded in the red (positive) and blue (negative)
colors. Bosons have the highest amplitude of being on sites
with the lowest potentials.

The two lowest frequency modes are each localized on
"fork" regions of three sites, (encircled in Fig. 1(a) and (c))
and decay exponentially in to the cluster (Fig. 2(a)). An ex-
ponential fit to the mode on the Bethe lattice gives a decay
constant ξ`oc of about 3 lattice spacings. These localized
wavefunctions are the SBMFT characterization of emergent
dangling spins on the cluster and are completely analogous to
similar mode profiles obtained in many-body calculations [4].

The association of dangling spins with exponentially local-
ized modes is a generic feature of both Bethe and square lat-
tice percolation clusters. We check this by using a geometrical
algorithm [4] by isolating 50-site Bethe lattice clusters with
two dangling forks and fitting exponentially decaying func-
tions of the distance away from the fork tip to the two lowest
energy modes. The fits give a disorder averaged 〈ξ`oc〉dis. ∼ 3
lattice spacings in good agreement with the decay length of
effective interactions [4]. This agreement is also indicative of
the fact that the strength of effective interactions is propor-
tional to the spatial overlap of the two modes.
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(a) (b) (c) (d) 

Figure 1. (Color online) Panels (a) and (c) show the optimized SBMFT parameters λi, proportional to radius of circles on sites, and |Q̃ij | −
min{|Q̃ij |} for nearest neighbor bonds, proportional to the thickness of the bonds, on a diluted Bethe and square lattice respectively. Panels
(b) and (d) show the lowest single particle eigenmode ψ+

i0, whose amplitude is proportional to the radius of the circles and sign is denoted by
the color. For more details about the interpretation of the parameters and eigenmodes refer to the text.

IV. NON-UNIFORM GOLDSTONE MODES IN SBMFT

A. Number of modes and effects of inter mode interactions

The correspondence between dangling spins and localized
bosonic modes in Fig.1 strongly suggests that each dangling
spin leaves its own characteristic signature in the SBMFT sin-
gle particle spectrum − a low frequency and an associated
localized mode. This implies that the count of low energy fre-
quencies in the single particle spectrum must match the num-
ber of dangling spins on the cluster.

We carry out a systematic check of this assertion by taking
an ensemble of clusters and deploying techniques developed
previously [4] to filter out the low energy single particle spec-
trum {ω`ow} for each cluster in the ensemble. The count of
frequencies in {ω`ow} is then tallied against the number of
dangling spins on a cluster determined using a geometrical
algorithm [4]. The situation is complicated by the fact that
these emergent spins are not totally decoupled; their interac-
tions push certain single particle frequencies to higher ener-
gies and some to much lower energies. Thus the counts are
found to agree in ∼ 92% of cases. Part of this discrepancy
also arises from spatially extended dangling regions, which
effectively leads to enhanced interactions with other localized
dangling spins.

Among this set of low frequencies {ω`ow}, we found that
two of them were driven to anomalously low values. These
two anomalously low frequencies are shown for the Bethe per-
colation cluster of Fig.1 in Fig.2(b). The SU(2) invariance of
the SBMFT formalism, along with the fact that these calcula-
tions are done on a finite cluster prevents these two frequen-
cies from becoming exactly zero. However in the thermody-
namic limit or in the presence of a small magnetic field, these
anomalously low frequencies will be the first to become zero
causing bosons to condense in to this mode. This signals long
range order within SBMFT and allows identification of the
two anomalously low frequencies as the finite size manifesta-
tion of Goldstone modes on the cluster.

B. Failure of linear spin wave theory

The Goldstone modes, as seen in Fig. 1(b),(d), have non-
uniform amplitudes; significantly different from the zero en-
ergy uniform Goldstone modes seen in LSWT [29]. These
results suggest that SBMFT, in a single unified framework,
characterizes emergent dangling degrees of freedom by asso-
ciating localized modes with each of them, along with cor-
rectly predicting a background of long range Néel order [12].
The maximal amplitude of Goldstone modes on the dangling
sites provides direct evidence for the crucial role of dangling
spins in stabilizing long range order on the cluster. Based
on these insights, we develop a better understanding for why
LSWT fails to qualitatively capture the non-uniformities as-
sociated with the Goldstone modes.

The crucial difference between the LSWT and SBMFT ap-
proaches is that the former breaks spin rotational symme-
try leading to the inability to capture the anomalous low-
ering of frequencies associated with emergent SU(2) invari-
ant dangling spin excitations. A comparison between LSWT
and SBMFT single particle frequencies in Fig. 2(b) for the
Bethe percolation cluster in Fig. 1(a),(b) shows that the low-
est LSWT frequency is much higher than the corresponding
frequency within SBMFT (LSWT has two exactly zero fre-
quency uniform amplitude modes by construction). We gen-
eralize this observation by taking an ensemble of 50-site Bethe
percolation clusters and plotting the disorder-averaged density
of states (D.O.S.) 〈ρ(Log[ω/J ])〉dis., 〈ρ(Log[ωLSWT /J ])〉dis.
within SBMFT and LSWT, respectively. The D.O.S. on a log-
arithmic scale, calculated within LSWT and SBMFT, is shown
in Figs.3(a),(b) respectively. The presence of an additional
low energy scale is seen in the SBMFT D.O.S. and is indicated
by a probability distribution with a long tail labeled ω`ow.

This discussion motivates us to look closely at the connec-
tion between the two approaches. We note that the LSWT
Hamiltonian maps exactly to a SBMFT Hamiltonian with
fixed λi and Qij . In LSWT, λi equals the coordination of the
site, but in SBFMFT this variable is a degree of freedom that is



5

0 5 10 15
0.10

0.15

0.20

0.25

0.30

Chemical distance dij

M
od
e
am
pl
it
ud
es

0 1

(a)

0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

F
re
qu
en
ci
es
Ω
�J

SBMFT LSWT 

ΔLSWT
ωlow

0
10.003

0.001

(b)

Figure 2. (Color online)(a) Mode amplitudes ψin for the two lowest
frequency single particle modes n = 0, 1 for the Bethe lattice perco-
lation cluster shown in Fig. 1(a),(b). Each mode (blue or red points)
is plotted as a function of separation from the dangling spin at the
fork tips. The fitted exponential decay is shown by solid black lines.
Panel (b) shows single particle frequencies for the same cluster ob-
tained within SBMFT and LSWT. The two anomalously low Gold-
stone frequencies, are indicated by an arrow and labeled as ω`ow;
their numerical values and mode numbers (n) are indicated in the

inset. The lowest non-uniform spin wave frequency is indicated by
∆LSWT .

SBMFT LSWT

(a) (b)

Figure 3. (Color online) Disorder-averaged single particle density of
states within (a) SBMFT and (b) LSWT frameworks. An ensemble of
400 Bethe lattice percolation clusters, each consisting of 50 sites was
considered. The histograms were generated by grouping frequencies
in bins of size 0.01J . The SBMFT calculations show a set of low
lying frequencies missing in the LSWT spectrum, which have been
labeled as ω`ow.

optimized. Since the optimal SBMFT solution is found to de-
viate significantly from the corresponding LSWT prediction,
we conclude that it is this variational freedom that allows the
lowest energy modes to have non-uniform amplitudes, with
largest weights in dangling regions.

Evidence for the tendency to form localized modes can be
seen by including higher order terms in the spin wave expan-
sion; for the purpose of this paper we have retained the order
1/S terms. A Hartree Fock (HF) decoupling of the quartic
terms is applied and the resultant mean field equations are
solved self consistently. Every iteration of our calculation
cycle lowered the energy and showed gradual localization of
the lowest modes, but we were unable to converge our solu-
tions. This is not a problem with our implementation; instead
it is evidence of growing spin fluctuations which eventually
violate the assumptions of the Holstein-Primakoff expansion.
The general inadequacy of LSWT and partial improvement
with HF compared to SBMFT is confirmed with our results
for certain spin-spin correlators shown in Fig. 4, where the
three methods are compared to the corresponding near-exact
DMRG values. (For a detailed exposition of the calculation of
transverse correlations in spin wave theory, we refer the reader
to Ref. [31].)
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Figure 4. (Color online) Nearest neighbor in plane spin-spin correla-
tions, defined to be 〈Sx

i S
x
j + Sy

i S
y
j 〉, for bonds taken along the path

shown in Fig. 5(a), from various methods: linear spin wave theory
(LSWT), Hartree Fock (HF), Schwinger Boson mean field theory
(SBMFT) and the density matrix renormalization group (DMRG).
The HF results are used from the iteration before the convergence of
the self-consistency cycle failed. LSWT does not capture the varia-
tions in the values of the correlation functions, while going to order
1/S (S is the spin length) using HF shows tendency to capture the
behavior of SBMFT and DMRG.
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V. SBMFT CORRELATORS AND EFFECTIVE
INTERACTIONS BETWEEN EMERGENT SPINS

A. Comparison of SBMFT and exact calculations

Through our computations for percolation clusters, we have
shown that SBMFT can capture the correct qualitative physics
of disordered systems. The next step is to assess the accuracy
of the method with respect to many-body calculations, as a
means of establishing the legitimacy of our conclusions. A
useful product of such comparisons is a better evaluation of
the SBMFT as a computational tool in situations where per-
forming accurate many-body calculations may be difficult.

In Fig. 5(a) and (b), for a diluted Bethe and square lattice
respectively, we compare the DMRG and SBMFT spin-spin
correlators for a reference site at the tip of the cluster and the
other sites along a particular path. While we observe great
qualitative agreement, quantitatively our SBMFT calculation
predicts slightly exaggerated oscillations at long distances.

A metric for a quantitative comparison of SBMFT versus
DMRG is the ground state energy per site obtained within
SBMFT by summing over nearest neighbor spin-spin corre-
lations, defined as:

eSBMFT
gs =

J

Ns

∑
〈i,j〉

〈Si · Sj〉 (10)

where the expectation 〈...〉 is taken in the SBMFT ground
state. The accuracy of the nearest-neighbor spin-spin correla-
tions found within SBMFT as seen in Fig.5(a),(b), ensures that
the maximum error in eSBMFT

gs compared to the true ground
state energy from DMRG, for an ensemble of 400 clusters of
50-site clusters, is about 1%. A comparison of these estimates
for our ensemble of clusters is shown in Fig.5(c). We also note
that eSBMFT

gs serves as a better approximation of the ground
state energy of this model compared to the mean field energy
eMF . However, it is important to clarify that eSBMFT

gs , just
like eMF , is non-variational. The mean field state, that is used
to compute both these energies, satisfies the boson number
constraint (4) only on average [20].

B. Energy scale of effective interactions

SBMFT is primarily a tool to study singlet ground states,
with no direct way to extract excited state information. Here
we use the ground-state SBMFT correlators to estimate the
singlet-triplet gap and hence the couplings between two
weakly interacting emergent spins. This estimation is done
within the single-mode approximation (SMA) formalism [32],
which we briefly explain below. An alternate, but related,
analysis maximizing the overlap of the SMA wavefunction
with the true one (from DMRG) was also used previously by
us [27].

In the SMA, the triplet excited state |ΨSMA〉 is created by
taking a weighted superposition of single spin excitations of

the ground state SBMFT wavefunction, a singlet state (Stot =
0, Stotz = 0),

|ΨSMA〉 =

Ns∑
i=1

wiS
+
i |ΨMF 〉 (11)

where {wi} are variational weights determined by minimizing
the SMA gap

4SMA = J
〈ΨSMA|

∑
〈ij〉 Si · Sj |ΨSMA〉

〈ΨSMA|ΨSMA〉
− E0 (12)

with E0 being the ground state energy.
For the Heisenberg model with uniform bond strengths, as-

suming a singlet ground state, an expression of the gap was
derived previously [27],

∆SMA =
−J

∑
〈k,l〉(wk − wl)2Gkl

2
∑
i,j wi wj Gij

(13)

where 〈k, l〉 are connected links, here the nearest neighbors,
andGij = 〈ΨMF |Si ·Sj |ΨMF 〉. The notation in this expres-
sion implicitly assumes that these links are counted twice i.e.
once for k, l and the other for l, k, hence the factor of 2 in the
denominator.

To obtain the optimal wi, we define a quadratic cost func-
tion CSMA,

CSMA ≡
−
∑
〈k,l〉(wk − wl)2Gkl

2
−Λ

 Ns∑
i,j=1

wiwjGij − 1


(14)

where Λ is a Lagrange multiplier and is exactly equal to the
SMA gap ∆SMA. On differentiating CSMA with respect to
{wi} and setting the derivatives to zero, one gets a set of linear
equations, which is compactly written as,

Mw = 2ΛGw (15)

where w is a compact notation for the vector {wi} and G de-
notes the matrix of spin-spin correlations with entries Gij . M
is a matrix with entries given by,

Mii = +2
∑
〈j〉

Gij (16a)

Mij = −2Gij for i,j connected (16b)
Mij = 0 otherwise (16c)

The generalized eigenvalue problem (15) is solved and the
minimum eigenvalue yields the SMA gap.

The optimized SMA gap provides an upper bound for the
effective interactions between two dangling spins on oppo-
site sublattices. Since we desire the distance-dependence
of effective couplings for extended objects, we define an
"effective distance", analogous to that in Ref. [4], d̃ij =∑nd

n=1

∑
i,j ψinψjndij where ψin is the amplitude of the sin-

gle particle SBMFT mode n at site i and dij is the distance
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Figure 5. (Color online)(a) Spin-spin correlations comparison between SBMFT and exact DMRG results for Bethe cluster of Fig.1(a),(b),
also shown in the inset. The correlations are between the tip spin labeled ’tip’ and all spins along the path shown in orange on the cluster (b)
Similar comparison of correlations as in (a) for the square lattice cluster in Fig.1(c),(d). (c) Comparison between ground state energies (sorted
by value) from SBMFT (red):eSBMFT

gs (10) and DMRG (blue) for an ensemble of 400 size 50 clusters. The SBMFT energy is obtained by
summing over nearest neighbor spin correlations.

Figure 6. (Color online) The decay of effective interactions Jeff
ij

versus an effective distance d̃ij (see text). All data is for Ns = 50
sized clusters.

between sites (i, j). The sum over (i, j) runs over all pairs of
sites that the two spins can delocalize over.

We select percolation clusters from a randomly generated
ensemble that have only two dangling spins on opposite sub-
lattices. As is shown in Fig. 6, we find their effective interac-
tions to decay exponentially; a fit to Jeffij = J∗0 e

−d̃ij/ξ∗ gives
(J∗0 , ξ

∗) = (0.15(2), 10.1(1))). The decay length ξ∗ is an
upper-bound on the decay constant ξ ∼ 5 obtained from our
previous DMRG study [4]. This slow decay of the interactions
with distance is due to the inability of the SMA to describe
very small gaps, a situation that occurs when the number of
dangling spins is large. However, the qualitative prediction
of exponentially decaying interactions is consistent with the
occurence of localized SBMFT modes associated with each
dangling spin (region) as shown in Fig. 1.

VI. CONCLUSION

In summary, we have carried out Schwinger Boson mean
field theory (SBMFT) calculations for the case of non-uniform
geometries, with specific emphasis on percolation clusters on
the square and Bethe lattice. We show how the theory predicts

the formation of emergent spin degrees of freedom arising due
to local sublattice imbalance [4, 5].

Our approach involved an interpretation of the mean-field
parameters, λi and Qij , which were the on-site potential and
bond-pairing amplitude respectively. We also showed that the
low-lying single particle wavefunctions have their largest am-
plitudes in regions associated with sublattice imbalance (i.e.
the "dangling spins"). Thus, these modes provide a way of
detecting emergent degrees of freedom on percolation clus-
ters.

This interpretation is made firm based on the observation
that the number of low lying single particle frequencies corre-
spond to the number of dangling spins on the cluster. The vio-
lations occur because the localized modes are not completely
decoupled; interactions between them further split the single
particle energies. We generically found an additional lowering
of the two lowest frequencies from this set; these were identi-
fied as the equivalent of (non-uniform) Goldstone modes. The
fact that regions of sublattice imbalance are involved in these
modes provides evidence for the link between the occurence
of emergent degrees of freedom and long range order on the
cluster, previously established numerically [12].

We explored how anharmonic effects in spin-wave theory
may explain the lowest modes seen in SBMFT; after all, the
LSWT Hamiltonian maps exactly to a SBMFT Hamiltonian
for large spin. In LSWT, the parameters λi are fixed by the
coordination of the respective site i; on the other hand, in
SBMFT they are variational parameters, which allows the
lowest energy modes to have non-uniform amplitudes with
large weights in dangling regions. Evidence for the tendency
to form localized modes for spin-1/2 is seen by going beyond
LSWT i.e. to order 1/S using self-consistent Hartree Fock
methods.

These observations also motivated a preliminary explo-
ration of the role of spin-length for the Heisenberg model
on percolation clusters. Unlike the spin-1/2 case, we found
our spin wave Hartree Fock results to converge for the spin-
1 case, which we take as evidence of the reduced role of spin
fluctuations. Exact diagonalization calculations on small clus-
ters also suggest that the picture of "emergent localized spins"
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may no longer apply for spin-1 as the distinction between the
quasidegenerate states and the rest of the spectrum is not as
clear as the spin-1/2 case. This hints at the increased role of
the bulk spins in the low energy spectrum, expected of a spa-
tially extended collective excitation.

Finally we comment that SBMFT for disordered systems
provides reasonable qualitative insights, complementing other
highly accurate many-body calculations such as DMRG. We
expect our implementation of SBMFT for non-uniform sit-
uations to perform equally well and scale favorably even in
other dimensions. Based on results presented here and ongo-
ing work, we believe the theory will be a useful tool in the
treatment of frustrated lattices with disorder. In addition, in
interesting cases like that of the Z2 spin liquid on the kagome
lattice, one can implement modifications to the theory that cre-
ate excitations (visons), leading to numerical realizations of
topological excitations [33].
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