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Abstract: Thermal conductivity reduction is one of the potential routes to improve the performance of 
thermoelectric materials. However detailed understanding of the thermal transport of many promising 
materials is still missing. In this work we employ electronic-structure calculations at the level of density 
functional theory to elucidate thermal transport properties of the Mg2X (X=C, Si, Ge, Sn and Pb) family of 
compounds, which includes Mg2Si, a material already identified as a potential thermoelectric. All these 
materials crystallize into the same antifluorite structure. Systematic trends in the anharmonic properties 
of these materials are presented and examined. Our calculations indicate that the reduction in the 
group velocity is the main driver of the thermal conductivity trend in these materials, as the phonon 
lifetimes in these compounds are very similar.  We also examine the limits of the applicability of 
perturbation theory to study the effect of point defects on thermal transport, and find that it is in good 
agreement with experiment in wide range of scattering parameter value. The thermal conductivity of 
the recently synthesized Mg2C is computed for the first time and predicted to be 34 W/mK at 300oC.
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1. Introduction 
The Mg2X materials, where X=C, Si, Ge, Sn and Pb, are a family of II-IV compounds that are isostructural 
to each-other in their most stable antifluorite phase. While the last four materials in the series have 
being known for a long time and have been extensively studied,1-6 Mg2C has only recently been 
synthesized, under high pressure conditions.7 Mg2Si has recently attracted renewed interest due to 
remarkable thermoelectric properties for high temperature applications, especially in solid solution with 
Mg2Sn. In particular, the figure of merit of Mg2SixSn1-x reaches ZT=1.1 at 800 K.8 This material has other 
potential applications, such as near-infrared optoelectronics9. Mg2Ge and Mg2Sn can form a solid 
solution with each other and with Mg2Si, thus allowing systematic modification of their properties. For 
example, the impressive thermoelectric performance of Mg2SixSn1-x is associated with a decrease in the 
thermal conductivity associated with alloying. It is thus not surprising that a number of first principles 
investigations of structural, thermodynamic and electronic properties have been performed5, 6, 10-13 

recently, with results being in good agreement with available experimental data. 

Thermal conductivity is an important factor in determining thermoelectric performance. Yet, the 
thermal transport properties from first principles are only available for Mg2Si and Mg2Sn.13, 14 While a 
recent investigation of Mg2Si and Mg2Ge determined phonon properties using a state-of-the-art 
approach (the quasi-harmonic approximation using fully first-principles descriptions of the interatomic 
interactions), it used a traditional and approximate approach (the Slack formula) to obtain the thermal 
conductivity itself.11 While such an approach results in reasonable agreement with experiment, it does 
not yield significant mechanistic insight into the thermal transport properties, such as the relative 
importance of the contributions of different phonon modes. Moreover, this method explicitly ignores 
contributions to the thermal transport from optical phonon modes; it is not a priori clear that they can 
be ignored. Indeed, the importance of optical modes was recently demonstrated experimentally and 
theoretically for fluorite-structured UO2

15 and theoretically for ionic compounds, such as MgO and 
SrTiO3.16 At the same time, the complete series of Mg2X compounds represents an interesting case for a 
comparative study of the thermal transport properties, due to the fact that mass of one of the 
constituents varies, while the interatomic interactions remain similar because the X element are 
isoelectronic to each other. 

In this work we present calculations of the thermal conductivity of the Mg2X-series based on Density 
Functional Theory (DFT) and the solution of the Boltzmann Transport Equation (BTE) for phonons. This 
approach has been used extensively over the last few years to produce quantitatively accurate results 
for the thermal conductivity of a number of materials.13-15, 17-21 We investigate the details of the thermal 
transport and demonstrate that optical modes are also important in this series of compounds. Further, 
we investigate the importance of isotopic disorder in these materials. Based on our calculations, 
strategies for the reduction of the thermal conductivity are suggested, which might further improve the 
thermoelectric properties of these compounds. The remainder of the paper organized as follows: 
Section 2 introduces the computational methodology.  Section 3 presents main results of our work and 
discussion; our conclusions are in Section 4. 
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2. Computational methodology 
We compute thermal conductivity from first principles via the Boltzmann Transport Equation (BTE) 
approach encoded in PhonTS software package developed by the authors22 and described in detail 
elsewhere.23 In short, the thermal conductivity is determined by computing the heat current using the 
non-equilibrium phonon density distribution function, which in turn is found as a solution of the 

linearized BTE for phonons. The BTE, in terms of the deviation nk ,
rΦ from the equilibrium distribution 

0
,nkf r   for phonons in state with wave-vector k

r
 and branch n, takes the form 
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where nkv ,
r
r

 is the group velocity of the phonon;  T is the temperature; kb is the Boltzmann constant; Λ
is the equilibrium transition rate for possible phonon-phonon interaction process. The left hand-side of 
Eq. 1 describes the drift of phonon into and out of a given volume element, while the right hand-side is 
responsible for the phonon-phonon interactions. The two key approximations employed in Eq. 1 are (1) 
the system is subject only to small deviations from equilibrium, which allow linearization in terms of the 

deviation, nk ,
rΦ ,  of the phonon distribution from the equilibrium distribution; and (2) all small regions 

of the system are at local equilibrium, allowing the distribution function on the left hand-side to be 
treated as a function of temperature only, with the spatial dependence controlled via the temperature 
field and the treatment of the phonon-phonon interactions as a perturbation to the harmonic solution. 
In this approximation, only cubic anharmonicity is considered; that is 3-phonon processes are described, 
but processes involving four or more phonons are not included. This assumption is generally accurate at 
moderate temperatures studied here.24  Perturbation theory provides expressions for the equilibrium 
transitions rates 
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where h is Plank’s constant, I, J and K are indexes that count atoms of corresponding masses m in the 

primitive cell, V is the volume of the cell, while nkIe ;;
r

r
 is the eigenvector of the phonon with frequency 

nk ,
rω . kkkIJKB ′′′

rrr
; is a  component of the Fourier-transform of the cubic anharmonic energy term, while the 

δ-functions enforce conservation of energy in 3-phonon process. The required input for the BTE, 
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therefore, are the second and third spatial derivatives of the total energy with respect to atomic 
positions, which we obtain from the DFT calculations described below. Solution of the BTE itself is found 
by the iterative technique, using the conventional cubic fluorite unit cell with a 9×9×9 k-point mesh, 
except for Mg2C, where convergent results require a denser 13×13×13 mesh. Since the thermal 
conductivity of Mg2X materials is fairly small (of the order of 10 W/mK) around room temperature, the 
results from iterative solution are only marginally different from those obtained with the relaxation time 
approximation.23 

Other anharmonic properties, presented in this paper are computed using the following approaches. 
Thermal expansion is obtained via the quasi-harmonic approximation,25, 26 which produces the 
dependence of the volume on temperature. The linear thermal expansion coefficient is then calculated 
using the standard formula: 

 
T
L

L ∂
∂= 1α . (3) 

Grüneisen parameters nk ;
rγ  of the individual phonon modes by definition as: 
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These derivatives are computed numerically by varying the volume of the simulation cell.  Averaged 
Grüneisen parameters reported here are simple averages over the Brillouin zone. 

The second and third derivatives of the total energy that are required for the calculations above are 
obtained via numerical differentiation of the DFT forces due to finite displacements of the atomic 
positions. All DFT calculations are performed using VASP computational package.27-30 In particular, we 
use the LDA and GGA-PBE approximations for the exchange-correlation functional, together with the 
PAW 31, 32 treatment of the core electrons. All calculations are performed using a 2×2×2 supercell of 96 
atoms and a 2×2×2 k-mesh for the representation of the electronic Bloch wave function, which is 
expanded in a plane-wave basis with energy cutoff of 500 eV. We verified that denser k-point mesh 
(4×4×4) and larger real space cutoff (3×3×3 supercell) result in negligible differences for phonon 
frequencies. For Mg2C the mean square differences in phonon frequencies are 0.0012 THz and 0.075 THz 
correspondingly. For Mg2C, Mg2Si and Mg2Ge, where DFT calculations predict a non-zero electronic gap, 
Born effective charges are computed via a separate calculation which employs Density Functional 
Perturbation Theory in a primitive cell with a 7×7×7 k-point mesh. These Born effective charges are 
needed to properly account for the long-range electrostatic contribution to the phonon structure.  

3. Results and discussion 
The basic structural and elastic properties of the Mg2X materials were outlined in recent publications 5, 6, 

10; thus we do not present these results, other than noting that our calculations of the lattice constants 
are in close agreement with the reported values. The data presented in Table 1 lists lattice constant at 
300K obtained via the quasiharmonic approximation; thus these lattice constants take into account 
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thermal expansion and are slightly greater than the zero-temperature value presented by Pandit and 
coworkers 5. These results show the expected trends from using LDA and PBE density functionals: LDA 
predicts lattice constants about 1-2 % smaller than PBE. Comparison with the experimental data, which 
also has some scatter, shows that that PBE consistently overestimate the lattice constant, while LDA 
underestimates, with LDA overall providing somewhat smaller error. The issue of having an accurate 
lattice constant is important due to the sensitivity of the thermal conductivity to the simulation 
volume,20 as we discuss in detail below. Therefore, we use the LDA density functional in the reminder of 
this work. 

Other phonon-related and anharmonic properties presented are the speed of sound, Debye 
temperature, coefficient of thermal expansion and average Grüneisen parameters.  All of these 
parameters agree rather well with the experimental data, where available. The Debye temperature Θ 
presented here is computed on the basis of the longitudinal (vL) and transverse (vT) speeds sound via the 
following standard formula: 33 
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where N is the number of atoms in the cell and V is the volume. This is compared with the experimental 
estimates that are based on the elastic constants measurements34 of the Debye temperature near 0 K. 
The speed of sound and Debye temperature show the same trend of decreasing with increasing mass of 
the X component. The coefficient of thermal expansion as determined from the quasiharmonic 
approximation shows the opposite trend: increasing with the increased mass of X. Since the thermal 
expansion is a basic anharmonic effect this trend might indicate increased anharmonicity with increasing 
X. Comparison with experimental data, where available, shows that DFT-LDA tend to overestimate 
thermal expansion in this series of compounds. Finally, the Grüneisen parameter of the Raman active F2g 
phonon mode, which is experimentally accessible, agrees with the upper range of the available 
experimental data3 and steadily increases across the series, although it is very similar for the Si, Ge and 
Sn compounds. The average Grüneisen parameter, on the other hand, does not show a definite trend, 
being very similar for Mg2Si and Mg2Ge, slightly smaller for Mg2Sn and significantly larger for Mg2Pb. 
Experimental values available in the literature show the same trend, but of slightly greater magnitude. 
Somewhat surprisingly, the Grüneisen parameter of Mg2C is similar to that of Mg2Pb.  

Table 1. Basic properties of Mg2X, relevant for thermal transport properties 

 Mg2C Mg2Si Mg2Ge Mg2Sn Mg2Pb 
a (Å) at 300K      
LDA 5.3953 6.2974 6.3349 6.7177 6.8218 
PBE 5.4462 6.3954 6.4596 6.8562 6.9688 

Experiment  6.2678 35,
6.338-6.39136 

6.37837,  
6.378-6.38036 

6.750-6.78036 6.760-6.83636 

Thermal Expansion  
(×105 K-1, at 300K) 
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LDA 1.52 1.47 1.61 1.69 2.2 
Experiment 
 

- 1.0938, 1.03 , 
1.2339 

1.4640,  1.43, 
1.541

, 1.4639
1.0 3  

Speeds of sound (m s-1)      
Transverse (LDA) 4622 4450 3450 2960 2290 
Transverse (Exp)  4830-4970  ~3000 42  
Longitudinal (LDA) 10617 7680 6040 5140 4000 
Longitudinal (Exp)  7650-7680  ~5000  
Debye temperature (K)      
ΘD(K), LDA 660 534 412 334 254 
ΘD(K), Exp. 34  578 492 340 275 
Grüneisen parameter 
of the Raman active F2g 
mode 

     

LDA 1.14 1.36 1.33 1.35 1.48 
Experiment   1.13-1.36 3 1.10-1.45 3 0.9-1.34 3  
Average Grüneisen 
parameter 

     

LDA 1.57 1.40 1.41 1.34 1.60 
Experiment  1.3243 1.3843 1.2743  
 

From the fundamental perspective, the phonon structure of a material is controlled by two factors: the 
masses of the compounds and details of the interatomic interactions. In Mg2X, the mass of one of the 
elements increases going down the series, while the interactions between atoms, though similar due the 
same valence electron shell structure, nevertheless show some differences. The traditional picture 
invokes mixed ionic-metallic bonding, with metallicity steadily increasing down the periodic table. 44 
Many experimental investigations of Mg2Si,45, 46 and the limited experiments on Mg2Si, Mg2Ge and 
Mg2Sn,47 assumed bonding as covalent-ionic and estimated effective charges and the degree of ionicity. 
Recent DFT calculations however clearly identify the metallic-ionic character of the bond, since the Born 
effective charge tensors are essentially diagonal 48 and there is no appreciable bond charge densities 
present in the electronic density distributions in these compounds. 4, 7, 48 From the electronic properties 
perspective, Mg2C, Mg2Si, Mg2Ge and Mg2Sn are all indirect gap semiconductors with decreasing gaps 
for the latter 3 compounds of 0.77, 0.74 and 0.34 eV.49 Our DFT calculations predict smaller gaps of 0.13, 
0.17 and 0.0 eV respectively, slightly smaller than the DFT-GGA data of 0.23, 0.17 and 0.0 eV reported 
previously.12 Our result for Mg2C is 0.75 eV, slightly greater than DFT-PBE result of 0.67 eV reported in 
the literature.7 An underestimate of the band gap is a well-known deficiency of the LDA, even to the 
extent of vanishing gap in Mg2Sn. While these smaller predicted gaps than the experimental values are 
unlikely to affect thermal conductivity calculations presented here, the vanishing gap in Mg2Sn can be 
expected to lead to a slight error. This is due to the fact that Born effective charges cannot be defined 
for a zero-gap material, and thus electrostatic long-range contribution to the phonon band structure will 
be absent in the calculations for Mg2Sn. In our previous investigation of thermal conductivity in ionic 
compounds,16 such an omission resulted in the error of about 10% in the fluoride-structured material.  
Finally, Mg2Pb is a semimetal experimentally, as well as from the DFT calculations.  
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In Figure 1 we present the phonon dispersion curves in Mg2X along the Γ-X direction in the Brillouin 
zone. Where available, results of our calculations are compared with the inelastic neutron scattering 
data.50-52 First, we note the very good agreement between measured and calculated phonon 
frequencies. Second, we observe LO-TO splitting in Mg2C, Mg2Si and Mg2Ge, a result of non-zero 
effective charges predicted by LDA in these compounds. This splitting is directly proportional to the Born 
effective charges, and is thus a measure of the accuracy of their determination. In Mg2C, the LO-TO 
splitting is 4.6 THz, in excellent agreement with previously calculated value of 4.8 THz.53 The LO-TO 
splittings in Mg2Si and Mg2Ge are calculated to be 1.9 and 1.4 THz as compared with the corresponding 
experimental values of 1.8 and 0.9 THz.1, 47 This overestimation for Mg2Ge was already noted in previous 
work.10 In our LDA calculations, due to their zero energy gap and thus zero Born effective charges, 
neither Mg2Sn nor Mg2Pb displays a LO-TO splitting. Further, we note that the acoustic branches show 
the clear influence of the mass of X. In particular, the energy of the Longitudinal Acoustic (LA) mode at 
the X point decreases with increasing mass of X. This effect is not nearly as pronounced for the 
transverse mode, which covers a very similar range of energies in Mg2C, Mg2Si and Mg2Ge, but has lower 
energy at the X point for the two heaviest compounds in the series. The speeds of sound reported in 
Table 1 naturally reflect the same trend. Finally, the optical modes are not nearly as sensitive to the 
changes in the X compound as the acoustic modes, with the exception of the lightest compound in the 
series, Mg2C. The biggest difference is a somewhat lower maximum energy, and the already mentioned 
lack of an LO-TO splitting in Mg2Sn and Mg2Pb, as compared to Mg2Si and Mg2Ge.  

 

Figure 1. Comparison between phonon dispersions in 001 direction of the BZ by LDA calculations. Circles are experimental 

data from inelastic neutron scattering available for Mg2Si50, Mg2Sn51, and Mg2Pb52. 

Figure 2 presents the phonon density of states (PDOS) as computed by DFT-LDA and smoothed with a 
Gaussian function with a width of 0.3 THz. The PDOS aggregates information about all phonons in the 
system, not only those from the specific high-symmetry directions in Figure 1. The peaks of the PDOS 
curve correspond to the phonon energies at the Brillouin zone edges, since these occupy the largest 
volume in the reciprocal space. For example, the PDOS of Mg2Pb features five peaks: at 1.7, 2.4, 5.0, 6.5 
and 7.2 THz. These correspond to the TA, LA, TO1, LO1 and LO2 mode energies at the boundary of the 
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Brillouin zone, as can be seen by comparison with Figure 1. Additionally, the absence of states between 
3 and 4 THz indicates the presence of a phonons gap in Mg2Pb, as well as a very small gap in Mg2Sn 
around 4 THz. The phonon density of states has been recently measured by the inelastic neutron 
scattering (INS) for Mg2Si39, 54, Mg2Ge39 and Mg2Sn.54 Our simulations agree well with these experimental 
data. In particular, in Mg2Ge, the phonon density of states is characterized by 4 peaks with frequencies 
from our simulations of 3.6, 4.9, 7.7 and 8.9 THz, in excellent agreement with the experimental values of 
3.6, 4.7, 7.7 and 8.8 from Bessas and coworkers.39  This comparison is important since the data of Bessas 
and coworkers to our knowledge is the only available data on phonon properties from the inelastic 
neutron scattering, as opposed to Mg2Si, Mg2Sn and Mg2Pb, where measurements of the full dispersions 
is available, as discussed earlier.  

 

Figure 2. Comparison of phonon densities of states in Mg2X (X=C, Si , Ge, Sn and Pb) from DFT/LDA. 

We now turn our discussion to the anharmonic properties of the Mg2X series of compounds. In Figure 3 
we present the thermal expansion coefficient as computed in the quasiharmonic approximation as a 
function of temperature in the range of 0-800 K. Experimental data for the entire series is rather scarce, 
with the most complete data available for Mg2Ge 3, 40, 41 and a single source for Mg2Si and Mg2Sn.3 Our 
results slightly overpredict the thermal expansion for the Mg2Ge, the compound with the most reliable 
and consistent experimental data, as was already noted in the discussion of Table 1. While our results 
for Mg2Si and Mg2Sn overestimate experiment by about 50%, they are in the excellent agreement with 
the results of the previous DFT/GGA calculations.11 The thermal expansion curves in Figure 3 show 
standard behavior, with nearly constant expansion in the classical, high temperature regime and a decay 
to zero in the quantum regime at lower temperature. The first four compounds in the series all have 
comparable thermal expansions, with differences of no more than 10% among them below 500 K. Above 
this temperature the thermal expansion of Mg2Sn increases faster than those of the other compounds, 
with the increase in Mg2Si being the slowest. The quasiharmonic approximation is intrinsically a low 
temperature analysis; thus results at high temperature should be treated with caution. Mg2Pb stand out 
among the entire series with thermal expansion predicted to be greater than that of other compounds 
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by about 40% in the entire temperature range. Unfortunately, no experimental data is available to verify 
this prediction. In viewing thermal expansion as an anharmonicity measure, no systematic trends can be 
extracted from this data.  

 

Figure 3. Thermal expansion of Mg2X from DFT/LDA calculations in the quasiharmonic approximation. 

In Figure 4 (a) we present the results of the lattice thermal conductivity calculations for Mg2X 
compounds in the temperature range of 100-800K. For all compounds, the lattice thermal conductivity 
as a function of temperature is almost linear in this log-log plot, and thus is well described as a power 
law k~T-α. Using this power law and fitting to the data points above the Debye temperatures only in 
order to avoid quantum effects produces exponents very close to unity, as predicted by celebrated 
Klemens theory.24 In Figure 4 (b), we plot the calculated thermal conductivities versus experimentally 
available ones; in this plot, the closer a given point is to the diagonal line the better is the agreement 
experiment. First, we note the excellent agreement with the experimental data available for Mg2Si, 
Mg2Ge and Mg2Sn. Our results for Mg2Si and Mg2Sn are also in excellent agreement with previous 
calculations by similar methods.13, 14 The greater values of experimentally measured thermal 

conductivity in Mg2Sn for κ<7 W/mK (those correspond to temperatures above ~300K) is due to the 
electronic contribution; thus this is not captured by our phonon calculations. The last compound in the 
series, Mg2Pb, is a semimetal, and in this compound, the electronic contribution is pronounced at all 
temperatures; thus the experimental values are larger in the entire temperature range. We discuss the 
thermal transport in this material separately below.  
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Figure 4. (a) Lattice thermal conductivities of Mg2X, X=C, Si, Ge, Sn, Pb as computed by DFT/LDA with BTE shown in a log-log 
plot to demonstrate the power law dependence on temperature. (b) The same plotted versus available experimental data2; 

Points on the diagonal signify good agreement with experiment.  

As we have mentioned in the beginning of this section, DFT within LDA produces slightly smaller errors 
for the basic structural properties than DFT within GGA-PBE. We nevertheless assess the differences 
between these two approaches for the thermal conductivity calculations. Comparison for Mg2Si and 
Mg2Ge is shown in Figure 5, together with the experimental data. It is clear that LDA shows excellent 
agreement while PBE is inconsistent. It results in very close agreement for Mg2Si while producing values 
substantially lower than both LDA and experiment for Mg2Ge. In the previous work by the authors on 
thermal transport in solid argon such underestimation was attributed to the volume effect20, as PBE 
tends to produce larger equilibrium volume than LDA, which in turn results in softer phonon modes and 
lower thermal conductivity. While this is the case for Mg2Ge, in Mg2Si only the two highest optical 
modes appear to be softer within PBE as compared with LDA calculations. As a result thermal 
conductivity is almost the same within these two approaches for Mg2Si. We conclude that LDA seems to 
be preferable for thermal conductivity calculations, since PBE in general expected to slightly 
overestimate equilibrium volume and thus to be prone to underestimation of thermal conductivity. 
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Figure 5. Comparison between LDA and PBE results for Mg2Si and Mg2Ge. 

Mg2Pb is the only semimetal material in the Mg2X family, and thus has contributions from both phonons 
and electrons at all temperatures. The thermal conductivity of Mg2Pb was carefully examined by Martin 
and Shanks,2 who measured overall thermal conductivity and electrical resistivity in order to 
differentiate different components. By estimating the electronic contribution on the basis of the 
Wiedemann-Franz law, they deduced that the lattice thermal conductivity of Mg2Pb is larger than that of 
Mg2Sn. In light of the significantly heavier mass of Pb in exactly the same structure, this situation was 
considered unlikely. A direct estimate of the phonon-mediated lattice component from the Leibfried and 
Schlomann equation55 and data for Mg2Sn concluded that the lattice thermal conductivity of Mg2Pb is 
smaller than that of Mg2Sn, as was indeed expected To resolve this discrepancy, it was suggested that 
there is a significant bipolar contribution to the electronic thermal transport56, similar to that in 
semiconductors at high temperature. Our calculations have direct access to Mg2Pb lattice thermal 
conductivity and indeed show lower values than that of Mg2Sn. This is consistent with the conclusion 
reached by Martin and Shanks that some other than pure electronic mechanism, such as bipolar 
contribution, can be significant in semimetals reaching ~50 % of the electronic thermal transport in 
Mg2Pb in the 50-200K temperature range.  

To gain a deeper insight into the thermal transport properties of the Mg2X series, we present spectral 
thermal conductivity data in Figure 6 and individual phonon lifetimes in Figure 7, both at 300K. Spectral 
thermal conductivity is defined similarly to the phonon density of states 

 ( ) ( ) ( )nk
nk

nkD ;
;

;
r

r
r ωωδκ

ω
ωκωκ −=

∂
∂= ∑ , (6) 

where  
nk ;

rκ is a contribution to the thermal conductivity from the mode with frequency nk ;
rω . We note 

that spectral thermal conductivity in Figure 6 plotted with larger Gaussian widening (0.8 THz) of the 
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individual states than the PDOS figures plotted in Figure 2 due to the much coarser grids feasible for 
thermal conductivity calculations; they thus show fewer features. The common trait of all the curves is a 
double peak in the contributions to thermal conductivity, both of which gradually shift to lower 
frequencies. In Mg2C, the first peak is produced by all the TA, LA and LO modes, while the second peak is 
produced by the LA mode, since this is the only mode in this energy range with appreciable group 
velocity. In Mg2Si, the LO mode can only contribute to the second peak, since the first peak is outside of 
its energy range; however in this compound the peaks overlap considerably. In the remaining 
compounds the LO mode has very little or no overlap with the acoustic modes; thus in Mg2Ge, Mg2Sn 
and Mg2Pb the second peak arises exclusively from the optical modes, and their contribution 
progressively diminishes. According to our calculations, their contributions to total thermal conductivity 
are 35%, 21% and 18% respectively. The first peak, due to the acoustic modes, becomes progressively 
taller and narrower: this reflects the same trend in the phonon DOS shown in Figure 2.  

 

Figure 6. Spectral thermal conductivity as a function of phonon frequency in Mg2X from LDA calculations. 

The individual phonon lifetimes, Figure 7, show the general features that have being discussed in other 
materials.19, 20 Namely, the low frequency part of the spectrum can be fitted reasonably well with a 
second degree polynomial; however, at higher frequencies the dependence is, in fact, non-monotonic.  
A surprising feature, however, is the comparison between different materials: for the entire series of 
Mg2X compounds, the phonon lifetime bands overlap with each-other and do not show significant 
differences. This indicates that the decreasing trend in the thermal conductivity with increased mass of 
X in the Mg2X series is dominated by reduction of the group velocity of the phonons, or speed of sound 
(see Table 1). This conclusion generalizes a similar observation made from the limited study of Mg2Si and 
Mg2Sn materials.13 
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Figure 7. Phonon lifetimes as a function of frequency in Mg2X. 

Finally, we considered the degradation of the thermal conductivity by addition of the point defects in 
the Mg2Si, the most promising of these materials for thermoelectric applications. The presence of the 
point defects introduces two distinct effects: mass disorder scattering and alteration of the local 
interatomic constants around the defect. For a low concentration of the defects, perturbation theory 
can be expected to apply: it adds an additional term in the BTE17, 57 linearly proportional to the scattering 

parameters, Γ, which are simple sum of contributions from mass and elastic disorder. The mass disorder 
term permits rigorous calculation,24 including the contribution from different sublattices57; however, the 
effect of altered interatomic interactions is much less well understood. Thus we consider only the mass 
disorder term, which provides a lower bound of the reduction in the thermal conductivity (i.e., an upper 
bound to the thermal conductivity itself). The mass disorder term is a combination of the concentration 
of the defects and the mass difference between defect atoms and atoms of the host material and when 
expressed in the form of the relaxation time associated with the defect scattering is given by57 
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Here, Ig  is the scattering parameter associated with atom I in the primitive cell, while all the other 

notations are the same as in section 2. Equation 7 is applicable at any concentrations for defects of 
almost the same mass as the host, such as the case of isotopic substitutions, and only at small 
concentrations if the masses are substantially different. Scattering parameters are computed using the 
following expression57 
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where i counts possible isotopes/substitutions for atom I, I
if and I

iM gives concentration and mass of 

the ith impurity, while IM is the average mass. In case of the Mg2Si, most of the alloying elements of 
interest substitute into the Si sublattice, thus it is interesting to illuminate the effect of varying 
scattering parameter for this sublattice. Correspondingly, the Mg sublattice experiences isotopic 
disorder only, and its scattering parameter is held constant. Results of the calculations of the variation of 
thermal conductivity with scattering parameter for Si sublattice in Figure 8 where the vertical lines 
denote the values for the scattering parameters for impurities of different masses and concentrations. 

We observe that the limits of applicability of the perturbative treatment of the point defects have not 
being thoroughly explored in the literature. Isotopic defects are characterized by very small values of the 
scattering parameters, driven by the small change in the defects mass. In Mg2Si these value is found to 
be 0.00074 for Mg and 0.0002 for Si, as indicated in Figure 8; in this regime perturbation treatment can 
be expected to be reliable, as was explicitly demonstrated in the case of pure Si and Ge.17 Reduction of 
thermal conductivity due to isotopic contribution in Mg2Si at room temperature is about 10%, in 
excellent agreement with the work of Li et al.13 However, upon substitution with atoms of very different 
mass even at the modest concentrations of ~1%, the value of the scattering parameter increases rapidly, 
as can be seen in Figure 8 for the cases of C, Ge and Sn substitutions at 1% into the Si sublattice. For 
instance, for a 1% substitution of Sn, the scattering parameter reaches the value of 0.095. In order to 
assess the applicability of the perturbation treatment in this regime, we compare our results with 
experimental data for Bi-doped Mg2Si58 and Mg2Si0.5Ge0.5

59 and virtual crystal approximation calculations 
for Mg2Si0.97Sn0.03 alloys.13 The values of the scattering parameter in these cases are 0.12, 0.19 and 0.25 
correspondingly. As one can see in Figure 8, perturbation theory in this regime shows overall good 
agreement with results of the previous investigations; however it is clear that mass scattering alone 
slightly underestimates the reduction of thermal conductivity, as expected. It should also be noted, that 
agreement for the largest scattering parameter is not very meaningful: the phonon mean free path in 
this regime is comparable with the interatomic distance; thus, the phonon-mediated thermal transport 
picture is breaking down. This is also evidenced in the fact that thermal conductivity is very weakly 
temperature dependent for scattering parameters greater than 0.5. 
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Figure 8. Thermal conductivity in doped Mg2Si as predicted by perturbation theory at different temperatures. Data for Sn 
(virtual crystal approximation) 13, Bi,58 and Ge59 (experimental) are at 300K. 

4. Conclusions 
In this work we have performed first-principles calculations of the thermal transport and anharmonic 
properties of the series of II-IV semiconductors, Mg2X, X=C, Si, Ge, Sn, and Pb. The thermal conductivity 
of Mg2C was calculated for the first time and predicted to be 34 W/mK at room temperature, a 
somewhat low value, considering the very low masses of its constituents. The thermal conductivities of 
the other compounds in the series agree well with the available experimental data and show a 
decreasing trend with increased mass. As a result of detailed analysis, this decrease was mainly 
attributed to the decrease of the phonon group velocity in the series, rather than any trend in the 
strength of anharmonicity. The contribution of the optical modes was also found to be significant, as 
previously seen in other fluorite compounds. We also found LDA to be more appropriate for the thermal 
transport calculations than GGA due to the slightly more accurate lattice constants, especially when 
thermal expansion is taken into account. Finally, our results for point defects scattering indicate that 
perturbation theory reliable up to quite large values of the scattering parameter, however inclusion of 
the force constant disorder might be necessary for accurate estimations of the effect. Our results also 
indicate, that doping by heavy elements, such as Bi, in the amount of up to 1% will exhaust all the 
potential in reducing thermal conductivity by the point defect scattering. 
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