
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quasiparticle properties of the nonlinear Holstein model at
finite doping and temperature
Shaozhi Li, E. A. Nowadnick, and S. Johnston

Phys. Rev. B 92, 064301 — Published  3 August 2015
DOI: 10.1103/PhysRevB.92.064301

http://dx.doi.org/10.1103/PhysRevB.92.064301


Quasiparticle properties of the non-linear Holstein model at finite doping and
temperature

Shaozhi Li,1 E. A. Nowadnick,2 and S. Johnston1

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA
2School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA

We use determinant quantum Monte Carlo to study the single particle properties of quasiparti-
cles and phonons in a variant of the two-dimensional Holstein model that includes an additional
non-linear electron-phonon (e-ph) interaction. We find that a small positive non-linear interaction
reduces the effective coupling between the electrons and the lattice, suppresses charge-density wave
(CDW) correlations, and hardens the effective phonon frequency. Conversely, a small negative non-
linear interaction can enhance the e-ph coupling resulting in heavier quasiparticles, an increased
tendency towards a CDW phase at all fillings, and a softened phonon frequency. An effective linear
model with a renormalized interaction strength and phonon frequency can qualitatively capture this
physics; however, the quantitative effects of the non-linearity on both the electronic and phononic
degrees of freedom cannot be captured by such a model. These results are significant for typi-
cal non-linear coupling strengths found in real materials, indicating that non-linearity can have an
important influence on the physics of many e-ph coupled systems.

PACS numbers:

I. INTRODUCTION

The electron-phonon (e-ph) interaction plays an im-
portant role in many systems including conventional met-
als and superconductors,1,2 organic semiconductors,3,4

fullerenes,5,6 and a large number of transition metal
oxides.7–17 In general, the e-ph interaction induces a local
distortion of the lattice surrounding a carrier, resulting in
quasiparticles dressed by phonon excitations commonly
known as polarons. In some cases these lattice distor-
tions can be large and tightly bound to the electron, such
that the quasiparticle has a very large effective mass m∗

and vanishing quasiparticle residue Z.18 In this limit, the
quasiparticle is typically referred to as a small polaron.
In most models, the crossover to the small polaron regime
occurs for λ > 1, where λ parameterizes the (dimension-
less) strength of the e-ph interaction. When λ < 1 the
carriers are still dressed by the lattice, forming large po-
larons where the lattice distortions are spread out over
many lattice constants18.

Almost all of our knowledge about the effects of the
e-ph interaction has been obtained from linear models.
The derivation of these models is standard. First, the
e-ph interaction is expanded in powers of the atomic dis-
placement. This is followed by a truncation of the expan-
sion to linear order under the assumption of small lattice
displacements. These same models, however, often pre-
dict the formation of small polarons or charge-density-
wave (CDW) phases for sufficiently large e-ph coupling,
which are characterized by large lattice displacements.
For example, the displacements in the linear Holstein and
Hubbard-Holstein models can be on the order of the lat-
tice constant when CDW correlations are significant.19–21

This can occur even for weak values of the e-ph coupling
if the Fermi surface is well nested, as is the case for the
Holstein model with nearest neighbor hopping on a cu-
bic lattice. Similarly, a small polaron can be dressed

by tens to hundreds of phonon quanta,22 implying the
presence of a heavily distorted lattice surrounding the
carrier. Clearly, these predictions directly violate the
assumptions underlying the linear model, which is an
unambiguous sign that important physics has been dis-
carded during its derivation.23

These considerations show that the higher order terms
in the e-ph interaction are likely to be important when-
ever the linear term is large (or when strong nesting con-
ditions are present). But non-linear and anharmonic ef-
fects can also be “switched on” in a weakly coupled sys-
tem, if the underlying atoms of the lattice are driven
far from their equilibrium positions by an external per-
turbation. For example, several recent experiments have
exploited optical pump pulses to drive the lattice, creat-
ing large lattice deformations or excited coherent phonon
oscillations.24–27 These excited lattice states can melt
various ordered phases28,29 or may induce transient su-
perconducting states.30,31 Here, nonlinear and anhar-
monic phonon dynamics are thought to play a vital role
in creating such transient states.25,30,31

The first attempts to include higher order terms were
made by Adolphs and Berciu (Ref. 23). They consid-
ered the effects of non-linear e-ph interactions on a single
carrier in the Holstein model using the momentum av-
erage approximation22 and found that small non-linear
couplings dramatically undress the quasiparticle. This
was attributed to a simultaneous hardening of the bare
phonon frequency and a renormalization of the bare e-
ph coupling constant, resulting in an overall weaker effec-
tive linear interaction. Later work by some of the present
authors considered finite carrier concentrations and tem-
peratures using non-perturbative determinant quantum
Monte Carlo (DQMC).20 Here too, the presence of a non-
linear interaction was found to suppress the tendency to-
wards the formation of CDW and superconducting states
found in the linear model.
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FIG. 1: (color online) The momentum dependence of the
charge susceptibility χC(q) as a function of non-linear inter-
action strength ξ > 0. The trends shown here follow those
reported in Ref. 20, where the increasing non-linear interac-
tion strength suppresses the CDW correlations in the system.
The parameters for the calculation are as indicated. Error
bars smaller than the marker size have been suppressed for
clarity.

It is important to note that the effects of the non-linear
interactions observed in Refs. 20 and 23 are significant,
even for relatively small non-linear interaction strengths.
This is illustrated in Fig. 1, which shows the suppres-
sion of the CDW correlations in the half-filled Holstein
model as a function of the non-linear coupling strength.
[The degree of non-linearity is indicated by the ratio of
the pre-factors of the quadratic (g2) and linear (g1) in-
teraction terms ξ = g2

g1
, see Sec. II A.] Here, the charge

susceptibility provides a measure of the strength of the
CDW correlations. It is defined as

χC(q) =
1

N2

∫ β

0

dτ〈T̂τ ρ̂(q, τ)ρ̂†(q, 0)〉, (1)

where ρ̂(q) =
∑
i,σ e

iq·Ri n̂i,σ, and T̂τ is the time-ordering

operator. In this case, the well-known32,33 tendency for
the linear model to form a Q = (π/a, π/a) CDW at half-
filling is suppressed for ξ as small as ∼ 0.02− 0.05.

The suppression of χC(q) for small ξ is noteworthy be-
cause this ratio is typical of many models used to parame-
terize e-ph interactions in real materials. In the transition
metal oxides, for example, electrons can couple strongly
to oxygen bond stretching modes via the modulation of
the near-neighbor transition metal 3d-oxygen 2p (TM-O)
hopping integral tpd, which depends on the TM-O bond
distance.13,34 If d is TM-O bond distance and d0 is its
equilibrium value, then this coupling mechanism leads to
terms in the Hamiltonian of the form

Hkin =
∑
〈i,j〉,σ

tpd(d)c†i,σpj,σ, (2)

where the ci,σ (pj,σ) operators act on the TM 3d and O 2p
orbitals, respectively. The hopping integral has a typical

dependence tpd ∼ (d/d0)
−β

, with β = 3.5.34 Expanding
this dependence to second order in powers of (d − d0)
gives

He−ph =
∑
〈i,j〉,σ

[
α1(d− d0) + α2(d− d0)2

]
c†i,σpj,σ, (3)

where α1 = −βtpd(d0)/d0 and α2 =
β(β+1)tpd(d0)

2d20
. (The

zeroth order terms are included in the non-interacting
terms of the Hamiltonian). Taking typical values35 for
the various parameters in transition metal oxides, one
arrives at a ratio of |ξ| ∼ 0.05. Therefore real materi-
als have intrinsic non-linear interactions that are large
enough to be relevant when the linear coupling is strong.
For this particular coupling mechanism the sign of ξ is
negative, however, this is not guaranteed for all coupling
mechanisms.36

In this paper we expand upon our previous work exam-
ining the impact of non-linear interactions on the CDW
and superconducting phases of the Holstien model.20

We present results for the single-particle electronic and
phononic properties of the model, thus providing a more
comprehensive picture of the effects of non-linearity.
Since DQMC is formulated in the grand canonical en-
semble, we are able to examine these properties at fi-
nite temperatures and carrier concentrations for the first
time. We find that the inclusion of a non-linear interac-
tion renormalizes both the effective frequency of the Hol-
stein phonon and the effective e-ph coupling strength,
resulting in significant changes in both the electronic
and phononic properties of the model. Furthermore, we
demonstrate that while the qualitative effects of the non-
linearity can be framed in terms of an effective linear
model, the quantitative effects on both the electronic and
phononic properties of the model cannot be. This conclu-
sion requires an examination of both the electronic and
phononic properties, and thus cannot be arrived at by
considering electronic properties only. Our results reen-
force the notion that the full non-linearity must be in-
cluded in order to obtain an accurate picture of both
the electronic and phononic degrees of freedom whenever
strong linear e-ph interactions are present.

II. METHODS

A. The Non-linear Holstein Model

We study a variant of the Holstein model that includes
additional non-linear interaction terms. The Hamilto-
nian is partitioned as

H = Hel +Hlat +Hint, (4)

where

Hel = −t
∑
〈i,j〉,σ

c†i,σcj,σ − µ
∑
i,σ

n̂i,σ, (5)
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contains the non-interacting electronic terms,

Hlat =
∑
i

[
P̂ 2
i

2M
+
MΩ

2
X̂2
i

]
=
∑
i

Ω

[
b†i bi +

1

2

]
, (6)

contains the non-interacting lattice terms, and

Hint =
∑
i,k,σ

αkn̂i,σX̂
k
i =

∑
i,k,σ

gkn̂i,σ(b†i + bi )
k (7)

contains the interaction terms to kth order in the atomic
displacement. Here, c†i,σ (ci,σ) creates (annihilates) an

electron of spin σ on lattice site i; b†i (bi ) creates (an-

nihilates) a phonon on lattice site i; n̂i,σ = c†i,σci,σ
is the number operator; µ is the chemical potential; t
is the nearest-neighbor hopping integral; M is the ion
mass; Ω is the phonon frequency; X̂i and P̂i are the lat-
tice position and momentum operators, respectively; and

gk = αk(2MΩ)−
k
2 is the strength of the e-ph coupling to

kth order in displacement.
The non-linear Holstein model is characterized by sev-

eral dimensionless parameters, and the specific choice
in parameterization is not unique. Here, we follow the
convention used in previous works,20,23 where the usual
dimensionless parameter λ = α2

1/(MΩ2W ) = g2
1/(4tΩ)

parameterizes the linear coupling strength and ξk =
gk/gk−1 parameterizes the non-linear interaction terms.
This choice provides a convenient interpretation with
large λ implying a strong linear interaction and large ξk
implying strong non-linear effects. In the linear model
(ξk = 0) λ > 1 implies the formation of small po-
larons. Thus this choice of parameterization is also useful
for making comparisons to our expectations gained from
studying the linear model.

B. Determinant Quantum Monte Carlo

We use DQMC to study the non-linear Holstein model.
The details of the method are given in several references
(see for example Refs. 37 - 39) and the specifics for han-
dling the lattice degrees of freedom can be found in Refs.
19, 20, and 32.

In our calculations we keep g1 > 0 without loss of
generality. Furthermore, Ref. 23 examined terms to 4th

order in the interaction and found that the largest effect
was produced by the 2nd order terms. We expect a simi-
lar result here and restrict ourselves to k = 2 while defin-
ing ξ = g2

g1
. Furthermore, we neglect the anharmonic

terms in the lattice potential, which are not expected
to significantly alter our results when ξ > 0.23 (Such
terms are needed, however, when ξ is large and negative,
see section IIIE.) Throughout this work we examine two-
dimensional square lattices with a linear dimension N (a
total of N ×N sites) and set a = t = M = 1 as our units
of distance, energy, and mass, respectively. We typically
work on lattice sizes ranging from N = 4 to 8 in size. In
general we do not observe significant finite size effects,20

which is likely due to the local nature of the interaction
in the model.

The Holstein model and its non-linear extension do
not suffer from a fermion sign problem.38,40 We are
therefore able to perform simulations to arbitrarily low
temperatures,20 however, we find that most of the physi-
cal properties we are interested in here can be examined
for β = 4/t. We use this temperature for all plots in this
work unless stated otherwise and present results for an
imaginary time discretization of ∆τ = 0.1/t. In all of
our simulations we have not observed any significant ∆τ
errors introduced by this choice.

C. Analytic Continuation

The DQMC calculation provides the phonon Green’s
function D(q, τ) = 〈TX̂q(τ)X̂−q(0)〉 measured on the
imaginary time axis. The phonon Green’s function is
related to the phonon spectral function on the real axis
by the integral equation∫ β

0

dτD(q, τ) =

∫ ∞
−∞

dω

2π

B(q, ω)

ω
. (8)

This equation also provides a normalization condition for
B(q, ω). In section III C we examine the phonon spec-
tral properties of the non-linear Holstein model, which
requires that the phonon Green’s function be analyti-
cally continued to the real frequency axis. This is accom-
plished with the Maximum Entropy method (MEM).41

The analytic continuation procedure is identical to the
one given in Ref. 42 and the reader can refer to there for
details.

MEM requires a model default function to define the
entropic prior. We adopt a momentum-independent
Lorentzian model, which is peaked at the renormalized
phonon frequency predicted by the mean-field treatment
of the non-linear interaction ΩMF = Ω + 2g2 (see sec-
tion III D) and of width t. Our results are robust against
reasonable changes in this choice of default function.

III. RESULTS AND DISCUSSION

Our results for the single-particle electronic and
phononic properties of the non-linear Holstein model are
presented in this section. We will begin by first exam-
ining the renormalization of the quasiparticles as a func-
tion of doping, temperature, and phonon energy. We
then examine how the interplay between the quasiparti-
cles and renormalized phonons affect the energetics of
the system. Following this, results are presented for
the renormalization of the phonons. Finally, after all of
these effects are examined, we demonstrate that the si-
multaneous renormalization of the electronic and phonic
subsystems cannot be quantitatively captured by an ef-
fective linear model. Combined, these results paint a
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FIG. 2: (color online) The quasiparticle residue Z(k) as a
function of band filling 〈n〉 for (a) k = (0, 0), (b) (0, π/2), (c)
(0, π), (d) (π/2, π2), (e) (π/2, π), and (f) (π, π). Results are
shown for various values of the non-linear interaction strength
ξ, as indicated in panel (f), and are obtained using an N =
4 × 4 cluster with a linear coupling λ = 0.25 and an inverse
temperature β = 4/t. Error bars smaller than the marker size
have been suppressed for clarity.

more detailed picture of how both the quasiparticles and
phonons are renormalized by the non-linear e-ph interac-
tion, which cannot be obtained by examining only one of
these subsystems. In the following sections we consider
results for the case ξ > 0. Considerations of the ξ < 0
case are presented in Sec. III E.

A. The quasiparticle residue

We begin by examining the carrier’s quasiparticle
reside Z(k) as a function of the non-linear coupling
strength and doping. This quantity is related to the ef-
fective mass via Z−1 ∝ m∗

m . It can be obtained from the
imaginary axis self-energy Σ(k, iωn) using the relation-
ship Z(k) = 1

1+b(k) ,43 where

b(k) = lim
ωn→0

−∂Σ′(k, iωn)

∂ωn
. (9)

Here, we approximate b(k) by evaluating Eq. (9) for the
lowest Matsubara frequency ωn = π/β.

Fig. 2 shows Z(k) as a function of carrier concen-
tration for several values of the non-linear coupling ξ.
These results were obtained on an N = 4 cluster, using
a linear coupling strength λ = 0.25 and Ω = t. In the
linear model (ξ = 0, red dots) the quasiparticle residue
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FIG. 3: The spectral weight at the Fermi level given by
βG(r = 0, τ = β/2) ≡ βGβ/2 as a function of band filling
〈n〉 for various values of the non-linear coupling strength ξ.
(a) Results for a N = 4 cluster and an inverse temperature
β = 4/t. (b) Results for a larger N = 8 cluster and a lower
temperature β = 5/t. All results are obtained for a linear cou-
pling λ = 0.25 and a frequency of Ω = t. Error bars smaller
than the markers have been suppressed for clarity.

decreases as the filling approaches 〈n〉 = 1, where the
Q = (π, π) CDW correlations begin to dominate the sys-
tem (Fig. 1). Note that strong CDW correlations are
observed, even for the small value of the linear coupling
used here, due to a perfect (π, π) nesting condition in
the two-dimensional Fermi surface. (For references, this
choice of parameters predicts a CDW transition temper-
ature βc ∼ 5.2/t on an N = 8 cluster for the linear
model, obtained from extrapolating 1/χC(q) to zero as a
function of β.) This nesting condition also results in large
lattice displacements in the linear model. As a result, the
inclusion of the non-linear terms has a significant effect
on the quasiparticle residue where, for ξ > 0, a significant
undressing of the quasiparticles occurs and the quasipar-
ticle residues at all momenta begin to rise. This occurs at
all doping, however, the effect is more pronounced near
half-filling. (Our ξ = 0 results are in good agreement
with Ref. 44, which examined larger system sizes using
a complementary diagrammatic Monte Carlo method.)

The formation and suppression of the CDW gap is also
reflected in the spectral weight at the Fermi level, which
can be obtained from the local imaginary time Green’s
function βG(r = 0, τ = β/2) ≡ βGβ/2.45 Fig. 3a plots
Gβ/2 as a function of filling 〈n〉 for the same parameters
used in Fig. 2. Fig. 3b plots similar results obtained
on a larger cluster and at lower temperature, where the
qualitative behavior is the same. The spectral weight
in the linear model initially grows with increasing car-
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FIG. 4: (color online) A finite size scaling analysis of Z(0, π)
as a function of 1/N where N is the linear dimension of the
cluster. The parameters for the calculations are β = 4/t,
Ω = t, and λ = 0.25. Error bars smaller than the marker size
have been suppressed for clarity.

rier concentration, but saturates as the concentration
approaches half-filling and CDW correlations begin to
dominate. When a non-linear interaction is introduced,
however, Gβ/2 increases at most fillings, which is most
pronounced near 〈n〉 ∼ 1. (The dip around 〈n〉 = 0.6
is a finite size effect due to the smaller number of mo-
mentum points in the N = 4 cluster. It is much less
pronounced on the larger N = 8 cluster.) This spectral
weight increase directly reflects the increase in the quasi-
particle residue and the suppression of the CDW correla-
tions. Previously we showed that a large non-linear cou-
pling drives the system into a metallic state at half-filling,
with the value of βGβ/2 approaching the non-interacting

value.20 The results in Fig. 3 indicate that this also oc-
curs for carrier concentrations away from half-filling.

The results presented in Figs. 2 and 3a are obtained
on a N = 4 cluster; however, they are qualitatively repre-
sentative of the results obtained for all examined cluster
sizes, as hinted at by comparing Figs. 3a and 3b. To con-
firm this, in Fig. 4 we perform a finite size scaling analy-
sis for Z(0, π) at half-filling, where the reduction in Z by
CDW correlations is most pronounced. From this analy-
sis it is clear that the qualitative behavior is not affected
by finite size effects and survives in the thermodynamic
limit. Moreover, the more pronounced finite size effects
occur when the non-linear interaction is weak. As similar
scaling results were obtained for both the charge suscep-
tibility and the electron spectral weight in our previous
work,20 we conclude that the qualitative physics of the
non-linear model can be obtained on an N = 4 cluster.

In Fig. 5a we consider the temperature dependence
of Z(k) and average displacement of the lattice 〈X〉 =

1
N2L

∑N
i=1

∑L
l=1Xi,l for the half-filled model. Here, re-

sults for Z(0, π) only are shown, since similar trends were
found at all momenta. Focusing first on the linear model,
we find that Z(0, π) decreases with temperature as the
CDW correlations begin to set in. The average lattice
displacement, however, does not exhibit the same tem-
perature dependence (see inset of Fig. 5a).46 As the non-
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FIG. 5: The (a) temperature and (b) Ω dependence of the
quasiparticle residue in the half-filled model as a function of
non-linear coupling strength ξ. The insets show the corre-
sponding expectation value of the lattice displacement. All
results are obtained on an N = 4 cluster and with a linear
coupling λ = 0.25. Error bars smaller than the marker size
have been suppressed for clarity.

linear interaction strength grows, however, the quasipar-
ticle residue increases back towards its non-interacting
value. For small ξ this rise is somewhat rapid, but it gives
way to a more gradual increase for ξ >∼ 0.1. The increase
is also accompanied by a decrease in the average lattice
displacement (inset of Fig. 5). This behavior mirrors
the observed ξ-dependence of the CDW susceptibility,20

and is consistent with the conclusion that a finite ξ > 0
undresses the carriers and relaxes the lattice distortions
normally present in the linear model.

The Ω-dependence of Z(π, 0) and 〈X〉 for the same
model are shown in Fig. 5b. Here, the ξ = 0 results
are consistent with those obtained for the 1D Holstein
model, where the tendency to form a CDW grows with
decreasing phonon frequencies.47 Consequently, both the
quasiparticle residue and average lattice displacement de-
crease as the value of Ω increases. The introduction of
ξ > 0 results in the further decrease in these quantities.

From this section we conclude that the non-linear in-
teraction with ξ > 0 acts to undress the quasiparticles
and that this is a generic result, regardless of the values
of Ω and β. The undressing, however, is much more pro-
nounced at low temperatures, for smaller values of the
phonon frequency, and near half-filling, where the CDW
correlations (and subsequently the local lattice displace-
ments) are largest in the linear model.
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〈n〉 for various non-linear interaction strengths ξ, as indicated.
Results are obtained on an N = 4 cluster and with a linear
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indicate the non-interacting result. (c) and (d) show corre-
sponding results for a larger N = 8 cluster and β = 5/t. The
remaining parameters are the same as in (a) and (b). Error
bars smaller than the marker size have been suppressed for
clarity.

B. Electron and Phonon energetics

The average kinetic energy of the electronic subsystem

〈KE〉el = −t
∑
〈i,j〉,σ〈c

†
i,σcj,σ〉 at β = 4/t is shown in Fig.

6. Results are shown as a function of band filling 〈n〉 for
various ξ and for a linear coupling λ = 0.25. For ξ = 0
the total kinetic energy −〈KE〉e increases as a function
of 〈n〉 as higher momentum states are populated in the
Fermi sea, however, the total kinetic energy saturates
as the filling increases beyond 〈n〉 > 0.6. This is due
to the saddle point in the band dispersion at (0, π) and
is also present in the non-interacting model (indicated
by the dashed line). When the non-linear interaction
is added we see an overall increase in the total kinetic
energy, which tends towards the non-interacting value at
all fillings for large ξ. This again reflects the undressing of
the quasiparticles and the subsequent increase in mobility
of the electronic subsystem.

Fig. 6b shows the corresponding e-ph interaction en-
ergy, defined as 〈E〉e−ph =

∑
i〈g1n̂iX̂i+g2n̂iX̂

2
i 〉. Unsur-

prisingly, the total e-ph interaction energy increases with
band filling as both the average number of electrons per
site and the average lattice displacement increase. This is
most evident in the linear model (ξ = 0). Increasing the
value of ξ naturally leads to smaller lattice displacements
and a significant decrease in 〈E〉e−ph.

The average kinetic 〈KE〉ph and potential 〈PE〉ph en-
ergies of the lattice are shown in Figs. 7a and 7b, respec-
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and (b) potential energy 〈PE〉ph as a function of band filling
〈n〉 for various of the non-linear interaction strength ξ, as
indicated in panel (b). Results are obtained on an N = 4
cluster and with a linear coupling λ = 0.25, Ω = 1,and β =
4/t. (c) and (d) show similar results obtained on a larger
N = 8 cluster with β = 5/t. Error bars smaller than the
marker size have been suppressed for clarity.

tively. They are given by

〈KE〉ph =
1

2∆τ
− M

2

〈∑
i,l

(
Xi,l+1 −Xi,l

∆τ

)2 〉
(10)

〈PE〉ph =
MΩ2

2

〈∑
i,l

X2
i,l

〉
. (11)

(The factor of 1
2∆τ appearing in Eq. (10) is a Eu-

clidean correction introduced by the Wick rotation to
the imaginary-time axis.19)

In the linear model we see a very weak variation in
the phonon kinetic energy as a function of filling, with a
slight decrease observed near half-filling when the CDW
correlations increase. This is consistent with prior obser-
vations of the lattice kinetic energy in the vicinity of a
CDW transition in the Hubbard- Holstein model.19 The
average potential energy of the lattice grows as the av-
erage number of carriers per site increases. When the
non-linearity is introduced and the lattice distortions di-
minish (see 5b, inset), we see an increase in the lattice
kinetic energy, which is attributed to the hardening of the
phonon dispersion. At the same time, we see a decrease
in the total lattice potential energy. Here, the non-linear
interaction has two opposing effects: the increase in the
phonon frequency increases the lattice potential energy
while the decrease in the effective linear coupling decrease
the net lattice distortions and subsequently lowers the po-
tential energy. Our results indicate that the latter effect
has the stronger impact.

The energetics reported here are completely consistent
with the conclusion that the non-linear interaction acts
to harden the phonon frequency and weaken the effective
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FIG. 8: (color online) The phonon density of states Nph(ν) =
1
N

∑
q
B(q, ν) for the half-filled model as a function of the

non-linear interaction strength. The remaining calculation
parameters are as indicated.

linear interaction, which results in an undressing of the
quasiparticles for ξ > 0.

C. Phonon Spectral Properties

In the linear Holstein model the formation of the CDW
phase is accompanied by a softening of the phonon dis-
persion to zero energy at the nesting wavevector Q =
2kF = (π, π).42,48–50 This softening is generated by the
strong nesting condition of the non-interacting Fermi sur-
face. The inclusion of the non-linear e-ph interaction is
therefore expected to modify the phonon dispersion in
two important ways: first, it will undo the softening at
Q as the CDW correlations are suppressed. Second, it
will result in an overall renormalization of the phonon
frequency, as discussed in the introduction. We con-
firm these expectations in this section by examining the
phonon spectral function B(q, ν) and the phonon density
of states (DOS) Nph(ν) = 1

N2

∑
qB(q, ν).

In the non-interacting limit, B(q, ν) and Nph(ν) are
delta functions centered at the bare phonon frequency
Ω. In the presence of a non-zero linear interaction only,
this distribution shifts to lower energy and broadens.
This is illustrated in Figs. 8 and 9a, which plot Nph(ν)
and the momentum-resolved phonon spectral function
B(q, ν), respectively, for the half-filled model. These
results were obtained on N = 8 clusters, with a linear
coupling λ = 0.25, Ω = t, and at an inverse temperature
of β = 4/t. Due to the finite value of λ, the phonon fre-
quency softens from its non-interacting value and Nph(ν)
for the linear model consists of a broad, asymmetric dis-
tribution centered at ∼ 0.60t. The asymmetry in Nph(ν)
reflects the momentum dependence of the softening and
the low-energy spectral weight in B(Q, ν), coupled with
the requirement that B(0) = 0 for bosons. This is more
easily seen in the momentum-resolved spectral function
(Fig. 9a), which has a clear Kohn anomaly at Q = (π, π).

Two prominent changes occur when ξ 6= 0. First, the

0

1

2

0

1

0

1

0

1

Momentum [1/a]
Ω

(q
) [

t]
(0,0) (0,π) (π,π) (0,0)

(a) ξ = 0

(b) ξ = 0.02

(c) ξ = 0.05

(d) ξ = 0.25

FIG. 9: (color online) The momentum resolved phonon spec-
tral function B(q, ν) for the half-filled model and for various
values of the non-linear interaction strength, as indicated in
each panel. Results were obtained on an N = 8 cluster with
λ = 0.25, Ω = t, β = 4/t and ∆τ = 0.1/t. The black squares
indicate the position of the peak in the phonon spectral func-
tion.

peak in the DOS shifts to higher energies, which verifies
the hardening of the effective phonon frequency. This
behavior is also clearly seen in the momentum resolved
spectral functions, shown in Fig. 9. Second, the pro-
nounced Kohn anomaly begins to disappear as the CDW
correlations are suppressed with increasing values of ξ.
Both of these results confirm our expectations.

D. Mean-field Treatment of the quadratic
e-ph interaction

As we have repeatedly seen, the non-linear e-ph inter-
action acts to renormalize both the bare linear interac-
tion strength λ and the bare phonon frequency Ω. Both
of these effects can be qualitatively understood at the
mean-field (MF) level for the quadratic model, where an
effective linear Hamiltonian is obtained by performing a
MF decoupling of the interaction terms proportional to

b†i b
†
i and bibi.

23 The resulting effective MF Hamiltonian
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FIG. 10: (color online) A comparison of (a) the quasiparti-
cle residue and (b) CDW χC(π, π) and pair field susceptibili-
ties χSC obtained from the non-linear model and its effective
linear model, as defined in the main text. The bare linear
coupling and phonon frequency are λ = 0.25 and Ω = t, re-
spectively. In both cases results are obtained on an N = 8
cluster and at an inverse temperature of β = 4/t. Error bars
smaller than the marker size have been suppressed for clarity.

is

HMF = Hel +
∑
i

ΩMF

(
b†i bi +

1

2

)
+
∑
i,σ

gMF n̂i,σ

(
b†i + bi

)
, (12)

where ΩMF = Ω + 2g2 and gMF = g1(1 − 2g2
Ω+4g2

) are

the renormalized phonon frequency and e-ph coupling
constants, respectively. One immediately sees that the
quadratic e-ph interaction leads to a softening (harden-
ing) of the phonon frequency and an increase (decrease)
in the effective linear interaction strength g1 for ξ < 0
(ξ > 0). These two effects combine to produce an overall
increase (decrease) in the strength of the effective dimen-

sionless coupling λeff ∝ g2MF

ΩMF
.

The MF treatment of the non-linear interaction is con-
sistent with the general trends reported here and in Refs.
20 and 23. We stress, however, that the MF description
only provides a qualitative picture of the non-linear ef-
fects. To illustrate this, we compare our DQMC results
for the full non-linear Hamiltonian against the predic-
tions obtained from two sets of effective linear models.
The first is the MF-derived model defined by Eq. (12).
The second is the set of effective linear models whose pa-
rameters are obtained by tuning the Ωeff and geff to
reproduce the electronic properties of the system.

 0.6

 0.8

 1

ξ ξ

(a) (e)

 0

 0.4
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FIG. 11: (color online) A comparison of the results obtained
for the full non-linear model and an effective linear model
where the value of the e-ph coupling constant has been ad-
justed to reproduce the electronic properties of the non-linear
model. Panels (a)-(d) show a comparison for an effective lin-
ear model with Ω = t, equal to the bare phonon frequency.
Panels (e)-(f) show a comparison for an effective linear model
with Ω = ΩMF . The top row [panels (a) & (e)] compares the
quasiparticle residues obtained with both models. The sec-
ond row [panels (b) & (f)] shows the resulting charge (solid
lines) and pair-field (dashed lines) susceptibilities. The third
row [panels (c) & (g)] show the resulting phonon potential
and kinetic energies. The potential energy has been divided
by a factor of three and is indicated by the solid lines while
the kinetic energy is indicated by the dashed lines. Finally,
the bottom row [panels (d) & (h)] show the average value of
the lattice displacement. The remaining parameters of the
simulation are β = 4/t and N = 8.

We consider the MF-derived model first. Fig. 10 com-
pares the results for the quasiparticle residue, χC(π, π),
and the pair-field susceptibility χSC calculated using the
full non-linear model [Eq. (4)] to results obtained from a
DQMC simulation of the corresponding MF-derived lin-
ear model [Eq. (12)] at half-filling. We find that the MF
model does a poor job in quantitatively capturing the
electronic properties; it underestimates both the quasi-
particle residue Z(0, π) and the tendency towards the for-
mation of a CDW when compared to the full non-linear
model. The MF model also over-predicts the magnitude
of the superconducting pair-field susceptibility when ξ is
large and under-predicts it when ξ is small.
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FIG. 12: (color online) (a) the quasiparticle residue and (b)
CDW χC(π, π) (open symbols) and pair field susceptibilities
χSC (solid symbols) as a function of band filling. The param-
eters are set as: λ = 0.25, Ω = 2t, β = 4. The results are
obtained on an N = 8 cluster. Error bars smaller than the
marker size have been suppressed for clarity.

The results shown in Fig. 10 demonstrate that the
MF treatment of the quadratic interaction can only pro-
vide a qualitative picture of the physics of the non-linear
model; however, another choice in effective model might
do a better job. We explored this possibility by adjusting
the effective coupling strength in the linear model such
that the linear model reproduce the electronic properties
of the full non-linear model. This procedure was per-
formed for two choices in the phonon frequency. First,
we set the phonon frequency equal to the bare value and
adjusted the value of the coupling strength to reproduce
the quasiparticle residue, as shown Fig. 11a. The value
of the linear coupling strength geff needed to produce
this agreement is shown in the inset (black solid 4),
where it is compared against the corresponding value of
gMF = g1 + 2g2. By tuning the value of geff we are
able to accurately capture the quasiparticle residue. The
charge and superconducting pair-field susceptibilities are
also well reproduced, indicating that this effective model
is capable of capturing the electronic properties of the
system. But when we examine the phonon properties
(Figs. 11c & 11d) we find some disagreement, partic-
ularity with respect to the predicted kinetic energy of
the lattice, where the linear model systematically under-
predicts the correct results.

The comparison between the two models can be im-
proved somewhat if we set the phonon frequency to be
equal to ΩMF and again readjust the value of geff . This
case is shown in Fig. 11e-h. Using this choice we are
again able to accurately capture the electronic properties

 0

 20

 40

 60

 80

(0,0) ( ,0) ( , ) (0,0)

C
(q

)

Momentum [1/a]

N = 8,  = 0.25, 
 = 2t,  = 4, 

 Δτ = 0.1/t, 
<n> = 1 

 = 0.00
 =-0.02
 =-0.05

FIG. 13: (color online) The momentum dependence of the
charge susceptibility χ(q) as a function of non-linear interac-
tion strength ξ < 0 at half filling. The parameters are set
as: λ = 0.25, Ω = 2t, β = 4. The results are obtained on an
N = 8 cluster. Error bars smaller than the marker size have
been suppressed for clarity.

and improve the comparison between the kinetic energy.
But this comes at the expense of the level of agreement
between the average lattice potential energy and the av-
erage lattice displacement. From this we conclude that
an effective linear model cannot capture both the elec-
tronic and phononic properties of the non-linear model,
for a fixed value of the phonon frequency. These results
show that while the qualitative effects can be understood
using an effective linear model, the full non-linear in-
teraction should be retained if one wishes to accurately
capture the effects of the non-linear interaction on both
the phononic and electronic properties of the system. A
similar conclusion was reached in Ref. 23 in the single
carrier limit.

E. Negative values of ξ

We have shown that a positive (ξ > 0) non-linear cou-
pling results in a hardening of the phonon frequency and
a renormalization of the effective linear e-ph coupling to
weaker values. But what about the case when ξ < 0,
where the MF model predicts an enhanced effective lin-
ear coupling? Before examining this case, we note that
a large negative ξ necessarily requires the inclusion of
additional anharmonic terms in the lattice potential.36

For ξ < 0 (g2 < 0) the phonon frequency given by
Ωeff = Ω+2g2 can become negative for sufficiently large
values of g2, indicating an instability in the lattice. In
this event the anharmonic terms of the lattice potential
are required to maintain stability. At present, our codes
do not contain such terms and we are unable to examine
this case in great detail. We therefore restrict ourselves
to a larger value of Ω = 2t and small values of |g2| in
order to get a feel for the g2 < 0 regime while ensuring
the stability of the lattice.

Fig. 12a shows the quasiparticle residue, χC(π, π), and
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χSC as a function of band filling for various values of
ξ < 0. These results were obtained for a linear coupling
of λ = 0.25 and on an N = 8 cluster. We find that the
quasiparticles are more effectively dressed when ξ < 0,
and the quasiparticle residue is much smaller for all fill-
ings when increasing negative quadratic interactions are
included. The CDW correlations are also significantly en-
hanced, as reflected in the charge susceptibility shown in
Fig. 12b. Both of these observations are in line with the
expected increase in the effective linear coupling. Fur-
thermore, since the CDW phase directly competes with
s-wave superconductivity, the pair-field susceptibility is
suppressed at filling values where the CDW correlations
dominate. In addition, we also see a noticeable decrease
in the pair-field susceptibility at band fillings where the
CDW does not dominate. This suggests that the negative
non-linear interaction has a detrimental effect on the su-
perconducting transition temperature, which stems from
the decrease in the quasiparticle residue. Fig. 13 plots
the momentum dependence of the charge susceptibility
χ(q) as a function of negative ξ at half filling, where it is
clear that the dominant CDW correlations are still being
set by the Fermi surface nesting condition.

IV. SUMMARY AND CONCLUSIONS

We have examined the role of non-linear e-ph in-
teractions in shaping the single-particle electronic and
phononic properties of quasiparticles in the Holstein
model at finite carrier concentrations and temperatures
using DQMC. We find that the inclusion of a positive
non-linear interaction term serves to undress the quasi-
particles leading to carriers with lighter effective masses.
This leads to changes in the energetics of both the elec-
trons and phonons, as well as the relaxation of the lo-

cal lattice distortions surrounding each carrier. This is
due to a simultaneous hardening of the phonon frequency
and renormalization of the effective linear coupling to
smaller values. We have also examined the case when
the quadratic e-ph interaction has the opposite sign as
the linear interaction, although this case cannot be ex-
plored in detail without the inclusion of additional an-
harmonic terms in the lattice potential. Nevertheless, in
our limited range of accessible parameters, we find that
a quadratic interaction results in an increased dressing
of the carriers and an enhanced tendency towards the
formation of a Q = (π, π) CDW ordered phase.

While many of the effects we have discussed can be
understood qualitatively at the mean-field level, we have
demonstrated that the quantitative effects can only be
captured by the full non-linear model. Specifically, the
effective linear models fail to simultaneously capture the
electronic and phononic properties. Therefore the full
non-linear model must be retained if one wishes to ac-
curately capture the properties of the electrons and the
phonons. Our results are in good agreement with the
results obtained in the single particle limit,23 and show
that non-linearities are relevant at finite carrier concen-
trations.
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