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The structural description of even the most basic monatomic amorphous materials are under
considerable debate. In this work, an intuitive computational technique has been developed to
construct 3D statistical density maps to directly visualize local atomic structure of amorphous
germanium (a-Ge) enabling the interpretation of recent state-of-the-art experiments and simulations.
The continuous random network (CRN) model is compared to our experimental model refined
through a reverse monte carlo routine. In this refinement a-Ge has two dominant structures; a 4-
fold coordinated tetrahedron and a buckled 3-fold coordinated local structure similar to silicene and
germanene. These structures account for 95.7% of the total atoms in a 5:2 ratio respectively. Our
method shows well defined structural ordering in the second shell of a-Ge. This novel visualization
tool enables the interpretation of complex disordered materials and reveals the bimodal structures
of a-Ge.

I. INTRODUCTION

The discovery and understanding of new amor-
phous materials drives innovation in areas such as
semiconductor1, data storage2, energy storage, and
biomedical technologies3. Consequently, there is cur-
rently a great deal of theoretical and experimental ef-
fort being directed towards an ever better understanding
of amorphous structure4–6. Experimentalists have been
able to capture radial distribution functions with un-
precedented resolution, resolving structural details previ-
ously hidden and yet to be understood7. Given the lack
of analytical models for amorphous structures, theorists
have taken advantage of increases in computing power
by incorporating first principles6 or empirical8 potentials
in molecular dynamics9 and monte carlo10 approaches to
make predictions of the underlying structures that exist
in real samples.

In contrast to their crystalline counterparts, the in-
terpretation of theoretical and experimentally-derived
amorphous structures falls relatively short. While crys-
tal analysis has benefited greatly from bond length and
angle distributions, the broad range of bond lengths and
angles for an amorphous sample10–12 makes these metrics
limiting at best. Visual techniques such as charge density
maps for crystals, do not yet have an analogous counter-
part tractable for the disordered nature of amorphous
samples. With the vastly different structures observed
in amorphous systems from metallic glasses to silica to
polymers, researchers have consistently turned to amor-
phous silicon (a-Si) and amorphous germanium (a-Ge) as
the archetypical amorphous system. Despite the many
models for a-Si and a-Ge, a description for the observed
undercoordination and signature features present in high
resolution pair correlation functions (PCFs) is yet to be
found7,13. Thus, an effective method is needed to prop-
erly visualize and compare differences between models.

The Continuous Random Network (CRN) model is

widely applied to a-Si, a-Ge and similar covalently
bonded systems9. The CRN model assumes local tetra-
hedral ordering to describe experimental PCFs. How-
ever, it is limited to 4-fold coordination, whereas experi-
mental PCFs from high-resolution x-ray scattering mea-
surements present undercoordination for both a-Si and
a-Ge. Observed undercoordination is more pronounced
in a-Ge than a-Si14, making a-Ge a particularly interest-
ing system to investigate.

In this work, we present a new method used to obtain
density contour plots of local atomic density around a
central atom. Our method preserves information about
the small local variations in structure inherent in amor-
phous materials rather than categorizing structures ac-
cording to their similarity to related crystalline struc-
tures. The rotations in our method are rigid and do not
change the atomic spacings present in the original data
set. The rotations are accomplished using quaternions to
produce averaged three-dimensional local atomic struc-
tures which we call Local Atomic Motifs (LAMs). By
visualizing the local structures from computational mod-
els using the LAM approach, we show the qualitative and
quantitative structural differences between the CRN and
an adjusted model arrived at by RMC refining the CRN
to experimental data.

II. PREVIOUS METHODS

Recent attempts at understanding local order4–6 have
numerated the Voronoi polyhedra occurring in complex
amorphous alloy structures15 and quasicrystals16. In this
method, the variations of the atomic positions in the first
coordination shell are sorted by coordination number and
geometry. The resulting geometries may be visualized to
determine the structure-to-property relationship. This
has been applied to systems where high coordination re-
stricts short-range variations to a small number of local
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geometries. In amorphous materials such binning opera-
tions can only be approximate due to the continuous na-
ture of the variations in the local structure. For systems
such as a-Si and a-Ge with predominantly tetrahedral lo-
cal structure, the nearest neighbour atoms alone do not
exclusively complete a Voronoi polyhedron. Thus, dis-
order beyond the first shell atoms results in many thou-
sands of possible polyhedra. Consequently, no new in-
sights into the structure of a-Ge and a-Si have been pub-
lished using this method.

In amorphous solids, three-dimensional visualization
of local order has seen comparatively little progress. The
only previous work going beyond the ball-and-stick model
is that of Fang et al.17 who identified structural symme-
tries by averaging the resultant densities from a cluster
alignment. This approach was one of the first of its kind
and allowed bulk metallic glasses to be probed in a new
way. However, in effecting the rotations and translations
required to stack all the local structures on top of one
another for averaging, great care must taken to preserve
the interatomic distances as obtained from experiment.
A cluster alignment designed to facilitate a visualization
must have a strictly geometric nature. The method pro-
posed by Fang et al.17 relaxes the interatomic positions
during rotation using a fictitious spring-like potential to
facilitate a quasi-rigid rotation and hence may introduce
more order than was present in the experimental data
alone. Modifications that change the relative distances
between atoms require a physical justification which is
lacking in the results of Fang et al17 and hence, their re-
sults are not quantitative. In order to advance the field
a quantitative visualization method for studying amor-
phous structures is needed. Designing such an approach
is goal of this work.

III. METHODS

A. Experiment and Samples

The a-Ge sample was created by implantation of Ge
ions into crystalline Ge with incident energies spanning
a range of 0.5 MeV to 5 MeV. High-resolution Pair Distri-
bution Function measurements (up to 40 Å−1), were car-
ried out at the Cornell High Energy Synchrotron Source
(CHESS)14 and the published results are used as a start-
ing point for this work. A PCF of a-Ge, obtained from
the CRN model is shown in Figure 1 along with an
experimentally-obtained PCF, as measured by Roorda
et al14. The CRN PCF matches qualitatively with ex-
periment, however there is a significant disagreement
between the CRN model and the experimental data in
terms of peak height. This is because the first coordi-
nation peak of the experimental PCF is extremely sharp
and resolution limited while the CRN peak is relatively
broad. The comparison of the areas under the first peak
is noteworthy because the CRN model is constrained to
a coordination number of 4.00, in contrast to the experi-

FIG. 1: Normalized pair correlation functions of a-Ge.
Experimental data14 is compared to the CRN model18

and the RMC refined data from the CRN seed19. Inset
highlights the second coordination shell features. The
refined model fits excellently with the experimental

PCF, matching all the features that do not exist in the
CRN model.

mental coordination number of 3.68 ± 0.02. The second
correlation peak of the CRN model also lacks the asym-
metric features present in experimental PCFs.

B. Reverse Monte Carlo

A reverse Monte Carlo (RMC) algorithm is applied
to the experimentally obtained PCF to recreate the 3D
atomic configuration. The resulting RMC refined PCF
can be seen in Fig. 1. The program (RMC++20) used
the metropolis algorithm for a 100,000 atom configura-
tion with periodic boundary conditions. In contrast to
the works of Cai et al.12 and Biswas et al.10, no addi-
tional constraints were applied to the RMC simulation.
The initial configuration was created by Barkema and
Mousseau18 based on a CRN method called the Wooten-
Winer-Weaire model9. The CRN model was originally
created for a-Si with spatial dimensions scaled to coin-
cide with a-Ge. The RMC modelling matched the ex-
perimental data after 107 steps and the resulting atomic
configuration is included as a supplemental data set. The
first coordination peak has been properly refined through
RMC and the asymmetry in the second peak shown in
the inset has also been captured in the refined model.
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C. Traditional Analysis

The RMC refinement is indeed successful at match-
ing the experimental PCF, which can be seen in figure
1. This makes the 100,000 atom model the only model
that accurately matches experimental data to the accu-
racy provided here. However, without a potential, it is
reasonably possible that the moves could create a sys-
tem that is entirely unreasonable. A traditional check,
which also gives an insight as to how undercoordination
manifested in this model is to look at the coordination
number distribution as classical analysis is performed.
This is shown in Table 1.

TABLE I: Number of clusters obtained for a sample
coordinate set from RMC++

coordination state amount error

0 5 2

1 169 13

2 2870 54

3 27453 166

4 68235 261

5 1244 35

6 24 5

To investigate undercoordination, the coordination
state of each of the 100,000 clusters comprising the LAM
obtained from the refined coordinate set was used to gen-
erate a first shell coordination number. Due to stochastic
variations inherent in the RMC process, a single config-
uration should not be used to obtain an average coor-
dination number. Thus, ten configurations (and result-
ing PCFs) were sampled at intervals of 100,000 RMC
steps. The average was used to obtain the best estimate
of the coordination number and the standard deviation
of these ten samples was used to estimate the error shown
in Table 1. This standard deviation is indicative of the
variation the RMC algorithm can produce from a single
initial seed. Since a major goal of this work is to deter-
mine the degree of change required for a CRN seed to
conform to the experimental PCF, other seeds were not
employed and hence the variation resulting from differ-
ent seeds is not known. The final coordination number,
resulting from block averaging21 over all ten sets of coor-
dinates, is 3.674 ± 0.001. This number checks very well
with the value of 3.672 ± 0.001 (all error bars are 1 σ)
obtained by integration of the area under the first peak
of the experimental PCF in figure 1. The 3-fold coordi-
nated atoms, which are the dominant form of underco-
ordination, represent about 27.5 % of the total LAMs.
Table 1 also shows that the refined model has 4-fold co-
ordinated structure for 68.2 % of its atoms, whereas the
CRN model always has all four atoms positioned about
2.4 Å from atom zero.

FIG. 2: Sub-coordinate set of the CRN model (top) and
the refined model (bottom). Approximately 25% of the
coordinate set is being displayed. RMC created a fairly

uniform distribution showing no long range
inhomogeneity such as cracks or voids. Due to the large

numbers it is difficult to find structural differences
between the two models.

Multi-atom correlation could traditionally only be un-
derstood through direct observations of the bulk model.
Figure 2 depict a subset of the coordinate sets for both
CRN (red) and the model refined through RMC (blue).
Despite the vast differences in structure evident by the
changes to the PCF (figure 1) and the coordination num-
ber distribution (table 1), there is simply too much infor-
mation to process any structural details. With so many
atoms, it is nearly impossible to detect if the CRN model
even contains local tetrahedral ordering. Issues such as
these drives analysis to statistical averaging at the ex-
pense of multi-atom correlations.

Averaging the bond angles is a common analysis tool
to gauge what type of geometrical ordering could exist
in the absence of a visualization technique. This anal-
ysis is shown in figure 3. The use of a large 100,000
atom CRN model produces a much smoother bond angle
distribution function than what was presented earlier by
Biswas et al.10. Through comparisons of large models,
it is clear that there are differences in the bond angle
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FIG. 3: Normalized bond angle distribution for the
CRN model (red) and the refined model (black). The

CRN model is very symmetric while the refined model is
broader and asymmetric with no clear underlying cause.

distribution. The refined model depicts a broader and
an asymmetric distribution. It may be possible that the
asymmetries are due to the bimodal coordination num-
ber distribution. Any substantial conclusions cannot be
derived solely from these types of analysis as multi-atom
correlations are averaged out.

IV. LOCAL ATOMIC MOTIF METHOD

The LAM methods use of rigid rotations creates a 3D
visualization that is a true representation of the bulk
model, and thus allows quantitative information to be
extracted as demonstrated in this work. Consequently,
the bond angle distributions, bond distance distributions,
PCF and even coordination number are conserved within
our visualization. It is for these reasons that our method
is a conceptual advancement that allows visualizations to
serve a useful purpose in solving structure problems.

A. Initial LAM Orientation

The atomic structures in the CRN and refined model
can be compared by translating each atom and its local
arrangement to the origin and applying multiple geomet-
ric rotations to each cluster such that they are all oriented
consistently using the following procedure, implemented
in Python. First, an atom is chosen from the bulk struc-
ture and is labelled as atom 0. Then a fixed number of
its nearest neighbours (chosen here to be 16) are found,
sorted by proximity from atom 0 and labelled with num-
bers (1-16). This produces a cluster of 17 atoms in total,
which comprise the complete first and second shells for a
4-fold coordinated crystalline system. This cluster is then
translated to constrain atom 0 to the origin. The cluster
is then rotated about the polar angle to bring atom 1 to
the z-axis. An azimuthal rotation, about the z-axis, is

then applied to the cluster, placing atom 2 on the x-z
plane. These are standard rotations implemented using
quaternions. This procedure is repeated for every atom
in the model until all N clusters for an N atom model are
superimposed on top of each other. The resulting scat-
ter plot of atom positions is what we call the LAM and
can be presented as a 3D contour plot using open-source
software22. Figure 4 shows the resulting LAMs for the
CRN model and the refined model. For the first shell
of atoms, the expected simple tetrahedral structure is
obtained implying 4-fold coordinated clusters dominate
both LAMs. This is because 100% of the CRN atoms
and 68% (see Table 1) of the refined atoms are 4-fold
coordinated. In the case of 4-fold coordination: the cen-
tral and upper high-density spheres correspond to atoms
0 and 1 (z-axis), respectively. The three lower clouds
of intermediate density within the first shell correspond
to atoms 2 (x-z plane), 3 and 4, which complete the ex-
pected tetrahedral structure. Atoms 1 and 2 uniquely
occupy two corners of the tetrahedron while due to chi-
rality from the imposed labelling, atoms 3 and 4 occupy
either of the two remaining tetrahedron corner positions.
This leads to the appearance of the double occupancy as
shown in figure 4.

Though this method successfully creates a first look
at the structure of a-Ge, it is not yet generalizable to
other, non-tetrahedral systems. In the case of structures
like the icosahedron, after atom 1 is rotated to the z-
axis, there are three different types of atoms that could
be atom 2; the upper plane, the lower plane or on the
negative z-axis. The latter case is especially unfortunate
as the azimuthal rotations will not serve a purpose. The
following modification was created to allow this method
to apply to all possible structures: a list of atoms that
lie within the nearest neighbour distance is found. The
first atom will then be chosen as atom 1, as usual. Of the
remaining atoms, the atom with the smallest n-0-1 angle
(where n is the remaining nearest neighbour atoms,) will
be fixed to the x-z plane (φ = 0). The resulting LAM
would be effectively identical, with the only difference
being a change in atom labelling.

By using 17 atom clusters in these LAMs, atoms be-
yond the first coordination shell are also depicted. The
four diffuse ring structures at farther distances from the
origin atom correspond to atoms of the second shell.
Three lobes are visible in each of the four second-shell
ring structures. These correspond to higher-density re-
gions for the twelve second shell atoms. Roorda et al.
claimed that a non-uniform dihedral angle distribution
exists in a-Ge14, but were unable to prove. The LAMs
reveal strong evidence supporting this fact (Figure 4) as
it is clearly seen that each second shell ring is composed of
three overlapping lobes as opposed to a simple torus. The
centroids of the lobes are at the approximate locations for
the second shell atoms in crystalline germanium, indicat-
ing that the crystalline positions are preferred but other
rotations about the 0-1 axis are allowed. The LAMs thus
provide a previously unseen view of the three-dimensional
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FIG. 4: Gaussian-smoothed 3D atomic density contour
plot of the 17 atom LAMs for the CRN model (top) and
the refined model (bottom). Each LAM is presented as
a cross-eyed stereogram for 3D visualization. Warmer

colours correspond to higher densities. Animated
rotations of each contour plot are shown in
supplemental figures 1 and 2 respectively.

local structure in a-Ge. The CRN LAM shows better de-
fined lobes in the uppermost ring compared to the refined
LAM, suggesting that the CRN model may present more
ordering in this part of the second shell than is observed
experimentally.

The refined LAMs appear qualitatively similar to those
based on the CRN model configuration as shown in Fig-
ure 4. However, it is known that the experimental PCF
yields an average coordination of 3.68 ± 0.02 for a-Ge, so
it is expected that a deeper analysis of the refined LAMs
will show evidence of undercoordinated Ge atoms14. To
investigate this, we focus attention on atom 4 for a-Ge,
the fourth-closest atom to atom 0. The PCFs in Fig-
ure 1 show a minimum at 2.7 Å. Clearly, this minimum
corresponds to the boundary between the first and sec-
ond coordination shells. In a fully coordinated Ge atom,
atom 4 should be within 2.7 Å, whereas atom 4 should
be farther away for an undercoordinated Ge atom.

B. Fixed Plane Orientation LAM

In order to highlight the difference in local order be-
tween fully coordinated and undercoordinated atoms, it
is necessary to construct the refined LAMs for a-Ge us-
ing a different fixed-plane orientation method. A new
method is necessary since the location of atom 4, the
fourth nearest atom determines whether the cluster is
3-fold or 4-fold coordinated. In the initial LAM orienta-
tion, atom 4 existed in two possible locations, making it
impossible to isolate structural effects of atom 4. While

the initial LAM orientation could be modified to place
atom 4 on the z-axis, it would be unwise to constrain a
cluster using an unconstrained atom. Rather, we instead
perform a cluster alignment based on the plane created
by atoms 1-3.

Here, atom 0 of the 17 atom cluster is translated to the
origin exactly as before. Then a plane is defined which
contains atoms 1, 2 and 3 (123 plane). The normal of
this plane (which, in crystalline Ge, would be collinear
with the position vector of atom 4) is locked to the z-axis
by a polar rotation of the cluster about the origin (atom
0). Then an azimuthal rotation about the z-axis places
atom 1 on the x-z plane. Finally, the clusters are sorted
into two groups: In one group, the clusters are fully coor-
dinated and thus contain atoms 1-4 within 2.7 Å of atom
0. In the other group, the clusters are undercoordinated
(3-fold coordinated) and atoms 1-3 are within 2.7 Å while
atom 4 is at a greater distance. As before, LAMs are ex-
pressed by density contours of the resulting scatter plots.
The LAMs produced by this modified procedure enable
a comparison of the local arrangement around the 3-fold
and 4-fold coordinated atoms. Analysis of these LAMs
reveals that atom 4 in the undercoordinated LAM (top of
Figure 3) is at a distance of 3.43 ± 0.02 Å from the origin.
This places atom 4 within the second coordination shell
of the PCF. The atom appears as a diffuse cloud directly
above atom 0 losing the tetrahedral symmetry present
in the fully coordinated LAM. The presence of atom 4
in this region increases the disorder in the second shell.
The well defined second shell ring present in the 4-fold
coordinated LAM (bottom of Figure 5) is now perturbed
by 3-fold coordination (top of figure 5).

Also apparent in figure 5 is the lower position of atom 0
relative to the 123 plane for the 3-fold coordinated LAM.
An analysis of the atom 0 to 123 plane distance (d) for
undercoordinated LAMs yields d = 0.45 ± 0.02 Å, block
averaged over 10 coordinate sets. For the 4-fold coordi-
nated LAM, the same analysis yields d = 0.76±0.01 Å in
contrast to d = 0.844 Å for the CRN LAM and d = 0.798
Å for perfectly crystalline Ge. The LAMs thus provide
clear evidence for a bimodal local structure with 3-fold
coordinated atoms in about a 2:5 ratio with 4-fold coor-
dinated atoms, with structures that both differ from the
continuous random network model.

The perturbation from ideal diamond crystal structure
caused by ion implantation creates a significant produc-
tion of undercoordinated local structures consistent with
those of 3-fold coordinated silicene and germanene23.
The undercoordinated LAM from a-Ge has a lower d
than its germanene counterpart, where germanene has
d = 0.69 Å24. However, the breaking of the 0-4 bond
does not lead to a planar graphene-like structure, with
atom 0 in plane with atoms 1,2 and 3. Multiple checks
were conducted and the buckled structure of the 3-fold
coordinated LAM created through RMC refinement only
occurred when refined to the experimental PCF and not
when refining to the PCF of the CRN model. The re-
sulting combination of the 3-fold and 4-fold coordinated
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FIG. 5: Gaussian-smoothed 3D atomic density contour
plot of 17 atom LAMs for the refined model. The top
LAM (top) showing only 3-fold coordinated clusters

where atom 4’s distance from the origin is greater than
2.7 Å and the bottom LAM (bottom) showing only
4-fold coordinated clusters where atom 4’s distance

from the origin is within 2.7 Å. Both images are
presented as cross-eyed stereograms. Animated

rotations of each contour plot are shown in
supplemental figures 3 and 4 respectively.

motifs introduces a new candidate structure for amor-
phous germanium that accounts for undercoordination.

V. CONCLUSIONS

The implementation of LAMs from atomic coordinates
of a bulk model provide new insight into the local atomic

structure in amorphous materials to explain previously
puzzling undercoordination effects. The results imply
that any theoretical model of a-Ge must include the pos-
sibility of 3-fold coordinated local motifs with structures
distinctively different from the 4-fold coordinated tetra-
hedron. We show that the undercoordinated local struc-
ture of a-Ge are similar to germanene with the struc-
ture consistently being buckled as opposed to a planar
graphene lattice. The atom 0 to 123 plane distance of
undercoordinated a-Ge atoms are shorter by 0.31 ± 0.02
Å in comparison to the the 4-fold coordinated atoms.
Also, strong evidence of ordering in the second shell is
clearly seen. Decades ago, statistical analysis of Voronoi
polyhedra enabled scientists and readers to understand
models for periodic structures. The success of this ap-
proach caused an expansion of the field beyond simple
alloys that continues to the present day. However, for
many amorphous materials, the low nearest neighbour
coordination makes interpreting Voronoi polyhedra diffi-
cult. This has hindered progress in the field. The LAM
method can capture the essence of subtle differences be-
tween competing models, going beyond base geometries.
This method serves as a powerful analytical tool, which
will help make analogous advances in the field of amor-
phous structure determination. This visualization ap-
proach can be widely applied to unlock the structural
solutions of other systems; from long range disorder in
periodic structures to local order in amorphous and liq-
uid structures.
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