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We provide numerical evidence combined with an analytical understanding of the many-body
mobility edge for the strongly anisotropic spin-1/2 XXZ model in a random magnetic field. The
system dynamics can be understood in terms of symmetry-constrained excitations about parent
states with ferromagnetic and anti-ferromagnetic short range order. These two regimes yield vastly
different dynamics producing an observable, tunable many-body mobility edge. We compute a set of
diagnostic quantities that verify the presence of the mobility edge and discuss how weakly correlated
disorder can tune the mobility edge further.

I. INTRODUCTION

Many-body Anderson localization in isolated, dis-
ordered, interacting systems has been a topic of in-
tense research in recent years. The localized phase
is predicted to be a novel phase of matter which is
characterized by its failure to thermalize under uni-
tary quantum dynamics1. This breakdown of ergodic-
ity endows the phase with a host of intriguing prop-
erties such as the absence of transport2,3, protection
of topological and Landau symmetry-breaking order4–7,
and slow growth of entanglement8–10 even at infi-
nite temperature. The initial discussions on this sub-
ject have been based on perturbation theory2,3,11, nu-
merical exact diagonalization12–14, and real-space RG
techniques9,15,16. Indeed, there is now a rigorous math-
ematical proof in one dimension17 complemented by
phenomenological18–20 and approximate perturbative21

descriptions of fully many-body localized systems at in-
finite temperature in terms of extensive collections of lo-
cally conserved quantities. However, much less is known
regarding the properties of systems with a many-body
mobility edge at finite temperature, separating the local-
ized and delocalized phases.

One of the outstanding issues for observing many-body
localization (MBL) in experiments has been to differ-
entiate it from single-particle Anderson localization (al-
though see Refs. 22 and 23 for protocols in optical
systems with local addressability). One approach is to
detect a mobility edge as these do not exist for non-
interacting systems in one dimension where all single par-
ticle states localize in the presence of disorder. Thus, in
a non-interacting, localized system, all initial conditions
lead to fully localized dynamics. In the presence of a mo-
bility edge in an interacting system, on the other hand,
correlations in the initial states, such as its energy, de-
termine whether the system dynamics remain localized,
or eventually thermalize. Such initial condition depen-
dent behavior provides an unambiguous signature of the
many-body nature of the localization.

The search for many-body mobility edges has recently
intensified. They were perturbatively predicted several
years ago in various models including weakly interact-
ing fermions2 and continuum bosons in one dimension24.
However, only recently have they begun to be numeri-
cally identified in certain spin models25–27. In the limit-
ing case of a long-range mean-field model, a perturbative
analysis provides a clear prediction of the mobility edge
in quantitative agreement with numerical simulations26.
Another recent study provided a compelling case for the
presence of a mobility edge at the isotropic point of the
XXZ model27 through impressively large numerics.

In this article we provide numerical evidence, com-
bined with an analytical understanding, of the many-
body mobility edge in the strongly anisotropic spin-1/2
XXZ model in a random magnetic field. In the strongly
interacting regime, the system dynamics can be under-
stood in terms of excitations about parent states with
ferromagnetic and anti-ferromagnetic short-range order.
The dynamics of the excitations are strongly constrained
by symmetry and, in particular, the ferromagnetic regime
is much more susceptible to localization. Thus, prepar-
ing states with the appropriate correlations, and, tun-
ing the short-range correlations in the disorder potential
both provide knobs with which to explore the localiza-
tion phase diagram. Such tunability may be crucial for
disentangling many-body effects from single-particle lo-
calization in experiments on finite-size systems of cold
atoms28.

Remarkably, we provide an analytic picture of the fi-
nite temperature quantum transition that is quite differ-
ent in essence from the seminal work of Basko, Aleiner,
and Altshuler2, as it builds on strongly interacting parent
Hamiltonians, rather than non-interacting localized par-
ticles. The most important consideration of our analysis
is that while the density of states of our parent Hamil-
tonian has a statistical symmetry when flipping the sign
of the interaction strength, the low-energy dynamics in
both regimes has a vastly asymmetric behavior. This is
in sharp contrast to the unimportance of the sign of the
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interactions in the weakly interacting regime, and is cru-
cial for the observation and tunability of the many-body
mobility edge in our work.

Our article is organized as follows. In Section II, we de-
fine the model that we study to probe this phenomenon,
provide an analytical description for an asymmetry in
the dynamics of excitations on top of parent ferromag-
netic and anti-ferromagnetic orderings, and argue for the
appearance of a many-body mobility edge. Section III in-
troduces the diagnostic numerical quantities that we em-
ploy to observe the MBLD transition in numerical exact
diagonalization calculations, and presents the numerical
results. Finally, in Section IV, we discuss the introduc-
tion of correlated disorder as a means to manipulate the
mobility edge.

II. DYNAMICS IN THE RANDOM-FIELD XXZ
MODEL

We consider the one-dimensional spin-1/2 XXZ model
in a random magnetic field with periodic boundary con-
ditions:

H =

L∑
i=1

(
t
[
Ŝ+
i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1

]
+ UŜzi Ŝ

z
i+1 +WwiŜ

z
i

)
.

(1)

Here, L is the number of lattice sites, Ŝx,y,zi are the spin-

1/2 operators (~ = 1), Ŝ±i = Ŝxi ± iŜyi are the raising
and lowering operators, and the couplings wi represent
a short-ranged disorder potential. The XXZ model con-
serves the total spin projection Ŝz =

∑
i Ŝ

z
i . As we dis-

cuss below, this conservation law plays a fundamental
role in inducing a mobility edge in the system.

We assume throughout that the disorder ensemble sat-
isfies the statistical symmetry wi → −wi. Indeed, any
statistically translationally invariant disorder ensemble
may be shifted to have this symmetry at the expense
of the introduction of a uniform field [w]

∑
i Ŝ

z
i (where

we denote disorder averaged quantities by [. . .]). As this
field couples to a conserved quantity, it has no effect on
the dynamics and we may drop it. For the numerics
in Sec. III, we take the wi to be uniformly distributed
in the range [−0.5, 0.5]. This choice of disorder clearly
possesses such a statistical symmetry. However, the sym-
metry wi → −wi holds for more general disorder models,
e.g. Gaussian disorder for which the wi have moments
[wi] = 0 and [wiwi′ ] = δi,i′ .

We will proceed by first noting that in the limit t→ 0
there is a symmetry between the ferromagnetic and an-
tiferromagnetic regimes of the system. In particular, do-
main wall excitations in each type of ordering map into
each other. Then we will consider the quantum dynam-
ics of such domain-wall excitations mediated by a non-
vanishing, but small, tunneling which is controlled by
t. We will see that such dynamics behaves differently
in the ferromagnetic and antiferromagnetic regimes due
to the conservation of Ŝz, which as a result creates a
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FIG. 1. (a) Dynamics in the antiferromagnetic regime: Néel
domain walls are the lowest energy excitations (represented
by green dashed squares) that can propagate because they
conserve Sz. They move by two sites. (b) Dynamics in the
ferromagnetic regime: domain walls between ferromagnetic
regions (represented by the purple dashed square) are not
able to propagate due to the conservation of Sz. Higher en-
ergy excitations, namely single-spin flips (represented again
by the green dashed squares), are the next available mobile
excitations and can move by one site. These excitations are
more susceptible to localization due to the strong disorder po-
tential. In both regimes, the two important length scales asso-
ciated with the mobile excitations are the localization length
ξ and the mean distance ` that separates them. A mobility
edge forms when these two length scales become comparable.

spectral asymmetry in the XXZ model. Such a spectral
asymmetry was noted briefly in [29]. In what follows, we
will make use of the notion of temperature, even in the
many-body localized phase, as a parameter that tracks
the energy density of the system.

A. Disorder-induced domain walls in the classical
limit

In the limit t→ 0, the XXZ model becomes

H(U,Wwi) = U
∑
i

Szi S
z
i+1 +W

∑
i

wiS
z
i , (2)

which is the well-studied classical random field Ising
model in one dimension30,31. If we perform a Néel trans-
formation σzi → (−1)iσzi on this model, we obtain the
mapping H(U,Wwi) → H(−U, (−1)iWwi). The trans-
formed Hamiltonian H(−U, (−1)iWwi) has the same sta-
tistical weight as H(−U,wi). Consequently, every state
of the anti-ferromagnetic model U > 0 can be mapped



3

into a state of a ferromagnetic model with U < 0 with the
same energy and statistical weight. Thus, disorder aver-
aged thermodynamic properties have U → −U symme-
try, even though particular instances need not. It would
be interesting to explore the effects of relaxing the con-
straint on the disorder distribution, such that this statis-
tical symmetry was removed, but we leave these consid-
erations to future work.

Consider now the formation of domain walls due to the
disorder potential in the ferromagnetic regime, i.e. the
low (high) energy density regime when U < 0 (U > 0).
A large interaction |U | disfavors domain walls in the
ground state. Naively, with W = 0, the two sym-
metry breaking ground states of H are simply the all
↑ and all ↓ configurations. However, even infinitesi-
mally small random fields destabilize these ferromagnetic
ground states32, as usual for d ≤ 2. The random field W
lifts the ground state degeneracy by an energy typically
of order E↓ − E↑ = W

∑
i wi ∼

√
LW where L is the

length of the chain (in lattice units). More generally, any
domain of length l acquires a random field energy of or-
der
√
lW , which, for l large enough, always exceeds the

energy cost |U |/2 per domain wall. Thus, the ground
state of the random field system builds in a collection of
domain walls separated by random lengths typically of
the scale l0 ∼ (U/W )2. The actual ground state has van-

ishing magnetization density (with 1/
√
L fluctuations),

and consists of pinned alternating domains of length l.
Due to the statistical Néel symmetry, we can imme-

diately conclude that in the anti-ferromagnetic regime
(U > 0), the formation of domain walls is the same as
the ferromagnetic case. All one has to note is that the
Néel transformation maps the two types of ferromagnetic
domains into the two types of possible antiferromagnetic
domains, namely those for which the ↑ spins live on either
the even or odd sublattice. The domain walls in this case
are then phase slips in this Néel ordering. The ground
state is thus composed of a dilute gas of Néel domain
walls due to the random field. The density of these do-
main walls is n0DW = 1/l0 ∼ (W/U)2. We conclude then
that in the limit t → 0 there is a clear statistical sym-
metry between the ferromagnetic and antiferromagnetic
regimes.

B. Spectral asymmetry in the quantum dynamics
of domain wall excitations

We now discuss the low-energy quantum dynamics of
domain walls in the limit where 0 < |t| � |W | � |U |.
By comparing the localization length of the available mo-
bile excitations to their mean separation, we will obtain
an estimate of the temperatures T± for which a mobility
edge forms in the antiferromagnetic and ferromagnetic
regimes, respectively. Despite the statistical symmetry
we discussed in the previous section, it turns out that the
ferromagnetic and antiferromagnetic regimes have differ-
ent types of available mobile excitations essentially due to

the conservation of Sz. This leads to different transition
temperatures.

1. Antiferromagnetic regime

Consider the antiferromagnetic regime (U > 0) at low
energy densities. Let us represent a spin state with a
single domain wall between two Néel domains as

| · · · ↑↓↑↓
... ↓↑↓↑ · · ·〉,

where the vertical dots denote the domain wall itself.
The tunneling term of the Hamiltonian, i.e. the term
proportional to t, allows for such Néel domain walls to
hop freely by two lattice sites:

| · · · ↑↓↑↓
... ↓↑↓↑ · · ·〉 t−→ | · · · ↑↓↑↓↑↓

... ↓↑ · · ·〉.

Additionally, they can annihilate if they belong to the
same sublattice:

| · · · ↑↓↑↓
... ↓↑

... ↑↓ · · ·〉 t−→ | · · · ↑↓↑↓↑↓↑↓ · · ·〉.

There are thus two flavors of domain walls that propagate
throughout the system – those which live on the even
and odd sublattices. In addition to this, Sz conservation
prevents the even and odd flavors from passing through
each other as we can see from the following configurations
belonging to different Sz sectors:

| · · · ↑↓↑↓
...e ↓

...o ↓↑ · · ·〉 ⇒ Sz = −1/2,

| · · · ↑↓↑
...o ↑

...e ↑↓↑ · · ·〉 ⇒ Sz = +3/2.

Note from these properties that the dynamical behav-
ior of domain walls in the XXZ model is very different
from, for example, that of the transverse field Ising model
without the addition of a U(1) symmetry such as the con-
servation of Sz. In the transverse field Ising model, the
lack of Sz conservation allows domain walls to move by a
single lattice site and to pass through each other because
there can be single spin flips at a time.

Based on these general observations, we can think of
the domain walls as particles that hop with strength t by
two lattice sites at a time, and which feel a disordered
potential of strength ∼ W . With this picture in mind,
the effective localization length of a single domain wall
can be estimated to be of order ξ ≈ 2/ ln(

√
2W/t). On

the other hand, to obtain the average inter-particle spac-
ing we must take into account two possible contributions
to the density of domain walls. As we stated in the pre-
vious section, the ground state already has a density of
domain walls n0DW built-in due to the disorder potential.
In addition to this, as the temperature T increases, the
density of excess domain walls increases by an amount
nexcDW ∼ e−|U |/2T . Hence, the average separation between
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domain walls is `(T ) =
(
n0DW + nexcDW

)−1
. We illustrate

these length scales in Fig. 1a.
The transition temperature that determines the mo-

bility edge is given by the condition ξ ≈ l(T ). To un-
derstand this, note that when the domain walls come
into contact, they interact with a very large energy U.
Thus, at arbitrarily small temperatures, delocalization
should occur immediately if ξ > `(T ) such that there is
more than one excitation per localization volume built
into the ground state. Furthermore, such delocalization
should persist as temperature increases. If, on the other
hand, l(T ) � ξ, the domain walls do not interact and
the state is many-body localized. Hence, we expect the
boundary between these two types of behavior to occur
when ξ ≈ l(T ), which leads to:

2

ln
(√

2W/t
) ≈ 1

(W/U)2 + e−|U |/2T+
. (3)

For fixed values of W and U, this expression provides
an estimate of the temperature T+ for which a mobility
edge is expected to emerge on the antiferromagnetic side
of the energy spectrum. This means that starting from
the regime U > 0 at low-temperature we would expect
a finite-temperature transition at T+ from a MBL phase
to a delocalized phase.

2. Ferromagnetic regime

Let us now discuss the localization properties of the
ferromagnetic regime (U < 0) at low energy density.
The main difference with the antiferromagnetic case is
that, even though domain walls between different ferro-
magnetic regions naturally populate the ground state,
the conservation of Sz does not allow them to propagate
throughout the system. Take, for example, the following
configurations:

| · · · ↓↓
... ↑↑ · · ·〉 ⇒ Sz = 0,

| · · · ↓
... ↑↑↑ · · ·〉 ⇒ Sz = +1,

| · · · ↓↓↓
... ↑ · · ·〉 ⇒ Sz = −1.

It is clear that for the domain wall in these examples to
move one would have to violate the conservation of Sz.
The least massive mobile excitations in this regime are
actually domains of length 1, i.e. magnons or spin flips.
These excitations hop with strength t by one lattice site,
but they cost U interaction energy to produce or destroy.
Additionally, any anomalously short domain built into
the ground state is necessarily in an anomalously strong
field and is unable to move.

The localization length for a mobile magnon in the
W � t limit is of order ξ ≈ 1

ln(W/t) . Furthermore, their

mean separation is set entirely by their thermal popu-
lation `(T ) = n−1M ≈ e|U |/T . We illustrate these length
scales in Fig. 1b. It thus follows that the mobility edge

in the ferromagnetic regime is given by the condition
ξ ∼ `(T−), which yields

1

ln (W/t)
∼ e|U |/T− . (4)

This expression determines the temperature T− at which
a mobility edge forms in the ferromagnetic regime.

3. Appearance of a mobility edge

The different dynamical behaviors exhibited in the fer-
romagnetic and antiferromagnetic regimes can sharpen
the signatures of a mobility edge in the XXZ model. To
be concrete, for all of our calculations we will fix U > 0.
This means that, without disorder, the ground state of
the model is antiferromagnetic, whereas the highest en-
ergy state is ferromagnetic. It follows that the states near
the bottom part of the energy spectrum are excitations
on top of an antiferromagnetic parent ground state, and
the states near the highest part of the energy spectrum
are effectively excitations on top of a ferromagnetic state.
Then, depending on whether we are at positive or neg-
ative temperature determines which dynamical regime
dominates the physics. For finite positive (negative) tem-
peratures we will be in the antiferromagnetic (ferromag-
netic) regime. Thus, the dynamical asymmetry is present
in a single model with a fixed U , and realized by the fact
that different sections of the energy spectrum have quite
different dynamics.

Now consider increasing the disorder strength start-
ing from zero. The states near both ends of the energy
spectrum generically localize first, i.e. before the states
in the middle of the band (near energy densities corre-
sponding to infinite temperature). Because of this, two
mobility edges generically form at temperatures T± below
and above infinite temperature. This was observed nu-
merically, for example, at the isotropic point t = 2U that
was studied in [27], where it was found that T+ ∼ T−. In
finite-size numerical studies, the fact that two mobility
edges form simultaneously makes it difficult to observe
a sharp mobility edge because the thermal part of the
spectrum is reduced from both sides of the spectrum. In
practice, it is observed that either the thermal or MBL
parts of the spectrum do not clearly stabilize.

In the anisotropic case, however, the two mobility
edges occur at different temperatures. Comparing Eq. 3
with Eq. 4, one can see that, if W and U are chosen
appropriately, the additional density of mobile excita-
tions in Eq. 3 can lead to T− > T+. In other words, we
can have a situation where the disorder is strong enough
that it localizes the ferromagnetic part of the spectrum,
but weak enough that the antiferromagnetic side remains
thermal. A clear mobility edge should thus arise. Let us
now show numerically that such an asymmetry does make
it easier to observe the mobility edge in this strongly in-
teracting system.
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III. NUMERICAL EVIDENCE

After an extensive numerical exploration of the param-
eter space determined by (U/t,W/t, Sz), we have found
that the mobility edge is most strongly stabilized when
interactions and disorder are strong with respect to t, and
there is vanishing spin-polarization in the system Sz = 0.
This limit is compatible with our qualitative analysis in
the previous section, and we can apply the intuition de-
veloped there to understand the numerical results. Inter-
estingly, this Sz sector is equivalent to a half-filled model
of interacting fermions via the Jordan-Wigner transfor-
mation. We thus expect our conclusions to apply to such
a fermionic system as well.

To numerically ascertain the presence of the mobility
edge, we performed exact diagonalization of the Hamilto-
nian defined in Eq. 1. Using the many-body energy densi-
ties, and corresponding energy eigenstates of the system,
we computed three diagnostic quantities that have been
used in the past to determine whether a system is in a
thermal or in a many-body localized phase, although here
we use energy-density resolved versions of these diagnos-
tic tools.

In order to obtain stable statistical behavior in these
diagnostic quantities for a given energy density E/L, it
is convenient to perform spectral and disorder averages
within a set of states with energies close to E/L. To
do this, first we shifted and rescaled the energy25 as
ε = (E − E0) /Ω, where Ω is the energy bandwidth and
E0 is the ground state energy. This means that, by defi-
nition, ε ranges from 0 to 1. However, since the density of
states is very low at the band edges, we sampled energies
only in the range ε ∈ [0.1, 0.9]. For a given value of ε, we
obtained the set {εn}ε of 50 closest many-body energy
eigenvalues. We then computed each of the four diag-
nostic quantities within the set {εn}ε, and subsequently
carried out spectral and disorder averages to obtain the
final result. In what follows, we will denote spectral and
disorder averages as [〈. . .〉].

We start with the energy-resolved statistics of many-
body energy level spacings. We calculated the ratios

rn =
min(δn, δn−1)

max(δn, δn−1)
, (5)

where δn = εn − εn−1, and where {εn}ε is assumed to
be sorted in ascending order. In the MBL phase, the
energy level spacings satisfy [〈r〉]MBL ≈ 0.386, which is
the average of a Poisson probability distribution. In the
thermal phase, since the model we are considering is in
the GOE, one should obtain [〈r〉]T ≈ 0.529. Using these
limits we can determine whether the eigenstates for a
given range of energy densities are thermal or many-body
localized.

In Fig. 2a we show an intensity plot of [〈r〉] as a func-
tion of interaction strength for a fixed value of disor-
der strength W = 6.0. Red regions denote values of
[〈r〉] that are close to [〈r〉]T , whereas blue regions de-
note values close to [〈r〉]MBL. Similarly, in Fig. 2b we

FIG. 2. Intensity plots of [〈r〉] as a function of: (a) interaction
strength U with fixed W = 6.0, and (b) disorder strength
W with fixed U = 7.0. The magenta points show the fit of
the mobility edge εc(U,W ) using Eq. 10. The vertical blue
lines denote the particular case for which the other diagnostic
calculations are performed and shown in Fig. 3. We used 500
disorder realizations and L = 14 for both cases. We caution
that the mobility edge is not necessarily the white colored
region, but rather we estimate it to be within the region for
which [〈r〉] ∈ (0.42, 0.48). We estimate the variance of the
data presented here to be of the order of the error bars shown
in Fig.3.

show [〈r〉] as a function of disorder strength with fixed
interaction strength U = 7.0. Both figures were com-
puted with L = 14 and 500 disorder realizations. The
boundary between [〈r〉]T and [〈r〉]MBL clearly reveals the
existence of a mobility edge εc(U,W ) that is dependent
on both disorder and interaction strengths. More im-
portantly, this figure shows that the ferromagnetic states
(i.e. those at high energy density) are more susceptible to
localization than the antiferromagnetic states (i.e. those
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at low energy density), consistent with our previous dis-
cussion. We caution, however, that the mobility edge
is not necessarily the white colored region, but rather
we roughly estimate it to be within the region for which
[〈r〉] ∈ (0.42, 0.48).

As a check that our physical picture is reasonable, we
can obtain an estimate of εc(U,W ) using Eq. 4. Let us
write this condition in the form

1

ln (W/t)
= γ1e

U/T , (6)

where we take γ1 is a fitting parameter that tunes the
density of mobile excitations. In order to write the tem-
perature in terms of energy density, we make use of the
relation

1

T
=

1

Ω(U,W )

∂S

∂ε
, (7)

where S ∝ ln ρ(ε) is the entropy and ρ(ε) is the disorder-
averaged density of states. Note that we have made ex-
plicit the fact that the energy band-width is in general
dependent on both U and W . We now approximate the
density of states by a Gaussian distribution

ρ(ε) = N e−α(U,W )(ε−ε0(U,W ))2 . (8)

where N is a normalization factor, α−1(U,W ) controls
the width of the distribution and ε0(U,W ) is the energy
density at infinite temperature. These two numbers de-
pend in general on both U and W . The explicit relation
between T and ε is then given by

1

T
= −2α(U,W )

Ω(U,W )
(ε0(U,W )− ε) , (9)

We have introduced a minus sign in this expression to
take into account that the ferromagnetic regime in the
numerics actually occurs when ε0(U,W ) < ε. By replac-
ing Eq.9 in Eq.6 and solving for ε, we finally obtain

εc(U,W ) = ε0(U,W )− Ω(U,W )

α(U,W )

[
ln lnW + ln γ1

2U

]
.

(10)
Note that both ε0(U,W ) and α(U,W ) can be calculated
by numerically fitting ρ(ε) for each U and W that is sam-
pled. The bandwidth Ω(U,W ) can also be obtained from
the calculated energy spectrum. There is then only one
free parameter that we can adjust, namely γ1.

In particular, using γ1 = 0.2 and N = 14, we obtain
the magenta points in both Figs. 2a,b. The overall trend
of this estimate of εc(U,W ) qualitatively tracks the nu-
merically obtained mobility edge. It is interesting to note
that both the dependence on disorder (W ) and interac-
tion strength (U) of the many-body mobility edge are
in reasonable quantitative agreement with only a limited
choice of free parameters.

Let us now focus on the particular case (U,W,Sz) =
(7.0, 6.0, 0), which corresponds to the vertical blue lines

in Figs. 2a,b. In Fig. 3a, we show [〈r〉] for three system
sizes, L = 12, 14, 16. As the normalized energy density is
traversed from 0 to 1, the averaged ratios [〈r〉] transition
from [〈r〉]T to [〈r〉]MBL in the neighborhood of ε ≈ 0.7.
Importantly, as the system size is increased, the transi-
tion becomes sharper, as would be expected for this to be
a true mobility edge in the thermodynamic limit. Finally,
note that near the very bottom of the energy band, the
[〈r〉] value decreases again, which could indicate a mo-
bility edge forming on the antiferromagnetic side, but at
a much lower temperature. The error bars in this figure
were estimated to be given by

√
var(r)/(D − 1), where

var(r) = [〈(r − [〈r〉])2〉] and D is the number of disorder
realizations. Analogous expressions for the error bars are
used for the remaining figures.

We can also probe the many-body eigenstates in or-
der to characterize this transition further. We start by
considering the spin transport properties of the eigen-
states by computing the relaxation behavior of an initial
modulation of the spin density. We introduce such a
modulation with the operator

M̂ =
∑
j

Ŝzj e
i2πj/L. (11)

At long times, the fraction that remains dynamic, given
a many-body eigenstate |Ωm〉, is13

Mm = 1− 〈Ωm|M̂
†|Ωm〉〈Ωm|M̂ |Ωm〉

〈Ωm|M̂†M̂ |Ωm〉
. (12)

It is expected that in the MBL phase, where relax-
ation is not possible, Mm should be vanishingly small.
By contrast, in the thermal phase Mm should approach
unity, meaning full relaxation of the modulated state. In
Fig. 3b, we show the behavior of [〈M〉] for the present
model. This figure shows that the modulation is able to
relax for states within the energy range 0.25 < ε < 0.6,
whereas for ε > 0.6 this relaxation is suppressed. Fur-
thermore, this behavior clearly has the appropriate finite-
size scaling, and from the finite-size scaling trend the
deviation from the expected infinite-size limit of 1 is as-
cribed to be a finite-size effect.

Finally, we computed the entanglement properties of
the system. The typical measure of entanglement is the
von-Neumann entropy for a given eigenstate |Ωn〉, and is
given by

S
(n)
A = −TrL

(
ρ
(n)
L log ρ

(n)
L

)
, (13)

where TrL represents the trace over the degrees of free-

dom in the left region and ρ
(n)
L = TrR (|Ωn〉〈Ωn|) is the

reduced density matrix of the left region. Instead of the
entropy itself, we calculated the disorder-induced vari-
ance σ2

S = [〈(S − [〈S〉])2〉] of the entanglement entropy.
This quantity was argued to show a peak at the many-
body mobility edge. The reason being that, for a finite-
size system, a small window of energy density that con-
tains the critical energy density will contain thermal and
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FIG. 3. Numerical evidence of the mobility edge in the spin-
1/2 XXZ model: (a) Statistics of many-body energy level
spacings [〈r〉]. (b) Fraction of initial spin density modulation
which is dynamic [〈M〉]. (c) Variance of the entanglement
entropy σ2

S . Each of the curves in the figures corresponds to
the system sizes L = 12 (blue), 14 (yellow), 16 (green). The
arrows denote the increase in system size. The parameters
used are (U,W, Sz) = (7.0, 6.0, 0). The number of disorder
realizations used was 500 for all the curves.

MBL states. Thus, the entanglement entropy fluctuates
between volume and area law scaling, as a result produc-
ing a large variance in the distribution of entanglement
entropy25. In Fig. 3c, we show σ2

S as a function of energy
density. A peak emerges near ε ∼ 0.6, which becomes
clearer as the system size increases, lending further sup-
port for a true mobility edge forming in the neighborhood
of these energies.

To summarize, the numerical results presented here

all confirm that the ferromagnetic regime shows a much
greater affinity for many-body localization than the anti-
ferromagnetic regime, which is consistent with our anal-
ysis of their asymmetric dynamics. It appears that
the anti-ferromagnet can delocalize at low-temperatures
while the ferromagnet requires a much higher (negative)
temperature to undergo a transition into the thermal
phase. This leads to the presence of a MBLD transi-
tion which shifts asymmetrically away from the center
of the band, i.e., away from infinite temperature, as a
function of the relative disorder strength, which is a dis-
tinct feature of the many-body nature of the phenomena.
With these promising results we will now introduce corre-
lated disorder with the intention of creating even stronger
asymmetry in the dynamics, and thus strengthening the
signature of the many-body mobility edge.

IV. TUNING THE MOBILITY WITH
CORRELATED DISORDER

The results and discussion in the previous sections fo-
cused purely on uncorrelated disorder. We will now il-
lustrate how, by using correlated disorder, the mobility
edge can be made sharper, and can form at lower inter-
action strengths. The main idea is to implement disorder
that selectively couples more strongly to one of the two
dynamical regimes. In our case, to enhance the mobil-
ity edge, we want the disorder to couple more strongly
to the ferromagnetic states so that the spectral asymme-
try that is intrinsic in the system is further increased.
The fact that this approach is effective, as shown below,
gives further support to the intuitive picture we have
presented here concerning the asymmetric dynamics of
the XXZ model. Conversely, we could design the dis-
order to couple more strongly to the anti-ferromagnetic
states to make the dynamics more symmetric and thus
introduce an opposite trend for the mobility edge. We
performed cursory tests that indicate this line of reason-
ing also works, and we comment on this below, however
we will leave a systematic investigation to future work.

To achieve the appropriate type of disorder, we add up
sinusoidal potentials of different wavelengths and random
shifts:

wn =
2√
L

L
2 −1∑
m=1

w̃m cos

(
2πmn

L
+ φm

)
. (14)

Here, φm is a random variable that is uniformly dis-
tributed in the range [−π, π], and the coefficients w̃m
are real parameters that we choose at will. In particular,
we define

w̃m =

{
1 if 0 < 2πm

L < Q,
0 if Q < 2πm

L < π,
(15)

where Q is a real number that we tune to improve the
signatures of the mobility edge. For our analysis, we will
choose a disorder where we only keep the long wavelength
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FIG. 4. Intensity plots of [〈r〉] using correlated disorder as a
function of: (a) interaction strength U with fixed W = 3.5,
and (b) disorder strength W with U = 5.0. The vertical blue
lines denote the particular case for which the other diagnostic
calculations are performed and shown in Fig. 3. We used 500
disorder realizations and L = 14 for both cases. As with the
uncorrelated case, we caution that the mobility edge is not
necessarily the white colored region, but rather we estimate
it to be within the region for which [〈r〉] ∈ (0.42, 0.48). We
estimate the variance of the data presented here to be of the
order of the error bars shown in Fig.5.

components in Eq. 14, which one would naively expect
should couple more strongly to states with ferromagnetic
domains. Note that since the Fourier components w̃m are
normalized to 1, the overall disorder strength W used in
this section cannot be directly compared with the disor-
der strength used in previous sections.

The type of disorder we introduced in Sec.II has cor-
relations given by [wnwn′ ] = δn,n′ , which means that it

FIG. 5. Numerical evidence of the mobility edge in the
spin-1/2 XXZ model using correlated disorder: (a) Statis-
tics of many-body energy level spacings [〈r〉]. (b) Fraction
of initial spin density modulation which is dynamic [〈M〉].
(c) Variance of the entanglement entropy σ2

S . Each of the
curves in the figures corresponds to the system sizes L =
12 (blue), 14 (yellow), 16 (green). The arrows denote the in-
crease in system size. The parameters used are (U,W, Sz) =
(5.0, 3.5, 0). The number of disorder realizations used was 500
for all the curves.

is spatially uncorrelated. In the present case, we obtain

[wnwn′ ] =
1

L

 sin
(
π(2M−1)(n−n′)

L

)
sin
(
π(n−n′)

L

) − 1

 , (16)

where M is the highest integer for which w̃m = 1. This
expression explicitly shows that the disorder we are now
implementing is spatially correlated. For single-particle
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Anderson localization it was shown in [33, 34] that this
type of correlated disorder generates states that have
localization lengths of the order of the system size, ef-
fectively leading to regions of delocalized states in the
spectrum. This type of disorder is also similar to the
correlated disorder that appears in the 1D random dimer
model which is known to host extended single-particle
states35. Additionally, quasiperiodic systems such as the
Aubry-Andre model also have suppressed Fourier com-
ponents which has also been shown to lead to extended
states in its energy spectrum36. For the many-body case,
it turns out this type of disorder also alters the mobility
edge, although, we emphasize, due to different reasons as
we will discuss below.

We now choose the particular value Q = 3π/4 for the
present numerical calculations. With this type of dis-
order, we computed the phase diagrams in Fig. 4. The
MBL and thermal regions are now much better defined,
and the area of the MBL phase has become enlarged.
This clearly depicts that the ferromagnetic states respond
more strongly to the model of correlated disorder that
we chose, essentially because we have long wavelength
disorder which couples strongly to the “more uniform”
ferromagnetic states.

We applied the same mobility edge diagnostics and sys-
tem size flow as before to this case. We show the results
in Fig. 5 for the parameters (U,W,Sz) = (5.0, 3.5, 0).
This case is marked in Figs. 4a,b as vertical blue lines.
As we found for the uncorrelated disorder case, the tran-
sition in this case also becomes sharper as the system
size increases. Interestingly, the features of each diag-
nostic have become smoother and clearer compared to
the uncorrelated disorder case.

To understand why the use of correlated disorder helps
in enhancing the spectral asymmetry of the system in
more detail, note that, for a given spin configuration
{szi }, the average Zeeman energy contribution due to the
presence of the random field is ∆E = W

∑
i wis

z
i . The

size of this contribution depends on the relationship be-
tween the length scales of the variation of spins, and the
disorder potential. The energy shift due to the disor-
der is large when the two length scales are comparable.
Heuristically, this gives rise to large shifts in energy which
suppresses the resonances responsible for delocalization.
In particular, the long wavelength disorder influences fer-
romagnetic clusters in the negative temperature part of

the energy spectrum more significantly. In other words,
this type of long wavelength disorder makes states with
ferromagnetic correlations more susceptible to MBL by
impeding the motion of the excitations in this regime.

We can also consider the opposite case, namely a choice
of sinusoidal components of the disorder so that it has
a rapidly varying spatial profile instead. In this case,
the antiferromagnetic configurations will couple more
strongly to the disorder than the ferromagnetic clusters,
and the low energy density part of the energy spectrum
will show a greater propensity for localization. However,
since there is still a strong tendency for the eigenstates in
the ferromagnetic part of the energy spectrum to localize,
based on the arguments in Section II B, the system still
tends to thermalize at an intermediate energy. Unfortu-
nately, due to these two opposing effects, a many-body
mobility edge on the antiferromagnetic side of the spec-
trum is more difficult to observe for the system sizes that
we can access, although we did find some indications con-
sistent with this behavior.

Conclusions. We have proposed a mechanism that
leads to the formation of a many-body mobility edge in a
one dimensional model with both uncorrelated or corre-
lated disorder. The mechanism is based on the interplay
between strong interactions and the presence of a conser-
vation law that constrains the dynamics of magnon and
domain-wall excitations in the ferromagnetic and anti-
ferromagnetic regimes of the spectrum, respectively. This
leads to an energy-density dependent many-body local-
ization transition which behaves in an asymmetric fash-
ion in the two regimes, reflecting the many-body nature
of the transition. We have numerically characterized this
mobility edge and furthermore, argued that correlated
disorder can be a useful control parameter to enhance
the effects of interaction, facilitating the observation of
the mobility edge using numerical techniques. Influenc-
ing the many-body mobility edge using correlated dis-
order can also serve as a helpful experimental knob in
cold atomic systems where the correlation length of the
disorder is controllable.
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