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Abstract
We present a rigorous irreversible thermodynamics treatment of creep deformation of solid mate-

rials with interfaces described as geometric surfaces capable of vacancy generation and absorption

and moving under the influence of local thermodynamic forces. The free energy dissipation rate

derived in this work permits clear identification of thermodynamic driving forces for all stages of

the creep process and formulation of kinetic equations of creep deformation and microstructure

evolution. The theory incorporates capillary effects and reveals the different roles played by the

interface free energy and interface stress. To describe the interaction of grain boundaries with

stresses, we classify grain boundaries into coherent, incoherent and semi-coherent, depending on

their mechanical response to the stress. To prepare for future applications, we specialize the gen-

eral equations to a particular case of a linear-elastic solid with a small concentration of vacancies.

The proposed theory creates a thermodynamic framework for addressing more complex cases, such

as creep in multi-component alloys and cross-effects among vacancy generation/absorption and

grain boundary motion and sliding.

PACS numbers: 05.70.Ln, 61.72.-y, 62.20.Hg, 65.40.-b, 66.30.-h, 68.35.-p
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I. INTRODUCTION

At high temperatures and under sustained mechanical loads below the yield strength,

many crystalline materials undergo a slow, time-dependent plastic deformation called creep.

A typical mode of creep deformation involves diffusion of vacancies between sources and

sinks located at grain boundaries or free surfaces.1–6 The rate at which the vacancies are

created and/or annihilated at these interfaces depends on the nature of the interfaces and

the local state of stress. During creep deformation, free surfaces can migrate producing

macroscopic shape changes of the material. Grain boundaries can also migrate, altering the

material’s microstructure and affecting its physical and mechanical properties.7

In a recent paper,8 a theory of creep deformation of polycrystalline materials was pro-

posed based on gradient thermodynamics with phase field variables describing grain bound-

aries and other interfaces. A continuous distribution of vacancy sinks and sources was as-

sumed, but they could be localized in interface regions by appropriate coupling between the

kinetic coefficient of vacancy generation/annihilation and gradients of phase fields. The ad-

vantage of this approach is that it incorporates the lattice site generation and annihilation,

plastic deformation and grain boundary motion within a unified thermodynamic framework.

However, implementation of this approach requires highly complicated numerical simula-

tions and relies on a large database of material parameters representing bulk and interface

thermodynamics as well as various kinetic coefficients. To complement that approach, it is

desirable to develop a less detailed but more efficient model of creep deformation in which

the interfaces are represented by geometric surfaces capable of vacancy generation and an-

nihilation and moving under the influence of local thermodynamic forces. This task requires

the development of a non-equilibrium thermodynamic framework capable of predicting the

rates of vacancy generation by interfaces, lattice deformation and interface motion in a

self-consistent manner. It is the goal of this paper to create this thermodynamic framework

focusing on a single-component solid with vacancies as a model material. The proposed

theory will be referred to as the sharp-interface model of creep.

After introducing a thermodynamic model of a deformable lattice with vacancies in

Sec. II, we analyze the time evolution of an isolated crystalline grain subject to a given

set of mechanical stresses applied at its surface (Sec. III). The analysis includes capillary

forces with a clear distinction drawn between the surface free energy and surface stress.

Kinetic equations are derived from the free energy dissipation rate and describe vacancy

diffusion inside the grain coupled with vacancy generation and annihilation at the surface

and concomitant surface migration. Next, we address a more complicated case of two grains

separated by a curved grain boundary (Sec. IV). Here, we introduce three types of grain

boundary: coherent, incoherent and semi-coherent, depending on the ability of the boundary

to support static shear stresses. For coherent boundaries, our model incorporates the shear

coupling effect.9 It is shown that shear-coupling affects the grain boundary motion and
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ultimately the creep deformation rate. Semi-coherent boundaries constitute an intermediate

case when coupled motion coexists with grain boundary sliding. Again, a full set of kinetic

equations is derived from an expression for the free energy dissipation rate. Along with

applied and internal stresses, we include capillary forces associated with the excess grain

boundary free energy and its surface stress. In Sec. V we specialize the theory to a particular

case of a linear-elastic anisotropic solid with a small concentration of vacancies. Finally, in

Sec. VI we summarize the results and discuss future work.

II. THERMODYNAMICS OF DEFORMABLE LATTICE

Consider an elastically deformed single-component single-crystalline solid. As customary

in continuum mechanics, deformation of the solid is described by a time-dependent mapping

x = x(x′, t) of reference points x′ to deformed points x, where t is time.10 To simplify the

analysis, the reference state is taken to be spatially uniform with respect to all physical

properties. The solid may contain vacancies but there are no vacancy sinks or sources

inside the lattice, except possibly at its boundary.

The following fundamental equation is postulated to describe thermodynamic properties

of the solid:

fs = fs (T,F, c) . (1)

Here fs is the Helmholtz free energy per site,∗

F ≡

(

∂x

∂x′

)

t

≡ x
←−
∇′ (2)

is the deformation gradient tensor,10 T is temperature, and c is the fraction of lattice sites

that are filled by atoms. The crystalline structure is assumed to have a Bravais lattice, i.e.,

a primitive lattice with a single-site basis (non-Bravais structures would require dealing

with with sites that are not equivalent and additional variables to describe internal strains

of the unit cell). Thus, (1− c) is the fraction of vacant sites.

In all processes considered below, the material is assumed to remain in thermal equi-

librium. Thus temperature T is considered constant and uniform throughout the system.

Accordingly, the equations appearing below do not contain temperature gradients or time

derivatives of T , and in most equations T is not displayed as a variable.

Variations of fs are described by the standard relation11

δfs = Mδc + Ω′P · ·δF, (3)

∗ We follow the convention10 that the dot between vectors or tensors (e.g., a·b) denotes their inner product

(contraction) while juxtaposition (e.g, ab) their outer (dyadic) product. Two dots denote the double

contractions a · ·b = Tr(a ·b) and a : b = a · ·bT, where a and b are second-rank tensors and superscript

T denotes transposition. The differentiation operator ∇ is treated as a vector. We use the notation a
←−
∇

to show that ∇ operates on the vector or tensor a appearing on its left.
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where

M ≡

(

∂fs
∂c

)

T,F

(4)

is the diffusion potential12–14 of atoms relative to vacancies, Ω′ is the reference volume per

lattice site, and P is the first Piola-Kirchhoff stress tensor. The latter is related to the true

(Cauchy) stress tensor σ by10

P = GF−1 · σ, (5)

where G = detF is the Jacobian of the deformation gradient. The Cauchy stress σ tensor

is symmetric according to angular-momentum balance in the absence of body couples.10

III. EVOLUTION OF AN ISOLATED GRAIN

We first consider time evolution of a single-crystalline region (grain) subject to mechan-

ical stresses and under a given initial distribution of vacancies. Before formulating the

general evolution equations of the grain, we will consider two particular cases, referred to

as Case 1 and Case 2.

A. Case 1: No site creation

Consider a lattice region R obtained by deformation of a given reference region R′ and

thus containing a fixed number of lattice sites. We assume that there is no exchange of

atoms between the grain and the environment, so that the total number of atoms in the

grain is fixed. The grain can be thought of as embedded in a chemically inert medium whose

only role is to exert mechanical stresses σext along its boundary ∂R. In turn, this medium

is enclosed in a rigid box equilibrated with a thermostat and incapable of performing any

work at the walls.

The total free energy of the system is

Φ1 =

ˆ

R′

fs
Ω′

dv′ +

ˆ

∂R

γdA+ Φm. (6)

The first term is the free energy stored inside the grain, which is computed by integration

over the volume of the reference region R′, where dv′ is the increment of the reference

volume. The second integral is taken over the deformed surface of the grain and represents

the total surface free energy, dA being an increment of the surface area and γ the reversible

work needed to create a unit area of the surface. The latter is called the surface free energy.

Finally, Φm represents the free energy of the surrounding medium.

We will adopt a treatment of surface thermodynamics in which the fundamental equation

of the surface has the form

γ = γ (T, ϕ) . (7)

4



In this equation,

ϕ =
dA

dA′
, (8)

where dA′ is the area of a surface element in the reference state and dA is the area of

the same surface element in the elastically deformed state. Thus ϕ is a measure of elastic

surface deformation at a given location at the surface. The use of Eq.(7) implies that the

surface free energy is independent of the surface orientation, and thus isotropic. Namely, it

depends only on the elastic change in the surface area regardless of the directions in which

the area was stretched or compressed to produce the given area change.

Consider a time-dependent process accompanied by changes in the elastic deformation

of the grain and variations in its local composition c. These changes create a lattice velocity

field

vL(x
′, t) =

(

∂x

∂t

)

x′

, (9)

which can be expressed as a function of deformed coordinates, vL(x, t). The rate of free

energy change per site seen by an observer moving with the lattice is

dLfs
dt

= M
dLc

dt
+ Ω′P · ·

dLF

dt

= −MGΩ′∇ · JL + Ω′P · ·vL

←−
∇′, (10)

where the lattice material time derivative dL/dt is defined by

dL

dt
≡

(

∂

∂t

)

x′

=

(

∂

∂t

)

x

+ vL·∇ (11)

and JL is the diffusion flux of atoms relative to the moving lattice. In the second line of

Eq.(10) we used the relations

dLF

dt
= vL

←−
∇′ (12)

and
dLc

dt
= −GΩ′∇·JL. (13)

Equation (12) is an identity readily obtainable by combining the definitions (2) and (9).†

To prove Eq.(13), we use the atomic balance relation

dL

dt

( c

Ω

)

= −
c

Ω
∇ · vL −∇·JL (14)

† Indeed,
dLF

dt
=

(

∂F

∂t

)

x′

=

(

∂

∂t

(

∂x

∂x′

)

t

)

x′

=

(

∂

∂x′

(

∂x

∂t

)

x′

)

t

=

(

∂

∂x′
vL

)

t

= vL

←−
∇′.
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combined with the Jacobi identity10

dL

dt

(

1

Ω

)

= −
1

Ω
∇ · vL, (15)

where Ω = GΩ′ is the deformed volume per site and thus c/Ω is the number density of

atoms per unit volume in the deformed state.

Applying the identity

∇′· (P·vL) = (∇′·P) ·vL +P · ·
(

vL

←−
∇′

)

, (16)

equation (10) can be rewritten as

dLfs
dt

= −MGΩ′∇ · JL + Ω′∇′· (P·vL)− Ω′ (∇′·P) ·vL. (17)

The rate of free energy change of the entire system (i.e., the grain, its surface and the

surrounding medium) is obtained as the time derivative of Eq.(6):

Φ̇1 =

ˆ

R′

dLfs
dt

dv′

Ω′
+

ˆ

∂R

γdȦ+

ˆ

∂R

γ̇dA−

ˆ

∂R

n·σext·vLdA, (18)

where n is a unit normal to the surface pointing outside the grain, dȦ is the rate of area

change of the surface element dA, and γ̇ is the rate of change of the surface free energy γ.

The first integral is the rate of free energy change inside the grain. The next two integrals

represent the rate of work expended on elastic deformation of the surface. The last integral

is the rate of mechanical work performed by the surrounding medium on the grain, the

negative of which gives the rate Φ̇m of free energy change of the medium.

Eq.(18) will now be transformed to a form that is more suitable for the analysis of

creep deformation. We start with the first integral by inserting dLfs/dt from Eq.(17). The

integral of the first term in Eq.(17) is

−

ˆ

R′

MG∇ · JLdv
′ = −

ˆ

R

M∇ · JLdv = −

ˆ

R

∇ · (MJL) dv +

ˆ

R

JL · ∇Mdv

= −

ˆ

∂R

Mn·JLdA+

ˆ

R

JL · ∇Mdv, (19)

whereGdv′ = dv (increment of deformed volume). At the last step we applied the divergence

theorem. For the integral of the second term in Eq.(17) we again use the divergence theorem

to convert it to a surface integral in the reference state and then in the deformed state,

ˆ

R′

∇′· (P·vL) dv
′ =

ˆ

∂R′

n′· (P·vL) dA
′ =

ˆ

∂R

n·σ·vLdA, (20)
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where n′ is the normal to the boundary ∂R′ of the reference region. At the last step we

applied Nanson’s formula10 n′dA′ = G−1n·FdA and Eq.(5) for P. Finally, the integral of

the third term in Eq.(17) is

−

ˆ

R′

(∇′·P) ·vLdv
′ = −

ˆ

R

G−1 (∇′·P) ·vLdv. (21)

Combining the three terms,

ˆ

R′

dLfs
dt

dv′

Ω′
=

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv −

ˆ

∂R

Mn·JLdA+

ˆ

∂R

n·σ·vLdA. (22)

We now turn to the surface integrals in Eq.(18). Recall that dȦ is the rate of area

change of a surface element obtained by elastic deformation of a given reference surface

element dA′. The volume swept by this surface element per unit time during the elastic

deformation is dv̇ = n·vLdA. Introducing the total surface curvature k ≡ dȦ/dv̇, we have

dȦ = kn·vLdA. Thus the two surface integrals can be combined together to give

ˆ

∂R

γdȦ+

ˆ

∂R

γ̇dA =

ˆ

∂R

(

γ + γ̇
dA

dȦ

)

dȦ ≡

ˆ

∂R

kτn·vLdA, (23)

where τ is defined by

τ ≡ γ + γ̇
dA

dȦ
. (24)

Applying Eqs.(7) and (8) and the obvious relations ϕ̇ = dȦ/dA′ and γ̇ = (∂γ/∂ϕ)ϕ̇, we

have

τ ≡ γ + ϕ
∂γ

∂ϕ
= γ + A

∂γ

∂A
, (25)

showing that τ has the meaning of isotropic surface stress. The obtained expression for τ

is consistent with the Shuttleworth equation for the surface stress tensor.15

Combining the above equations we finally obtain the rate of total free energy dissipation

for Case 1:

Φ̇1 =

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv

−

ˆ

∂R

Mn·JLdA+

ˆ

∂R

n· (kτI + σ − σext) ·vLdA, (26)

where I is the rank two identity tensor. Note that the appearance in this equation of the

lattice diffusion flux n·JL normal to the surface does not contradict the conservation of

atoms in the system. As will be discussed later, this flux need not be zero in the presence

of surface diffusion.
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B. Case 2: Pure site creation

Now suppose that the grain R expands by generation of new lattice sites at its surface

without changing the physical state of the material. This process is similar to surface

growth and can be described as expansion of the reference region R′ by the motion of its

boundary ∂R′ with velocities v′
s at a fixed composition field c(x′) and fixed deformation

mapping x(x′). In this process, the deformed region expands by the motion of its surface

with the velocities

vs = F·v′
s, (27)

incorporating new sites with the same composition and state of deformation as the old.

Under certain surface growth mechanisms it can be possible to uniquely identify the local

growth velocities vs. In such cases, the reference velocities v′
s can be back-calculated from

Eq.(27) to match the actual growth velocities dictated by the adopted growth mechanism.

In the absence of a surface growth model, the choice of the reference velocity field v′
s is not

unique: different choices can produce physically the same evolution of the growing surface.

A natural choice, which will be assumed here as default, is to align the reference velocities

v′
s parallel to the reference normal n′. Note that in this case, the actual growth velocities

vs need not be parallel to the physical normal n.

The rate of change of the total free energy of the system (the grain, its surface and the

medium) is

Φ̇2 =

ˆ

∂R

fsn·vs

dA

Ω
+

ˆ

∂R

kγn·vsdA−

ˆ

∂R

n·σext·vsdA. (28)

The first term is the rate of free energy change due to the incorporation of the new lattice

regions. The second term is the rate of work expended on creation of new surface area

with the rate dȦs = kn·vsdA. Note that an integral with γ̇ similar to one of the terms

in Eq.(18) does not appear in Eq.(28). Indeed, according to Eq.(7) γ is a function of

temperature and the elastic surface deformation ϕ, both of which remain constant in the

process described here. Finally, the last term in Eq.(28) is the rate of work done on the

region by the surrounding medium.

C. General variation of state with site generation

We are now ready to address the general case in which the surface of the grain moves by

both site generation as in Case 2 and due to variations in the composition and strain fields

as in Case 1. The total velocity vb of the surface is obtained as the time derivative of the

deformation map x = x(x′, t),

vb =
dx

dt
=

(

∂x

∂t

)

x′

+

(

∂x

∂x′

)

t

dx′

dt
= vL + F·v′

s = vL + vs. (29)
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The total free energy change of the system is Φ̇ = Φ̇1 + Φ̇2 and is obtained by adding

equations (26) and (28),

Φ̇ =

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv

−

ˆ

∂R

Mn·JLdA+

ˆ

∂R

n· (kτI+ σ − σext) ·vLdA

+

ˆ

∂R

n·

((

fs
Ω

+ kγ

)

I− σext

)

· (vb − vL) dA. (30)

It should be noted that Eq.(30) does not take into account the conservation of atoms in

the system. To formulate this conservation, we introduce the quantity

ν ≡
c

Ω
n· (vb − vL)− n·JL, (31)

which generally represents the flux of atoms measured relative to the moving surface and

considered positive if atoms are added to the grain. For a surface in contact with an inert

medium, such atoms can only be supplied by surface diffusion. Thus, the conservation of

atoms can be expressed by the relation

ν = −∇b·Jb, (32)

where Jb is a two-dimensional diffusion flux at the surface (number of atoms crossing a unit

length at the surface per unit time) taken with respect to the surface layer of atoms. The

surface divergence −∇b·Jb is the rate of supply of atoms by diffusion along the surface.

We will now incorporate the atom conservation condition (32) by eliminating the surface

integral of Mn·JL from the free energy dissipation rate (30), which becomes

Φ̇ =

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv

+

ˆ

∂R

n· (kτI + σ − σext) ·vLdA−

ˆ

∂R

M∇b·JbdA

+

ˆ

∂R

n·

((

fs −Mc

Ω
+ kγ

)

I− σext

)

· (vb − vL) dA. (33)

The integral with ∇b·Jb can be further transformed by using the identity

M∇b·Jb = ∇b· (MJb)− Jb·∇bM, (34)
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to give

Φ̇ =

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv

+

ˆ

∂R

n· (kτI+ σ − σext) ·vLdA+

ˆ

∂R

Jb·∇bMdA

+

ˆ

∂R

n·

((

fs −Mc

Ω
+ kγ

)

I− σext

)

· (vb − vL) dA

+

ˆ

∂R

∇b· (MJb) dA. (35)

The integral in the last line is computed by applying the surface divergence theorem,

ˆ

∂R

∇b· (MJb) dA =

ˆ

L

e· (MbJb) dl = 0, (36)

where e is a unit vector tangential to the boundary and normal to the contour L bounding

the surface. This integral obviously vanishes for an isolated grain. The final expression for

the rate of free energy dissipation becomes

Φ̇ =

ˆ

R

(

JL · ∇M −G−1 (∇′·P) ·vL

)

dv

+

ˆ

∂R

n· (kτI + σ − σext) ·vLdA+

ˆ

∂R

Jb·∇bMdA

+

ˆ

∂R

n·

((

fs −Mc

Ω
+ kγ

)

I− σext

)

· (vb − vL) dA. (37)

As a test of Eq.(37), we will apply it to determine the conditions of equilibrium in the

system. To this end, the quantities vL, (vb−vL), JL and Jb are treated as virtual variations

occurring per unit time. Accordingly, the coefficients before these variations inside the grain

R and at its surface ∂R must be zero. This leads to the following equilibrium conditions:

∇′·P = 0 Mechanical equilibrium inside R (38)

M = const Chemical equilibrium inside R (39)

n·σext − n·σ = kτn Mechanical equilibrium at the surface ∂R (40)

M = const Chemical equilibrium at the surface ∂R (41)

(fs −Mc + Ωkγ)n = Ωn·σext Site generation equilibrium at the surface ∂R. (42)
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The latter relation shows that the surface traction vector n·σext must be normal to the

boundary and equal in magnitude to fs −Mc + Ωkγ. This condition can be rewritten in

the form

fs −Mc + Ωkγ = Ωn·σext·n (43)

or

fs −Mc + Ωk (γ − τ) = Ωn·σ·n. (44)

Combining Eqs.(40) and (42) we conclude that the traction vector n·σ is also normal to

the surface.

Next, we apply Eq.(37) to relatively slow processes in which mechanical equilibrium is

maintained both inside the grain and at the surface. Accordingly, Eqs.(38) and (40) are

assumed to be satisfied at all times. Then Eq.(37) simplifies to

Φ̇ =

ˆ

R

JL · ∇Mdv +

ˆ

∂R

Jb·∇bMdA

+

ˆ

∂R

n·

((

fs −Mc

Ω
+ kγ

)

I− σext

)

· (vb − vL) dA. (45)

Note that this equation is invariant under Galilean transformations because the fluxes JL

and Jb are defined relative to the lattice and the surface layer, respectively, and (vb − vL)

is the surface velocity relative to the lattice.

Using Eq.(45) and neglecting kinetic cross-effects, we can formulate the following phe-

nomenological kinetic relations. Equation

JL = −L∇M (46)

describes diffusion inside the lattice, L > 0 being the kinetic coefficient of lattice diffusion.

This equation assumes that the diffusivity of the lattice is isotropic. Likewise, diffusion

along the surface follows the equation

Jb = −Lb∇bM, (47)

where the kinetic coefficient Lb > 0 characterizes surface diffusion and is generally different

from L (even in dimensions). Surface diffusion is also considered isotropic. Finally, the

rate ṡ of site generation at the surface (number of sites per unit area per unit time) can be

described by the phenomenological equation

ṡ =
1

Ω
n· (vb − vL) = −Ks (fs −Mc + Ωkγ − Ωn·σext·n) , (48)

Ks > 0 being the kinetic coefficient related to the site generation process.

The right-hand side of Eq.(48) identifies the thermodynamic driving force for site gen-

eration by the surface. For a stress-free plane surface, the driving force is simply the grand

potential per lattice site (fs−Mc). The surface curvature and applied stress σext contribute

to the driving force, affecting the site generation process and thus the shape change of the

material.
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IV. EVOLUTION OF A BICRYSTAL

A. Calculation of the free energy dissipation

Moving to the next level of complexity, we now consider a bicrystal composed of two

grains, labeled α and β, enclosed in a rigid box. The grains fill the entire volume of the box

without voids. The boundary S between the grains can either terminate at the walls of the

box or form a closed surface bounding grain α. In either case, one or both of the grains

are in contact with the walls of the box. We assume that the contact planes between the

grains and the walls satisfy a no-slip condition eliminating any mechanical work done on

such planes. There is no transfer of atoms through or generation of sites at the walls of the

box. These assumptions are made in order to focus the attention on processes occurring

inside the grains and at the grain boundary S. The role of the wall conditions is only to

ensure that the box and the grains form a closed thermodynamic system equilibrated with

a thermostat, with all mechanical work performed only inside the grains and at the grain

boundary.

Evolution of this system can be described by treating the grains as growing or shrinking

lattice regions, Rα and Rβ , as in Sec. III. The total rate of free energy change includes a

volume part, Φ̇α + Φ̇β , and a grain boundary contribution Φ̇b. For the volume parts, Φ̇α

and Φ̇β , we use the previously derived Eq.(30) in which we omit the terms involving the

external stress σext as well as the interface free energy and interface stress:

Φ̇α =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv

−

ˆ

S

Mαn
α·Jα

LdA+

ˆ

S

nα·σα·v
α
LdA+

ˆ

S

fα
s

Ωα

nα· (vα
b − vα

L) dA, (49)

Φ̇β =

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

−

ˆ

S

Mβn
β·Jβ

LdA+

ˆ

S

nβ·σβ·v
β
LdA+

ˆ

S

fβ
s

Ωβ

nβ·
(

v
β
b − v

β
L

)

dA. (50)

All quantities appearing in these equations have the same meaning as in Sec. III, with

the labels α and β referring to the grains. We did not yet impose any contact conditions

between the grains, which at this point can be thought of as separated by a gap. Thus nα

is a unit normal to the surface of grain α pointing outside of this grain, and nβ is a unit

normal to the surface of grain β pointing outside of that grain. Similarly, vα
b is the surface

velocity of grain α and v
β
b the surface velocity of grain β.

12



We now impose the condition that the two grains stay in contact. The contact condition

is expressed by the equations

nα·vα
b = nα·vβ

b (51)

and

nβ = −nα. (52)

As will be discussed later, these conditions do not preclude grain boundary sliding.

The boundary part of the free energy rate has the form similar to Eq.(23):

Φ̇b =

ˆ

S

γdȦ+

ˆ

S

γ̇dA, (53)

where γ is the grain boundary free energy. The rate of change of the boundary area can be

computed from the kinematic description of grain α,

dȦ = kαn
α·vα

b dA, (54)

or from the kinematic description of grain β,

dȦ = kβn
β·vβ

b dA. (55)

These two equations give the same result for dȦ due to the contact conditions (51) and (52)

and the relation kβ = −kα between the two descriptions of the same boundary curvature.

Further calculations require a postulated fundamental equation of interface thermody-

namics. We will adopt the following fundamental equation:

γ = γ (T, ϕα, ϕβ) , (56)

where ϕα = (dA/dA′)α and ϕβ = (dA/dA′)β describe elastic deformations of the two

lattices in contact with the boundary. Note that γ is postulated to depend only on the

areal deformations and not be affected by other components of the elastic deformation.

Furthermore, γ is not affected by possible relative sliding of the two grains. While kinematic

descriptions based on more complex fundamental equations have been proposed,16 we focus

the attention of this simple case to make the model more tractable.

Using the fundamental equation (56) in conjunction with the easily derivable relations

ϕ̇α = (dȦ/dA′)α = ϕαkαn
α·vα

L and ϕ̇β = (dȦ/dA′)β = ϕβkβn
β ·vβ

L, we obtain

γ̇ = kαn
α·

(

ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

v
β
L

)

, (57)

where we took into account that kαn
α = kβn

β . Putting Eqs.(53) to (57) together, the rate

of free energy change associated with the grain boundary becomes

Φ̇b =

ˆ

S

kαn
α·

(

γvα
b + ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

v
β
L

)

dA. (58)
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We next impose the condition of conservation of atoms in the system. The number of

atoms added to grain α at the grain boundary (per unit area per unit time) is

να =
cα
Ωα

nα· (vα
b − vα

L)− nα·Jα
L, (59)

with a similar number for grain β:

νβ =
cβ
Ωβ

nβ ·
(

v
β
b − v

β
L

)

− nβ·Jβ
L. (60)

If there were no grain boundary diffusion, the conservation of atoms would dictate να+νβ =

0. In the presence of grain boundary diffusion, the conservation of atoms can be expressed

by

να + νβ = −∇b·Jb, (61)

where Jb is a two-dimensional diffusion flux (number of atoms crossing a unit boundary

length per unit time) relative to the boundary layer, and ∇b·Jb is the surface divergence of

this flux. The conservation relation (61) must hold at every point of the boundary.

To incorporate the conservation of atoms in the free dissipation, we use Eqs.(59) and

(60) to eliminate the surface integrals of Mαn
α·Jα

L and Mβn
β·Jβ

L from Eqs.(49) and (50),

respectively. This gives

Φ̇α =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv

+

ˆ

S

ναMαdA+

ˆ

S

nα·σα·v
α
LdA+

ˆ

S

(

fα
s −Mαcα

Ωα

)

nα· (vα
b − vα

L) dA, (62)

Φ̇β =

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

νβMβdA+

ˆ

S

nβ ·σβ·v
β
LdA+

ˆ

S

(

fβ
s −Mβcβ

Ωβ

)

nβ ·
(

v
β
b − v

β
L

)

dA. (63)

Finally, adding together the free energy dissipations in the grains and at the grain boundary

we obtain the following expression for the total free energy dissipation rate:

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv +

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

(ναMα + νβMβ) dA+

ˆ

S

nα ·
(

σα·v
α
L − σβ ·v

β
L

)

dA

+

ˆ

S

nα·
(

ωα (vα
b − vα

L)− ωβ
(

vα
b − v

β
L

))

dA

+

ˆ

S

kαn
α·

(

γvα
b + ϕα

∂γ

∂ϕα

vα
L + ϕβ

∂γ

∂ϕβ

v
β
L

)

dA, (64)
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where

ωα ≡
fα
s −Mαcα

Ωα

(65)

and

ωβ ≡
fβ
s −Mβcβ

Ωβ

(66)

are grand potentials per unit volume inside the grains. Note that we replaced nα·vβ
b by

nα·vα
b using Eq.(51).

The subsequent calculations can be simplified by adopting the following notations.16 For

a vector or tensor field A(x), let Aα andAβ denote the limits of this field when approaching

the grain boundary from each grain at the same location. Then

[A] ≡ Aα −Aβ (67)

is the jump of A across the boundary while

〈A〉 ≡
Aα +Aβ

2
(68)

is the average boundary value of A. It can be expected that driving forces acting on

the grain boundary arise from jumps of thermodynamic properties across the boundary or

gradients of average values of thermodynamic properties along the boundary.

Furthermore, we decompose the lattice velocity jump [vL] into a normal and parallel

components,

[vL] = [vL]⊥ + [vL]|| , (69)

and similarly decompose the average lattice velocity,

〈vL〉 = 〈vL〉⊥ + 〈vL〉|| , (70)

the average traction vector s ≡ nα·σ at the boundary,

nα· 〈σ〉 = 〈s〉⊥ + 〈s〉|| , (71)

and the jump of the traction vector,

nα· [σ] = [s]⊥ + [s]|| . (72)

The following identities are helpful during mathematical manipulations with jumps and

averages:

[A ·B] = 〈A〉 · [B] + [A] · 〈B〉 , (73)

〈A ·B〉 = 〈A〉 · 〈B〉+
1

4
[A] · [B] , (74)
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where B(x) is another vector or tensor field of the same rank as A(x). Similar relations

obviously hold for scalar fields.

Going through a chain of mathematical transformations described in Appendix A, the

final form of the free energy dissipation rate becomes

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv (75)

+

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv (76)

+

ˆ

S

Jb·∇b 〈M〉 dA−

ˆ

S

Jn [M ] dA (77)

+

ˆ

S

([s]⊥ + kατn
α) · 〈vL〉⊥ dA (78)

+

ˆ

S

[s]|| · 〈vL〉|| dA (79)

−

ˆ

S

((

〈ω〉 −
1

2
kα

[

ϕ
∂γ

∂ϕ

])

nα − 〈s〉⊥

)

· [vL]⊥ dA, (80)

+

ˆ

S

〈s〉|| · [vL]|| dA (81)

+

ˆ

S

([ω] + kαγ)n
α· 〈vb − vL〉 dA, (82)

where

τ ≡ γ + ϕα

∂γ

∂ϕα

+ ϕβ

∂γ

∂ϕβ

(83)

has the meaning of the surface stress of the grain boundary. In Eq.(77), we introduced the

normal flux of atoms leaving grain α across the grain boundary and entering grain β:

Jn =
(νβ − να)

2
= −

1

2
[ν] . (84)

B. Classification of grain boundaries by mechanical response

Applications of the obtained Eqs.(75) to (82) depend on whether the velocity jumps

and velocity averages at the grain boundary can vary independently or are subject to

constraints arising, for example, from a particular grain boundary structure or mechanism

of motion. Three types of grain boundaries will be distinguished in this work, depending

on the existence and nature of such constraints.
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(i) Suppose all velocity jumps and averages appearing in Eqs.(78) to (82) are completely

independent of one another. As will be shown below, the boundary then responds to

applied shear stresses by sliding. In equilibrium, the parallel (shear) component of the

traction vector s = nα·σ must be zero,

sα|| = s
β

|| = 0. (85)

Following Larché and Cahn,13,14 we classify such grain boundaries as incoherent interfaces.

(ii) As will be discussed later,

vGB ≡ nα· 〈vb − vL〉 = nα·vα
b −

1

2
nα·

(

vα
L + v

β
L

)

(86)

has the meaning of the velocity of GB migration relative to the lattices of the two grains.

This velocity is positive if grain α grows at the expense of grain β and negative otherwise.

For some grain boundaries, vGB is coupled to relative translations of the grains represented

by the parallel velocity jump [vL]||. Suppose the grain translations occur parallel a particular

direction t (unit vector) tangential to the boundary. The coupling effect9,17 is characterized

by the linear relation

[vL]|| · t = βvGB, (87)

where the coupling factor β depends on crystallographic characteristics of the grain bound-

ary and other factors.9 The sign of the coupling factor β defines the direction of GB motion

for the same jump in parallel velocity. To simplify further analysis, suppose the grain

translations always occur in the direction parallel to the shear traction 〈s〉|| applied to the

boundary: t|| 〈s〉||. Then, due to the constraint imposed by Eq.(87), equations (81) and

(82) can be combined into one integral,

ˆ

S

(

[ω] + kαγ + β 〈s〉|| · t
)

vGBdA. (88)

As will be shown later, such boundaries can be equilibrated in the presence of applied shear

stresses. They can be referred to as coherent interfaces.13,14,18

(iii) There can be an intermediate case when the boundary responds to applied shears by

both coupling and sliding. As before, we assume for simplicity that the grain translations

occur parallel to the direction of 〈s〉||. The respective constraint on the velocities can be

written as17,19

[vL]|| · t = βvGB + w, (89)

where w is the sliding velocity. A grain boundary obeying this constraint can be called

semi-coherent. In this case, Eq.(81) becomes

ˆ

S

(

〈s〉|| · t
)

wdA, (90)
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whereas the last line of Eq.(82) is given by the same Eq.(88).

Several classifications of solid-solid interfaces can be found in the literature.20 The classi-

fication outlined above is based on different mechanical responses to applied shear stresses,

namely, pure sliding, coupled motion, and mixture of both. Interfaces are often classified

as incoherent, coherent and semi-coherent according to their structure, a semi-coherent in-

terface being composed of a network of misfit dislocations. These three interface structures

often display mechanical responses corresponding to the three cases (i) to (iii) introduced

above, which justifies our terminology.

The assumption that the relative grain translations accompanying coupled motion and

sliding always occur parallel to 〈s〉|| is consistent with our treatment of the grain boundary

as isotropic. A generalization of Eqs.(88) to (90) to anisotropic cases is straightforward but

is beyond the present work.

C. Equilibrium conditions

Before formulating dynamic equations, we will first apply the obtained free energy dis-

sipation rate, Eqs.(75)-(82), to find the conditions of thermodynamic equilibrium in the

system. This will be achieved by requiring that the coefficients multiplying all independent

velocities and fluxes be zero.

Equations (75) and (76) require that the diffusion potentials be spatially uniform inside

the grains. In addition, the grains must satisfy the internal mechanical equilibrium condi-

tions ∇′·Pα = 0 and ∇′·Pβ = 0, respectively. Equation (77) states that there must be no

jump of the diffusion potential across the boundary, [M ] = 0, and that the average value of

the diffusion potential, 〈M〉, must be uniform along the grain boundary. In other words, M

must be uniform throughout the entire two-grain system. Equations (78) and (79) give the

conditions of mechanical equilibrium at the grain boundary, namely, the parallel component

of the traction vector must be continuous across the boundary,

[s]|| = 0, (91)

while the normal component undergoes a nonzero jump equal to −kατ ,

[s]⊥ + kατn
α = 0. (92)

For a plane boundary, kα = 0 and this equation gives [s]⊥ = 0; the traction vector s is

continuous across the boundary. According to Eq.(80), the average boundary value of ω

must satisfy the relation

〈ω〉 =
1

2
kα

[

ϕ
∂γ

∂ϕ

]

+ nα· 〈s〉⊥ . (93)

As will be discussed later, this is the condition of equilibrium with respect to site generation

at the grain boundary.
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The remaining equilibrium conditions depend on the type of the boundary. For an inco-

herent boundary, Eq.(81) gives 〈s〉|| = 0, which in combination with the already established

condition [s]|| = 0 leads to the conclusion that the parallel component of the traction vector

must be zero, see Eq.(85). Thus the traction vector is normal to the incoherent boundary.

The remaining condition (82) states that ω undergoes a jump equal to −kαγ,

[ω] + kαγ = 0. (94)

This equation expresses the absence of driving forces for grain boundary migration, see

below. In the particular case of a plane grain boundary, the traction vector is continuous

across the boundary, [s]⊥ = 0 [see Eq.(92)]. The grand potential density is also continuous

and, by Eq.(93), has the boundary value

ω = nα·s⊥ (plane grain boundary). (95)

Now turn to a coherent interface. Recall that in this case, Eqs.(81) and (82) merge into

one integral (88). We can no longer conclude that the parallel component of the traction

vector must be zero. Although it is still continuous across the boundary, it can remain finite

at equilibrium. In other words, a coherent grain boundary is capable of supporting a static

shear stress parallel to its plane.13,14,18 The condition preventing grain boundary migration

now reads

[ω] + kαγ + β 〈s〉|| · t = 0. (96)

Note that the grand potential density is now discontinuous even across a plane grain bound-

ary (kα = 0). The magnitude of the jump [ω] can vary along the boundary due to variations

in both 〈s〉|| · t and β.

Finally, for a semi-coherent boundary, Eq.(81) is replaced by Eq.(90), which leads to a

zero parallel component of the traction vector similar to the incoherent case. As a result,

Eqs.(94) and (95) remain valid. Thus, all equilibrium conditions are exactly the same as

for an incoherent boundary. Both types of boundary are capable of sliding under shear and

thus can be only equilibrated in the absence of shear stresses. Their dynamics properties,

however, are different as will be discussed below.

D. Phenomenological equations of time evolution

The free energy dissipation rate given by Eqs.(75)-(82) allows us to formulate a set

of phenomenological equations for the evolution of the system. In the context of creep

deformation, it is reasonable to assume that the interiors of the grains maintain mechanical

equilibrium at all times. These equilibrium conditions only involve elastic deformation of

the material and can be readily maintained during slow processes such as creep. Likewise,

we can assume that the mechanical equilibrium conditions at the grain boundary, Eqs.(91)
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and (92), are also satisfied at all times. In addition, we will neglect all cross-effects between

different thermodynamic driving forces and generalized fluxes. Taking these assumptions

into account, the free energy dissipation rate becomes

Φ̇ =

ˆ

Rα

Jα
L · ∇Mαdv +

ˆ

Rβ

J
β
L · ∇Mβdv (97)

+

ˆ

S

Jb·∇b 〈M〉 dA−

ˆ

S

Jn [M ] dA (98)

−

ˆ

S

((

〈ω〉 −
1

2
kα

[

ϕ
∂γ

∂ϕ

])

nα − 〈s〉⊥

)

· [vL]⊥ dA, (99)

+

ˆ

S

〈s〉|| · [vL]|| dA (100)

+

ˆ

S

([ω] + kαγ) vGBdA (101)

with vGB defined by Eq.(86).

From Eq.(97), diffusion inside the grains is described by the equations

Jα
L = −Lα∇Mα, (102)

and

J
β
L = −Lβ∇Mβ , (103)

Lα > 0 and Lβ > 0 being diffusion kinetic coefficients. The remaining equations describe

grain boundary kinetics. For diffusion of atoms across the grain boundary we obtain

Jn = −Lt (Mβ −Mα) , (104)

where Lt > 0 is the kinetic coefficient for trans-boundary diffusion. Diffusion of atoms

along the grain boundary is described by the equation

Jb = −Lp∇b 〈M〉 , (105)

Lp > 0 being the kinetic coefficient of lateral grain boundary diffusion.

Suppose the grain boundary is incoherent. Then [vL]⊥, [vL]|| and vGB can be treated

as three independent variables representing generalized fluxes. The normal velocity jump

[vL]⊥ characterizes the rate of separation of the two lattices in the direction normal to the

boundary. This separation is a measure of the site generation at the boundary. Based on

Eq.(99), the site generation kinetics can be described by the equation

nα· [vL]⊥ = R

(

〈ω〉 −
1

2
kα

[

ϕ
∂γ

∂ϕ

]

− nα· 〈s〉⊥

)

, (106)
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R > 0 being the kinetic coefficient of site generation. Thus, the driving force for site

generation depends on the average value of ω at the boundary, the boundary curvature,

and the average normal component of the traction vector. For a plane grain boundary, the

traction vector is continuous across the boundary and Eq.(106) becomes

nα· [vL]⊥ = R (〈ω〉 − nα·s⊥) (plane grain boundary). (107)

The parallel velocity jump [vL]|| represents grain boundary sliding which, according to

Eq.(100), is driven by the shear component of the traction vector 〈s〉||. As in section IVC,

we assume that [vL]|| is parallel to 〈s〉||, leading to the sliding law

[vL]|| = −Ks 〈s〉|| , (108)

where Ks > 0 is the sliding coefficient.

Turning to Eq.(101), recall that the velocity vGB defined by Eq.(86) represents the grain

boundary motion relative to the lattices of the two grains. Indeed, if the lattice velocities

are equal, vα
L = v

β
L ≡ vL, then Eq.(86) gives vGB = nα· (vα

b − vL), which is indeed the grain

boundary velocity relative to the common velocity of the grains. Note that according to

Eq.(106), the total rate of site generation is then zero, which is consistent with the notion

that lattice sites disappear in front of the moving grain boundary and reappear in its wake.

This is the case of pure grain boundary migration without net generation of lattice sites. On

the other hand, suppose the lattices of the grains are pushed away from the grain boundary

in opposite directions with equal speeds, i.e., nα·(vα
b −vα

L) = −n
α·(vα

b −v
β
L). Thus the rate

of site generation is the same on either side of the boundary. This process is not associated

with grain boundary migration as commonly understood. And indeed, in this case Eq.(86)

yields the expected result vGB = 0. We can now formulate the phenomenological equation

of grain boundary migration in the form

vGB = −LGB ([ω] + kαγ) , (109)

where the kinetic coefficient LGB characterizes grain boundary mobility. In particular, the

motion of a plane incoherent grain boundary is driven by the jump of the grand potential

density [ω].

These phenomenological laws have been derived for an incoherent grain boundary. For

a coherent boundary, [vL]|| and vGB are coupled by Eq.(87). As a result, Eqs.(100) and

(101) merge into one Eq.(88). Sliding disappears and the law of grain boundary migration

becomes

vGB = −LGB

(

[ω] + kαγ + β 〈s〉|| · t
)

. (110)

The third term in the right-hand side is the“coupling driving force”responsible for the effect

of stress-induced grain boundary migration.7,9,17 Namely, a shear stress applied parallel to

a coherent grain boundary causes its motion in the normal direction.
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A semi-coherent grain boundary supports both coupling and sliding. We have three

independent flux variables, as in the incoherent case, but the lattice velocity jump [vL]||
is now decomposed into coupling and sliding components according to Eq.(89).9,17,19 The

boundary migration law in Eq.(110) remains valid but the sliding law is formulated in terms

of the sliding velocity w,

w = −Ks 〈s〉|| · t. (111)

The obtained grain boundary migration and sliding laws, Eqs. (110) and (111), are

consistent with the equations derived previously for the shrinkage and rotation of an em-

bedded cylindrical grain17,19 with the following modifications: (i) for the cylindrical grain

analysis17,19 included an additional driving force arising from the change in the boundary

free energy γ as a result of grain rotation, which is disregarded in the present treatment;

(ii) the “volume free energy” term17,19 has now been identified as the jump of the grand

potential density [ω]; (iii) our theory includes site generation at the grain boundary, which

was not part of any previous models.

V. SPECIFIC MODEL OF STRESSED SOLID

A. Bulk thermodynamics

We will now consider a particular model of the solid in which the elastic deformation

is treated in the small-strain approximation. As the reference state for the small-strain

tensor ε we choose the stress-free solid without vacancies (c = 1). It should be noted

that this reference state changes with temperature due to thermal expansion. However, all

calculations discussed below are conducted at a fixed temperature.

We postulate that the stress-free deformation ε
0 produced by vacancies is isotropic and

given by

ε
0 =

∆Ωv

3Ω′
(1− c) I. (112)

Here and everywhere below, the superscript 0 refers to the stress-free state. The quantity

∆Ωv < 0 is the vacancy relaxation volume, i.e., the change in equilibrium volume of the

solid when an atom is replaced by a vacancy under zero stress conditions. In the present

model, ∆Ωv is treated as a function of temperature only and thus remains fixed. The total

lattice strain ε is composed of the stress-free strain ε
0 and an elastic component obeying

Hooke’s law of linear elasticity:

ε = ε
0 + S : σ. (113)

Here, S is the tensor of isothermal elastic compliances considered to be a function of tem-
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perature only (and thus fixed). Note that the volume of the deformed lattice per site equals

Ω = Ω′ [1 + Tr(ε)] = Ω′

[

1 +
∆Ωv

Ω′
(1− c) + Tr(S : σ)

]

. (114)

The Helmholtz free energy per site has the functional form similar to Eq.(1),

fs = fs (T, ε, c) , (115)

with the differential form

dfs = Mdc+ Ω′
σ : dε, T = const, (116)

where

M ≡

(

∂fs
∂c

)

T,ε

(117)

is the diffusion potential of atoms relative to vacancies.

For the stress-free state, the free energy f 0
s (T, c) ≡ fs (T, ε

0, c) is postulated in the form

f 0
s (T, c) = f +Mc+ kT [c ln c+ (1− c) ln(1− c)] , (118)

where f and M are functions of temperature only (and thus constant) and k is Boltzmann’s

constant. This free energy form corresponds to the ideal solution model.21 The free energy

of a stressed state is obtained by integrating fs with respect to stress at fixed values of c

and T :

fs = f 0
s +

σ
ˆ

0

(

∂fs
∂ε

)

T,c

:

(

∂ε

∂σ

)

T,c

: dσ = f 0
s +

σ
ˆ

0

Ω′
σ : S : dσ, (119)

where we used Eqs.(113) and (116). Performing the integration,

fs = f +Mc+ kT [c ln c + (1− c) ln(1− c)] +
Ω′

2
σ : S : σ. (120)

As expected, the stress effect on fs is quadratic in stress.

We next determine the effect of stress on the diffusion potential M . For the stress-free

state we use Eq.(118) to obtain

M0 =

(

∂f 0
s

∂c

)

T

= M + kT ln
c

1− c
. (121)

The stress effect on M is found by the standard manipulation involving the Legendre

transformation of Eq.(116),11–14

d (fs − Ω′
σ : ε) = −Ω′

ε : dσ +Mdc, T = const, (122)

and the Maxwell relation
(

∂M

∂σ

)

T,c

= −Ω′

(

∂ε

∂c

)

T,σ

. (123)
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Integration of this relation gives

M = M0 +

σ
ˆ

0

(

∂M

∂σ

)

T,c

: dσ = M0 − Ω′

σ
ˆ

0

(

∂ε

∂c

)

T,σ

: dσ. (124)

Using Eqs.(112) and (113) for ε, the integrand equals

(

∂ε

∂c

)

T,σ

=

(

∂ε0

∂c

)

T

= −
∆Ωv

3Ω′
I, (125)

which immediately gives

M = M0 +
∆Ωv

3
I : σ = M0 +∆Ωvσh, (126)

where

σh =
1

3
Tr(σ) (127)

is the hydrostatic part of the stress tensor. Thus the diffusion potential is

M = M + kT ln
c

1− c
+∆Ωvσh, (128)

showing that the stress effect on M is linear in σh. Combining Eqs.(120) and (128), the

grand potential per site equals

ωs = fs −Mc = f + kT ln(1− c)−∆Ωvcσh +
Ω′

2
σ : S : σ. (129)

Eqs.(128) and (129) can be further rearranged as follows. Eq.(95) shows that for a plane

stress-free grain boundary, the condition of thermodynamic equilibrium dictates ωs = 0.

This condition is satisfied at a particular composition denoted c∗, for which Eq.(129) gives

f + kT ln(1− c∗) = 0. (130)

For brevity, c∗ will be referred to as the “equilibrium vacancy concentration”. The latter

depends only on temperature and is treated here as a material constant. Using Eq.(128),

the respective equilibrium diffusion potential is

M∗ = M + kT ln
c∗

1− c∗
. (131)

Utilizing these relations, Eqs.(128) and (129) can be rewritten as

ωs = kT ln
1− c

1− c∗
−∆Ωvcσh +

Ω′

2
σ : S : σ, (132)

M = M∗ + kT ln
c(1− c∗)

c∗(1− c)
+ ∆Ωvσh. (133)
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The obtained expressions for ωs and M are exact within the adopted model of the solid.

We will now make certain approximations.

Given that the vacancy concentration cv ≡ (1− c) is very small in most solids, it can be

neglected in comparison with all terms of order unity. In particular, Eqs.(132) and (133)

can be approximated by

ωs = kT ln
cv
c∗v
−∆Ωvσh +

Ω′

2
σ : S : σ, (134)

M = M∗ − kT ln
cv
c∗v

+∆Ωvσh. (135)

Furthermore, the term ∆Ωvcv/Ω
′ appearing in Eq.(114) is≪ 1 and can be neglected, giving

Ω ≈ Ω′ [1 + Tr(S : σ)] . (136)

This is equivalent to neglecting the stress-free strain caused by the vacancies. In this

approximation, the site volume is only affected by the elastic strain.

In most applications, the stress effect on thermodynamics is captured accurately enough

by keeping only terms linear in stress and neglecting higher order terms. In this approxi-

mation
1

Ω
≈

1

Ω′
[1− Tr(S : σ)] , (137)

and the grand potential per unit volume can be approximated by

ω =
ωs

Ω
≈

kT

Ω′
ln

cv
c∗v
−

kT

Ω′

(

∆Ωvσh

kT
+ Tr(S : σ) ln

cv
c∗v

)

. (138)

The second term in the right-hand side of Eq.(138) is often neglected. This is equiv-

alent to disregarding the vacancy relaxation volume ∆Ωv and assuming that the stress is

small enough to neglect elastic dilatation Tr(S : σ). It is in this approximation that the

equilibrium condition of plane grain boundary expressed by Eq.(95) takes the form

kT ln
cv
c∗v

= Ω′nα·s⊥. (139)

This equation reproduces the frequently used Herring’s relation for the effect of stresses

on the vacancy concentration near boundaries in solids.2,22 Insertion of ω from Eq.(138)

into Eq.(95) gives a more accurate equation for this effect. This equation shows that the

equilibrium vacancy concentration near a boundary is affected by not only the normal stress

nα·s⊥ but also lateral stresses parallel to the interface.

B. Diffusion kinetics

Diffusion kinetics inside the grains are governed by the phenomenological relations (102)

and (103) between the diffusion flux relative to the lattice and the gradient of the diffusion
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potential. Using Eq.(128) for M ,

JL = −L∇M = −
LkT

c(1− c)
∇c− L∆Ωv∇σh. (140)

For diffusion in a uniform stress-free lattice we have

J0
L = −

LkTΩ

c(1− c)
∇

c

Ω
. (141)

The coefficient before the gradient of the atomic density c/Ω can be identified with the

diffusion coefficient of atoms. Assuming the vacancy mechanism of diffusion, this diffusion

coefficient is proportional to the vacancy concentration cv and can therefore be written as

Dcv/c
∗
v, where D is the diffusion coefficient in the stress-free solid with the equilibrium

vacancy concentration c∗v. Thus, the kinetic coefficient L can be found from the condition

LkTΩ

c(1− c)
= D

cv
c∗v
, (142)

where D is treated as a material constant. Inserting this L in Eq.(140) and expressing the

composition in terms of the vacancy concentration cv, the flux equation becomes

JL = D
cv
Ωc∗v
∇cv −D

∆Ωvc
2
v

ΩkTc∗v
∇σh. (143)

In the second term we approximated c(1− c) ≈ cv.

The continuity equation (13) can be rewritten in terms of the vacancy concentration,

∂cv
∂t

= −vL·∇cv + Ω∇·JL. (144)

Inserting JL from Eq.(143) and keeping only first order terms in stress,

∂cv
∂t

=
D

c∗v
cv∇

2cv +
D

c∗v
(∇cv)

2 − vL·∇cv

−
D∆Ωv

kTc∗v
c2v∇

2σh −
2D∆Ωv

kTc∗v
cv∇σh · ∇cv +D

cv
c∗v
∇cv · ∇Tr(S : σ), (145)

where we applied Eq.(136) for the stressed site volume Ω. In Eq.(145), all stress-free terms

have been collected in the first line, while the second line contains the terms linear in stress

or its derivatives.

VI. DISCUSSION AND CONCLUSIONS

Previous sharp-interface descriptions of creep deformation1–4 relied on numerous rough

approximations and ad hoc assumptions regarding the vacancy generation and absorption

process and the associated interface motion that causes the shape deformation. In this
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work, we presented a rigorous irreversible thermodynamic description of creep deformation

treating the interfaces as geometric surfaces capable of vacancy generation and absorption.

The central result is the free energy dissipation rate given by Eq.(37) for an open surface and

by Eqs.(75) to (82) for a grain boundary. The dissipation rate enables us to identify clearly

the thermodynamic forces for vacancy generation and absorption at the interface, interface

migration, and vacancy diffusion along the interface and inside the grains. In addition, and

in contrast to previous theories, our equations naturally incorporate mechanical processes

at interfaces, such as grain boundary sliding and shear-coupled motion. These processes

are part of the overall creep deformation process and can impact the deformation rate and

the microstructure evolution during the creep.

To treat the grain boundary processes mentioned above, we have introduced a classifi-

cation of grain boundaries into three categories according to their mechanical response to

applied shear stresses. The concepts of coherent and incoherent interfaces has been known

before,13,14,18 although not in the context of creep deformation and without considering the

lattice site generation at the interface. We find that a complete description of creep requires

the introduction of semi-coherent interfaces, in which the shear-coupled motion can co-exist

with sliding. Formally, the coherent and incoherent interfaces can be obtained as limiting

cases of a semi-coherent interface when the sliding coefficient Ks → 0 and when Ks → ∞

and β → 0, respectively. However, in view of their practical significance, the coherent and

incoherent interfaces should be kept as separate categories.

It should be emphasized that the equations obtained for the dissipation rate fully incor-

porate capillary effects, which can be especially important in nano-scale creep phenomena.

Care has been taken to separate the interface free energy and interface stress, which are two

related but physically and numerically different interface properties.15,23,24 The equations

derived here clearly display their separate roles in the creep process.

The free energy dissipation rate derived in this work has the structure of thermodynamic

driving forces multiplied by generalized fluxes or rates of different processes. This enables

us to derive phenomenological kinetic equations employing the Onsager formalism of irre-

versible thermodynamics.25–27 In this paper, we have formulated a set of kinetic equations

assuming constant kinetic coefficients and neglecting cross-effects. Numerical solution of

these equations enables a description of the creep deformation kinetics and microstructure

evolution in the material. To prepare for future applications, the model has been specialized

to a linear-elastic solid material with a small vacancy concentration. Work is under way

to apply this model to creep deformation in relatively simple structures, such as a spheri-

cal nano-particle with an oversaturated vacancy concentration and a bi-crystal subject to

applied stresses and containing non-equilibrium vacancies (to be published).

The present version of the theory is based on several simplifying assumptions that can be

lifted in the future. Although we restricted the analysis to a single-component material, the

equations can be readily generalized to a multi-component solid solution containing both
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vacancies and interstitials. The interface coupling and sliding relations can be reformulated

for anisotropic cases. In particular, the theory could include the multiplicity coupling modes

and switching between them during the grain boundary motion.9 The phenomenological

kinetic equations can include cross-effects between different driving forces and fluxes. The

incorporation of such effects may reveal new interesting phenomena, such as the possible

effect of grain boundary motion and sliding on the vacancy generation and absorption

processes, as well as the reciprocal process: the effect of vacancy generation and absorption

on the coupling factor and sliding resistance of grain boundaries. Finally, the present version

of the theory assumes that the sinks and sources of vacancies are located only at interfaces.

The theory does not consider the role of sinks and sources inside the grains, such as climbing

dislocations. A generalization of the theory to include such bulk sinks and sources could be

the subject of future work.
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Appendix A: Derivation of equations (75)-(82)

In this Appendix we derive the free energy dissipation rate given by Eqs.(75)-(82). The

starting point is Eq.(64) derived in the main text. Using the notations (67) and (68) for

grain boundary jumps and averages, Eq.(64) can be rewritten as

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv +

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

2 〈νM〉 dA+

ˆ

S

nα · [σ·vL] dA

+

ˆ

S

nα· [ω (vb − vL)] dA

+

ˆ

S

kαn
α·

(

γvα
b + 2

〈

ϕ
∂γ

∂ϕ
vL

〉)

dA. (A1)

Decomposing the jumps and averages according to Eqs.(73) and (74),

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv +

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

2

(

〈ν〉 〈M〉+
1

4
[ν] [M ]

)

dA

+

ˆ

S

nα · (〈σ〉 · [vL] + [σ] · 〈vL〉) dA

+

ˆ

S

nα· ([ω] 〈vb − vL〉+ 〈ω〉 [vb − vL]) dA

+

ˆ

S

kαn
α·

(

γvα
b + 2

〈

ϕ
∂γ

∂ϕ

〉

〈vL〉+
1

2

[

ϕ
∂γ

∂ϕ

]

[vL]

)

dA. (A2)

The product 〈ν〉 〈M〉 appearing in the second line of Eq.(A2) can be transformed using

Eq.(61) rewritten as 2 〈ν〉 = −∇b·Jb:

〈ν〉 〈M〉 = −
1

2
〈M〉∇b·Jb = −

1

2
∇b· (〈M〉Jb) +

1

2
Jb·∇b 〈M〉 . (A3)

The surface integral of 〈ν〉 〈M〉 is computed using the surface divergence theorem,
ˆ

S

〈ν〉 〈M〉 dA =
1

2

ˆ

S

Jb·∇b 〈M〉 dA−
1

2

ˆ

L

〈M〉 e·Jbdl, (A4)

where e is a unit vector parallel to the boundary S and normal to the contour L bounding

S. The line integral is zero by our supposition that the boundary S is either closed or
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terminates at the walls where Jb = 0. The second line of Eq.(A2) finally becomes

ˆ

S

Jb·∇b 〈M〉 dA−

ˆ

S

Jn [M ] dA, (A5)

where the normal diffusion flux Jn is given by Eq.(84). Taking into account that

nα· [vb − vL] = −n
α· [vL] and nα·vα

b = nα· 〈vb − vL〉+ nα· 〈vL〉, Eq.(A2) becomes

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv +

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

Jb·∇b 〈M〉 dA−

ˆ

S

Jn [M ] dA

+

ˆ

S

nα · (〈σ〉 · [vL] + [σ] · 〈vL〉) dA

+

ˆ

S

nα· ([ω] 〈vb − vL〉 − 〈ω〉 [vL]) dA

+

ˆ

S

kαn
α·

(

γ 〈vb − vL〉+

(

γ + 2

〈

ϕ
∂γ

∂ϕ

〉)

〈vL〉+
1

2

[

ϕ
∂γ

∂ϕ

]

[vL]

)

dA. (A6)

At the next step, we group the terms with 〈vL〉, [vL] and 〈vb − vL〉 into separate lines:

Φ̇ =

ˆ

Rα

(

Jα
L · ∇Mα −G−1

α (∇′·Pα) ·v
α
L

)

dv +

ˆ

Rβ

(

J
β
L · ∇Mβ −G−1

β (∇′·Pβ) ·v
β
L

)

dv

+

ˆ

S

Jb·∇b 〈M〉 dA−

ˆ

S

Jn [M ] dA

+

ˆ

S

nα· ([σ] + kατI) · 〈vL〉 dA

−

ˆ

S

nα·

((

〈ω〉 −
1

2
kα

[

ϕ
∂γ

∂ϕ

])

I− 〈σ〉

)

· [vL] dA,

+

ˆ

S

([ω] + kαγ)n
α· 〈vb − vL〉 dA. (A7)

Decomposing the lattice velocity vL and boundary traction vector s ≡ nα·σ into parallel and

normal components according to Eqs.(69)-(72), we finally obtain the free energy dissipation

rate given by Eqs.(75)-(82).
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