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The quasi-harmonic (QH) approximation uses harmonic vibrational frequencies ωQ,H(V ) com-
puted at volumes V near V0 where the Born-Oppenheimer (BO) energy Eel(V ) is minimum. When
this is used in the harmonic free energy, QH approximation gives a good zeroth order theory of
thermal expansion and first-order theory of bulk modulus, where nth-order means smaller than the
leading term by εn, where ε = ~ωvib/Eel or kBT/Eel, and Eel is an electronic energy scale, typically
2 to 10 eV. Experiment often shows evidence for next order corrections. When such corrections are
needed, anharmonic interactions must be included. The most accessible measure of anharmonicity is
the quasiparticle (QP) energy ωQ(V, T ) seen experimentally by vibrational spectroscopy. However,
this cannot just be inserted into the harmonic free energy FH . In this paper, a free energy is found
which corrects the double-counting of anharmonic interactions that is made when F is approximated
by FH(ωQ(V, T )). The term “QP thermodynamics” is used for this way of treating anharmonicity.
It enables (n+1)-order corrections if QH theory is accurate to order n. This procedure is used to give
corrections to specific heat and volume thermal expansion. The QH formulas for isothermal (BT )
and adiabatic (BS) bulk moduli are clarified, and the route to higher-order corrections is indicated.

I. INTRODUCTION

In non-magnetic, insulating materials, thermodynamic
behavior is controlled by vibrational excitations, which
are often close to harmonic. There is a unique and correct
version of harmonic theory, based on Taylor-expanding

the Born-Oppenheimer (BO) energy Eel({~R`}) around

the atomic coordinates {~R`,0} of a crystal with volume
V . The BO energy is a “ground state” property, and
the main target of density functional theory (DFT).
This gives normal mode eigenvectors and frequencies

ωQ,H(V ), where the index Q = { ~Q, j} labels the states;
~Q runs over the N wave-vectors of the Brillouin zone,
and j runs over the 3n branches. These states can be
called “non-interacting quasiparticles.” However, in this
paper, the term quasiparticle (QP) will be reserved for
the vibrational resonances seen experimentally. These
differ from harmonic eigenfrequencies because higher or-
der (“anharmonic”) terms in the Taylor expansion are
not negligible.

In this paper, the term “harmonic” will refer to the
unique correct harmonic limit, further specialized to the
case when the volume is chosen to be V0, where the BO
energy is minimum. It is useful also to know the har-
monic normal modes (and their frequencies ωQ,H(V ))
at other volumes; this is the “quasi-harmonic” (QH)
theory. The harmonic approximation is a good start-
ing point, successfully implemented by “ab initio” DFT
calculations1, and useful, often to good approxima-
tion, for things like specific heat, CP (T ). Vibrational
spectroscopy2 of reasonably pure crystals most often sees
reasonably sharp Lorentzian resonances. They can be as-

signed a wave-vector ~Q, and are expected to show a one-
to-one correspondence with the harmonic normal modes.
They are the QP’s of this paper. The central frequency
ωQ (the QP frequency, or energy) is T -dependent. There
is good evidence from theory-experiment comparisons3

that the QH energy ωQ(V ), evaluated at the correct
thermally-expanded volume V (T ) at higher T , does not
reproduce well the measured thermal shifts ∆ωQ of QP
energies ωQ(V, T ). There is an anharmonic thermal shift,
additional to and different from, the pure volume-related
shift of QH theory, and it is often significant at higher T .

Terminology is not universally agreed upon. Cowley4,
in his seminal paper, derived the modern Matsubara per-
turbation theory for anharmonic effects. He occasionally
uses the word “quasi-harmonic” to denote what is here
called “quasiparticle”. In recent literature, QH most of-
ten denotes use of ωQ,H(V ) from T = 0 DFT. Occa-
sionally papers about anharmonic theory still use “QH”
and “QP” interchangeably when referring to approximate
normal modes, ωQ(V, T ), which are here called QP.

The QP relaxation rate 1/τQ is the full width at half
maximum of the spectroscopic Lorentzian line. In pure
crystals it lies outside harmonic theory, and is also T -
dependent. This paper is about extracting additional
thermodynamic information from the temperature de-
pendence of ωQ, ignoring 1/τQ. This suffices for most
low-order thermal corrections. I will call this “quasipar-
ticle thermodynamics”. It differs from “quasi-harmonic
thermodynamics”. Deviations from harmonic vibrations
are responsible for thermal shifts of many properties.
The ones of prime concern in this paper are CP and CV
(constant pressure and constant volume), bulk modulus
BT and BS (isothermal and adiabatic), and volume ex-
pansion V (T ) and α = (1/V )dV/dT (constant pressure.)
Good general discussions are in older literature.4–8

There are two main ideas in QP theory: (1) low-
lying excitations correspond 1-to-1 with a non-interacting
single-particle picture; they have QP energies ~ωQ(V, T )
and mode occupancies 〈n̂Q〉; and (2) low energy dynam-
ics can be described as the dynamics, in space and time,
of the mode occupancy. QP theory can fail in at least
two ways. (a) The resonance can be very non-Lorentzian
so that ωQ is poorly defined. (b) Correlated occupancy



2

〈n̂Qn̂Q′〉−〈n̂Q〉〈n̂Q′〉 may become important. In this pa-
per, nQ denotes the equilibrium (Bose-Einstein) mean oc-
cupancy [exp(~ωQ(V, T )/kBT )−1]−1, nQ,H its harmonic
or QH version, and 〈n̂Q〉 denotes the actual occupancy
in a general ensemble, not necessarily equilibrium. En-
tropy plays a special role9, since it is just 1/N times the
logarithm of the number of ways of distributing 〈n〉N~ω
of excitation energy into N oscillators of frequency ω,

Ŝ = kB
∑
Q

[(〈n̂Q〉+ 1) ln(〈n̂Q〉+ 1)− 〈n̂Q〉 ln〈n̂Q〉]. (1)

The equilibrium occupancy nQ is the one which max-
imizes Eq.(1) at fixed energy, and the thermodynamic
entropy S(T ) is given by Eq.(1) with 〈n̂Q〉 → nQ. When
harmonic frequencies ωQ,H are used in nQ, the result
is the harmonic entropy SH . When the T -dependent QP
energies are used in nQ, and inserted in S(T ), an accurate
improvement of the thermodynamics is achieved. This
will be denoted SQP. The same replacement does not
work for the harmonic free energy. If ωQ(T ) is inserted
into FH , the resulting F does not obey −dF/dT = SQP.
A “correct” QP free energy that does agree with SQP is
found as follows. The thermodynamic energy U(T ) =
F + TS in harmonic theory is

UH =
∑
Q

~ωQ,H(nQ,H + 1/2). (2)

When normal mode frequencies acquire an anharmonic
correction, ωQ,H → ωQ(T ), the energy acquires a
correction,10

UQP =
∑
Q

~ωQ(T )(nQ + 1/2)

− (1/2)
∑
Q

~[ωQ(T )− ωQ,H ](nQ + 1/2) (3)

This corrects for double-counting of the interaction, but
only in leading anharmonic approximation where7

ωQ(T )− ωQ,H ≡ ∆
(2)
Q =

1

N

∑
Q′

(
∂ωQ
∂nQ′

)
0

(
nQ′ +

1

2

)
,

(4)
where the superscript ∆(2) indicates the lowest order cor-
rection (second-order perturbation theory) which comes
from third and fourth-order anharmonicity. Further de-
tails are in the Appendix. Here ∂ωQ/∂nQ′ is a T -
independent anharmonic interaction function. In higher-
order perturbation theory there are presumably addi-
tional shifts of the type

∆
(3)
Q =

1

N2

∑
Q′,Q′′

(
∂2ωQ

∂nQ′∂nQ′′

)
0

(
nQ′ +

1

2

)(
nQ′′ +

1

2

)
(5)

involving anharmonic interactions up to sixth-order in
displacement uQ. We assume these can be omitted, and
this approximation enables the correction in Eq.(3) to be

sufficient. Then an accurate and consistent thermody-
namic free energy is FQP = UQP − TSQP. Notice that
the anharmonic shift, Eq.(4), does not vanish at T = 0,
but has a zero-point component where nQ′ + 1/2→ 1/2.
The quasiparticle frequencies are shifted from the har-
monic frequencies even at T = 0.

QH thermodynamics is a limiting case. It uses only
volume-dependence of ωQ,H(V ). The correction factor
in UQP, Eq.(3), vanishes, and the quasi-harmonic free
energy is just the harmonic free energy with a volume-
dependent harmonic frequency. It improves pure har-
monic theory and gives correct lowest-order thermal
shifts for properties such as the bulk modulus which are
volume derivatives of F . The reason it works to lowest
order is because dωQ/dV differs from dωQ,H/dV only in
next order. QH theory is computationally accessible, but
QP theory much less so. QP theory suffers from the dif-
ficulty that the anharmonic shift is not usually measured
except at a few temperatures. It can be numerically com-
puted using DFT for the anharmonic forces. It is not yet
computed routinely, but this is changing11–16.

Exact theory associates vibrational resonances with
poles of a phonon Green’s function, a correlation func-
tion describing dynamics on the BO energy surface. Ex-
act thermodynamics should be computed from a corre-
sponding theory for the free energy. This can be com-
puted perturbatively4,17. At high T , classical molecular
dynamics (MD) describes dynamics non-perturbatively,
if the BO forces are known. This is called ab initio MD, or
AIMD. Thermodynamics generally then requires a tricky
“thermodynamic integration”15,18–21. To do a correct
non-perturbative computation at lower T requires quan-
tum corrections, as in path-integral MD.22

Zero-point and related thermal nuclear motions cause
shifts and isotope-dependences in many measured phys-
ical properties4–7,23–28. Explicit formulas are given here
for the first-order shifts of CP , BT , BS , and α. If no spec-
ification (adiabatic versus isothermal) is made, isother-
mal is implied. The adiabatic shift can be found by ther-
modynamic rules, as shown in Sec. VI. Many of these
results can be found in some form in the literature. There
is a lot of correct,4–7 plus much partially correct, as well
as incorrect or confusing literature on this subject. There
are semi-empirical formulas that have a long history of
enabling useful fitting, even though the formulas do not
seem to be justifiable in detail.29,30 The aim of this pa-
per is a simplified, possibly less confusing, derivation of
correct formulas.

The paper is organized as follows. In Sec. II, exam-
ples of thermal shifts from experiments are given. In Sec.
III, extra complexities of non-cubic crystals, and crystals
with internal coordinates, are discussed. In Sec. IV, the
QH approximation and the QP approximation are dis-
cussed. Specific heat formulas are presented, showing
that QP theory provides a thermal correction inacces-
sible in QH approximation. In Sec. V, two orders of
thermal correction to the volume are discussed. This
gives Grüneisen theory of thermal expansion α0 plus a
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first order correction. In Sec. VI, the leading correction
to the bulk modulus is derived (from QH theory). The
Appendix reviews the microscopic theory of Eqs.(1-4).

II. EXPERIMENTAL EXAMPLES

Figures 1,2,3 illustrate the thermal shifts under dis-
cussion. Fig. 1 shows that the bulk modulus has sur-
prisingly large vibrational corrections31–40. These have
serious significance for geoscience, for example.23,24 The
leading-order bulk modulus, B0, comes from electronic
stiffness. The product B0Va (Va = V0/Nn is the volume
per atom in leading order theory) has order of magnitude
10 eV, a characteristic electron energy. Vibrational en-
ergies are two orders of magnitude smaller. I will define
ε as the dimensionless ratio of phonon to electron ener-
gies. This will appear explicitly in the form ~ω/BVa or
kBT/BVa in various results. A parameter like ε ≈ 0.01
controls the size of the vibrational corrections under dis-
cussion. Fig. 1 shows ≈ 10% shifts, indicating that there
can be a significant prefactor multiplying ε.
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FIG. 1. Experimental bulk modulus B versus temperature.
Isothermal data for ice Ih are from ref. 31. For NaCl, the
low T adiabatic data are from ref. 32, and high T data are
from ref. 33. The isothermal data for NaCl are from ref. 34.
For MgO, adiabatic low T data are from ref. 35 and high T
data from ref. 36. Isothermal data for MgO are from ref. 37.
The MgO data are larger by 10 than the others, and have a
weaker thermal shift. Many metals (Al, Cu, Ni, etc., ref. 38)
have bulk moduli similar in magnitude to MgO, with large
thermal shifts (similar to NaCl, for ∆T ∼ ΘD). Covalent ma-
terials, like carbon39 and silicon40, are more similar to MgO,
showing weaker T -dependence . The dashed lines are approx-
imate extrapolations suggesting that the zero-temperature,
frozen-lattice values of B are larger than the measured zero-
temperature values by ∼ 15% (NaCl) and ∼ 9% (MgO). The
extrapolation for ice Ih is not given, and would require de-
tailed calculation as explained in the text.

The small parameter ε can be estimated as ε ≈
kBΘD/B0Va, where ΘD is the Debye temperature. Ex-
perimental B and Va may be used. Rough values are
ε = 0.0045 (silicon40), 0.0087 (MgO41), 0.0072 (NaCl41),

and 0.042 (ice Ih31,42). However, the parameter ε for
ice Ih is poorly defined. The number ε=0.042 used the
low T ΘD ≈ 300K. This measures only thermally ex-
cited (acoustic and librational) vibrations at T ≤ 273K.
The “O-H stretch” vibrations at the opposite end of the
spectrum have ~ω/kB larger by 11. These modes also
contribute to the zero-point shifts in ice. If optic modes
are used to define ε, the value of this “small parameter”
increases to 0.5.

0 400 800 1200 1600
Temperature (K)

0

4

8

12

16

20

24

V
ol

um
e 

(A
ng

st
ro

m
3 /a

to
m

)

silicon
MgO
Ice Ih
NaCl

FIG. 2. Experimental volume Va per atom versus tempera-
ture. Data for silicon are from ref. 43. Data for MgO are from
44. Data for ice Ih are from ref. 31. Data for NaCl were con-
structed by integrating the polynomial expressions for linear
thermal expansion given in ref. 45. The dashed curve extrap-
olates the NaCl V (T ) using the quasi-harmonic high T slope
(valid for T > ΘD) dVa/dT = 3kB γ̄/B0, with experimental
values γ̄ = 1.57 and B0 = 23.7GPa, as tabulated in ref. 46.
This suggests that the zero-point expansion ∆V (T = 0)/V0

of NaCl is about 5%. Crude extrapolations for MgO and sil-
icon suggest zero-point expansions of less than 2% and 1%
respectively. The extrapolation for ice Ih is not given. De-
tailed calculations for ice show that (as is true for silicon as
well) Grüneisen parameters are negative for some modes and
positive for others; the theoretical zero-point expansion of ice
Ih was computed to be ≈ 1% in ref 47.

It is perhaps worth mentioning that the representa-
tion of a physical property P as an expansion in ε
(P = P0+P1ε+P2ε

2+...) is not forced to have universally-
defined coefficients. Especially because the expansion is
truncated after the P1 or possibly P2 term, it is normal
that the last coefficient may (or may not, depending on
the source) contain some higher effects (P1 = P10 +P11ε,
for example.) The only rule is that Pnε

n should contain
nothing of lower order than εn. This will be mentioned
again in Secs. V and VI.

The volume shifts31,43–47 shown in Fig. 2 are smaller
in relative size. Fig. 3 shows that α, the temperature
derivative of the volume48, roughly follows a harmonic
specific heat (CH) type of T -dependence. This is the
result of Grüneisen theory49. But at higher T , there is
a very significant thermal shift of both CP (T ) and α(T )
away from the CH(T ) form.
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Figs. 1 and 2 also illustrate zero-point shifts. Mean
square thermal lattice displacements of the ith atom, in
harmonic theory, are5

〈u2i 〉 =
∑
Q

~
MiωQ,H

|〈i|Q〉|2
(
nQ,H +

1

2

)
, (6)

where 〈i|Q〉 is the component of the phonon eigenvector
|Q〉 on the ith atom, and where nQ is the equilibrium
occupation number. The zero-temperature value 〈u2〉 ∼
~/2Mω is the quantum zero-point motion, which depends
on nuclear mass, whereas the high-T value kBT/Mω2 is
classical and depends only on the force constant Mω2,
not on the nuclear mass M . The low T 〈u2〉 causes
zero-point shifts of atomic volume V (T = 0) and bulk
modulus, which differ for different isotopes. Therefore,
the DFT (“frozen-lattice”) value V0 or B0 should differ
from the actual value V (0) or B(0). It is interesting that
the frozen-lattice value can sometimes be deduced from
experiment.28 This is because the thermal factor n+ 1/2
at high T becomes x(1−1/12x2+· · ·) where x = kBT/~ω.
An asymptotic linear-in-T fit to n+ 1/2 at high T passes
through 0 at T = 0. It is of course difficult to find the
“correct” experimental asymptote, since thermal correc-
tions enter to alter it. However, the bulk modulus simpli-
fies the fit if both isothermal and adiabatic versions are
available, because each should extrapolate to the same
T = 0 value B0, as is shown on Fig. 1. Curves of this
type are in the review of Leibfried and Ludwig.6

FIG. 3. Experimental volume expansion α(T ) and specific
heat CP (T ), for crystalline argon, at P =1 atmosphere, up
to the melting temperature (82.3K). The data were compiled
by Bodryakov48, who analyzed ≈ 10 different experiments.
Shown for comparison is the Debye model with ΘD = 81.2K
fitted to CP data. Both experimental and Debye-model spe-
cific heats were scaled, by the same factor, to lie on top of the
volume expansion curve at lower T .

We have already seen that the anharmonic shift
∆ωQ = ωQ − ωQ,H of phonon frequencies has a simi-
lar form, Eq.(4). The T -independent coupling parameter
∂ωQ/∂nQ′ has contributions like V4 and |V3|2/~ω; see
the Appendix, Eq.(A3). They have order-of-magnitude
ε~ωQ. For example, the term of the type |V3|2/~ω in-

volves a third order anharmonic coupling coefficient V3, of
structure u3∂3Eel/∂u

3, and of order (u/a)3Eel. The ra-
tio (u/a)2 of lattice displacement to interatomic distance
is of order ~ω/Mω2a2 ≈ ε. Putting all these factors to-
gether, we see that ∂ωQ/∂nQ′ ≈ εωQ (or ∆ωQ/ωQ ≈ ε.)

The smallness of the anharmonic shift is only a crude
estimate which sometimes may fail. A failure is likely
to cause anharmonic broadening ΓQ of vibrations to be
bigger than the spacing of vibrational levels ωQ. In such
cases, phonon quasiparticles are poorly defined, pertur-
bative treatments may fail, and thermal shifts may not
be described well by quasiparticle theory.

The validity of perturbative computation beyond har-
monic approximation for thermodynamic properties is
not a closed issue. Wallace26 summarizes evidence
for failure of anharmonic perturbation theory to re-
produce apparently reliable MD. But Boltzmann equa-
tion treatments of thermal conductivity are now very
successful50–52, and are based on the third-order term
in the same perturbation theory. Computations based
on DFT anharmonic forces are becoming more common,
and generally claim decent agreement with experiment.
A nice example is theory and experiment for aluminum
by Tang et al.53. A thermal conductivity κ > 5 W/mK
is a good hint that phonon quasiparticles are mostly well
behaved. This crude estimate comes from κ ∼ Cv`/3
where the specific heat is C = 3kB/Ωa, Ωa is the volume
per atom, v ∼ πωmax/a is the sound velocity, a the lattice
constant, and ` the phonon mean free path. Quasiparti-
cle theory requires ` large compared to a, or κ large com-
pared to κmin = Cva/3. If we choose ~ωmax/kB ∼ ΘD

to be 300K, and a to be 5Å, then κmin ∼ 1W/mK, and
κ > 5κmin should be sufficient to trust quasiparticle the-
ory for most of the phonons of the material. However,
ΘD may be significantly bigger or smaller than 300K,
and the criterion could be scaled to κ > (ΘD/300K)× 5
W/mK.

III. NON-CUBIC CRYSTALS AND INTERNAL
COORDINATES

Pressure, volume, and temperature are not the only
thermodynamic variables in crystals. One can also have
anisotropic stress σαβ and anisotropic strains εαβ . Pres-
sure and volume change are the traces of these tensors.
This paper looks only at pressure and volume. The gener-
alization to tensor properties complicates notations and
results, but the principles are not changed. Consider
hexagonal structures as a simple example of non-cubic.
The separate a(T ) and c(T ) lattice parameters are rel-
evant thermodynamic variables. They are also not con-
sidered in this paper, only V (T ) =

√
3a2c/2 is consid-

ered. When T changes, not only does V change, but
also c/a. This can not be ignored, but is kept hidden
in this paper. The volume-dependent phonon frequency
ωQ0(V ) is treated as a well-defined variable. There is a
hidden assumption that this has been computed at var-
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ious volumes, and for each volume, the correct c/a ra-
tio has been found and used in the phonon calculation.
Finally, consider wurtzite crystal structure (hexagonal
symmetry and 4 atoms per cell). There is one “internal
coordinate” u(T ), which determines the c-axis offset be-
tween the cation and anion sublattices. This also cannot
be ignored. But it is hidden by the assumption that for
a particular choice of V , the correct u(T ) as well as c/a
have been computed, and used to find ωQ,H = ωQ(V0),
and ∂ωQ,H/∂V , etc. Cubic crystals can also have inter-
nal coordinates not fixed by symmetry, which need to be
treated the same way.

IV. QUASIPARTICLE THERMODYNAMICS

Even when harmonic approximation is seriously per-
turbed by anharmonic effects, there may still be phonon
quasiparticles, with effective interactions not too strong.
Thermodynamics is then approximated by using the
QP frequencies ωQ(V, T ) in the non-interacting entropy
formula9,

SQP = kB
∑
Q

[(nQ + 1) ln(nQ + 1)− nQ lnnQ] . (7)

Because of the V and T -dependence of the QP energy,
SQP has altered V and T -derivatives which give correc-
tions in thermodynamic calculations7,25,54–56. The cor-
responding free energy is

FQP = Eel(V ) + Fvib,H(V, T ) + ∆FAH , (8)

Fvib,H = kBT
∑
Q

ln

[
2 sinh

(
~ωQ(V, T )

2kBT

)]
(9)

∆FAH = −~
2

∑
Q

∆
(2)
Q (nQ + 1/2), (10)

where ∆
(2)
Q = ωQ(V, T )−ωQ,H was defined in Eq.(4). The

part Fvib,H has the standard form of the harmonic free
energy, but here the quasiparticle frequency ωQ(V, T ) is
inserted. The double-counting correction ∆FAH is nom-
inally smaller by ε than the part Fvib,H. This version
of FQP is the same as UQP − TSQP and Eq.(3) for UQP .
The quasi-harmonic formulas SQH and FQH are the same
except that ωQ(V, T ) is replaced by ωQ(V ), usually cal-
culated by DFT. In that case, the anharmonic term,
Eq.(10), vanishes. In a metal or a magnetic material,
one should include additional terms in FQP for thermal
excitation of electrons or magnons. Such effects are omit-
ted here. The QH procedure of using just a volume-
dependent QP energy in the harmonic free-energy for-
mula, does give correct first-order V -derivatives, but fails
to give thermal shifts which depend on T -derivatives. In
this sense, it can be regarded as an incomplete, rather

than an incorrect, theory, and as a partially correct sim-
plification of QP theory. It correctly contains the infor-
mation available from DFT calculations of the frequency-
spectra at different volumes. Ramirez et al.57 made a
careful study of the accuracy of the QH approximation
by comparison with well-converged path-integral MD for
three phases of ice. They find generally very good agree-
ment between QH and PIMD

As an example of QP thermodynamics, consider the
specific heat, C = TdS/dT . The free energy is not
needed; the correct QP entropy is Eq.(7) with QP fre-
quencies in the equilibrium occupation functions.

CX = T

(
∂S

∂T

)
X

≈
∑
Q

~ωQ
(
∂nQ
∂T

)
X

. (11)

Here X is pressure P or volume V . This gives

CX,QP =
∑
Q

~ωQ
(
dnQ
dT

)
H

[
1− T

ωQ

(
∂ωQ
∂T

)
X

]
, (12)

where the subscript “H” means (dnQ/dT )H =
(~ωQ/kBT 2)nQ(nQ + 1), obtained by differentiating nQ
by the explicit T in the Bose function, but not by the im-
plicit T contained in ωQ(V, T ). The first term of Eq.(12)
is a harmonic specific heat CH, but not the purely har-
monic C0, because the frequencies ωQ appearing in the
formula are the renormalized T -dependent quasiparticle
frequencies. The difference between CH and C0 is a gen-
tle T -dependent stretching of the harmonic C0(T ) curve
along the T axis. This does not affect the high T classi-
cal limit, 3NnkB . A serious high-T deviation from har-
monic theory (see the measurement for Ar, Fig. 3) must
be caused by the second term of Eq.(12).

In QH theory, (∂ωQ/∂T )V = 0, so CV,QH = CH. Also
in QH theory, (∂ωQ/∂T )P = (∂ωQ/dV )T (∂V/∂T )P , so
there is a significant QH correction to CP . QH theory
gives the correct difference, CP − CV , but it misses the
anharmonic correction which appears in the correct QP
theory for both CV and CP . Computational evidence55

shows that QH theory shifts CP (T ) away from the har-
monic value C0, but that experiment exhibits different
shifts.58

V. VOLUME EXPANSION

The aim is to get corrections to one higher order than
the standard Grüneisen theory49. The method is to use
Eq.(8) for the free energy, calculate P (V, T ) = −∂F/∂V ,
and then find the volume V (T ) at which the pressure is
zero. It is convenient to have a notation for the dimen-
sionless volume expansion, ζ,

ζ = (V − V0)/V0 (13)

where V0 is as usual the volume that minimizes the frozen
lattice (Born-Oppenheimer) energy. For results to order
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ε2, it is necessary to know the DFT frozen lattice energy
Eel to third order in ζ,

Eel(V ) = Eel(V0) +
1

2
B0V0ζ

2 +
1

6
Ḃ0V0ζ

3 + · · · (14)

Here B0 = V0(d2Eel/dV
2)V0

is the order ε0 electronic

contribution to the bulk modulus, and Ḃ0 is the third
derivative, V 2

0 (d3Eel/dV
3)V0

. Ḃ0 is similar in order of

magnitude to B0. The notation Ḃ is used because the
notation B′ means dB/dP = −1 − Ḃ/B in equation-of-

state theory.23,24 Normally Ḃ0 < 0 is found. Crystals are
softer when expanded and stiffer when compressed. From
the volume derivative, we get an “equation of state,”

P (V, T ) = −B0ζ −
1

2
Ḃ0ζ

2 −
∑
Q

∂FH
∂ωQ

∂ωQ
∂V

+
~
2

∑
Q

[
∂∆

(2)
Q

∂V
(nQ + 1/2) + ∆

(2)
Q

∂nQ
∂ωQ

∂ωQ
∂V

]
.

(15)

Making the substitutions ∂FH/∂ωQ = ~(nQ + 1/2) and
∂nQ/∂ωQ = −(~/kBT )nQ(nQ + 1), and setting P = 0,
this becomes

ζ = − Ḃ0

2B0
ζ2 +

∑
Q

~ωQ
B0V

(γQ − δQ/2)(nQ + 1/2)

+
1

2

∑
Q

~ωQ
B0V

~∆
(2)
Q

kBT
γQnQ(nQ + 1). (16)

Here the definitions have been introduced

γQ = − V

ωQ

∂ωQ
∂V

, (17)

δQ = − V

ωQ

∂∆
(2)
Q

∂V
, (18)

where γQ is the “mode Grüneisen parameter,” and δQ is
the analogous volume derivative of the correction ωQ −
ωQH . Therefore, δQ = γQ − (ωQH/ωQ)γQH , where

γQH = − V

ωQH

∂ωQH
∂V

. (19)

A. Lowest-order (Grüneisen) theory

Grüneisen parameters γQ are of order 1, while ∆
(2)
Q is

a small anharmonic correction of order εωQ. Therefore
δQ is of order εγQ. All the terms on the right of Eq.(16)
except the first term involving γQ are higher order in ε.
Therefore, the leading-order relation for the thermal shift

of the volume (ζ ≡ (V − V0)/V0) is

ζG ≡
(
V − V0
V0

)
G

=
∑
Q

(
~ωQ
B0V

)
γQ

(
nQ +

1

2

)
, (20)

αG ≡
1

V

(
∂V

∂T

)
G

=
1

B0

∑
Q

CQH(T )γQ, (21)

where CQH(T ) = (~ωQ/V )∂nQ/∂T is the specific heat
per harmonic mode. These are the famous Grüneisen re-
lations. Grüneisen’s papers49 of 1912 and 1918 were a
remarkable advance, simultaneous with the first true un-
derstanding of crystals that came from Rutherford and
Bohr, von Laue and the Braggs, Born and von Karman,
Eucken, and Debye. Geophysicists and others like to
define an average Grüneisen parameter γ and to write
Eq.(15) as P = Pel+γUvib/V where Uvib is the harmonic
vibrational energy, Eq.(2). This is called the “Grüneisen
equation of state.” It omits the higher-order corrections
which are now to be discussed.

B. Quasi-harmonic theory

The need for corrections is evident from Fig. 3, show-
ing large high-T deviations of thermal expansion relative
to specific heat. If Eq.(21) were correct, this would re-
quire unphysically large T -dependence of Grüneisen con-
stants. To correctly find the volume shift ζ to next order,
it is necessary to solve Eq.(16) self-consistently. The job
is complicated by the fact that γQ as defined in Eq.(17),
and γQH as defined in Eq.(19), are volume dependent.

An interesting example is the computation by Skel-
ton et al.59 of α(T ) for PbS, PbSe, and PbTe. Above
the Debye temperature, α shows strong T -dependence,
similar to argon in Fig. 3. These computations had no
anharmonic corrections. This shows that a good quasi-
harmonic theory does in fact have important corrections
beyond the lowest order Grüneisen theory. The volume-
dependent electron and vibrational free energy in Eq.(8)

are included, omitting the correction term involving ∆
(2)
Q .

The resulting FQH(V, T ) is minimized at fixed T , giving
VQH(T ). This is equivalent to a self-consistent solution

of Eq.(16), omitting the terms involving δQ and ∆
(2)
Q .

C. Full second-order theory

It is rather messy to do the full solution to second or-
der. To simplify things, consider just the high-T limit,
where nQ + 1/2 is ≈ kBT/~ωQ and nQ(nQ + 1) is
≈ (kBT/~ωQ)2. The quantum corrections are factors
[1 ± (~ω/kBT )2/12 + 4thorder + · · ·]. Then, to order ε2,
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Eq.(16) becomes

ζ = − Ḃ0

2B0
ζ20

+
kBT

B0V0(1 + ζ0)

∑
Q

(
γQ(V )− δQ0

2
+

∆
(2)
Q0

2ωQ0
γQ0

)
.(22)

The subscript 0’s indicate that quantities are all (except
the first appearance of γQ) evaluated at the frozen-lattice
T = 0 minimum volume V0. The lowest-order volume
expansion, ζ0, at high T , from Eq.(20) or from Eq.(22) is

ζ0 =
kBT

V0B0

∑
Q

γQ0. (23)

The definition of γQ0 is

γQ0 = − V0
ωQ0

(
∂ωQH
∂V

)
V0

, (24)

and the phonon frequencies ωQ0 are similarly the T = 0
harmonic frozen lattice values.

We now need to expand the fully anharmonic γQ
around γQ0, to first order in ζ. This is done in two stages.
First we expand around γQH ,

γQ(V ) ≡ − V

ωQH + ∆
(2)
Q

∂(ωQH + ∆
(2)
Q )

∂V

≈

(
1−

∆
(2)
Q0

ωQ0

)
γQH(V ) + δQ0 (25)

Subscripts 0 indicate sufficient accuracy for a first-order
result. Next, we expand γQH(V ) around the volume V0
where γQ0 is defined. To do this, we need to know the
harmonic frequencies to second order in ζ around V0,

ωQH(V ) = ωQ0

[
1− γQ0ζ − γ̇Q0ζ

2/2 + · · ·
]
, (26)

γ̇Q0 ≡ −
V 2
0

ωQ0

(
∂2ωQH
∂V 2

)
V0

. (27)

The notation γ̇Q used here (Eq.27) is not the same as
V (∂γQ/∂V ) = γQ + γ2Q + γ̇Q. Volume dependence of

γQ(V ) has often been neglected. If the mode Grüneisen
parameter were independent of volume, one could inte-
grate to find ωQ(V ) = ωQ(V0)(V/V0)γQ . As observed
previously60,61, there is no justification for this except
unwarranted optimism. After some algebra, the relation
between γQH and γQ0 is

γQH(V ) = γQ0 +
[
γQ0 + γ2Q0 + γ̇Q0

]
ζ. (28)

Combining the two stages, the result is

γQ = γQ0 +
[
γQ0 + γ2Q0 + γ̇Q0

]
ζ0−

∆
(2)
Q

ωQ0
γQ0 + δQ0 + · · · .

(29)
Finally, insert this into Eq.(22) and keep only first order
corrections. The result is

ζ = ζ0 −
Ḃ0

2B0
ζ20

+
kBT

B0V0

∑
Q

[(
γ2Q0 + γ̇Q0

)
ζ0 +

δQ0

2
−

∆
(2)
Q0

2ωQ0
γQ0

]
(30)

The corresponding high T formula for the volume ther-
mal expansion coefficient is

α = α0 + ∆αQH + ∆αAH . (31)

The leading term, α0, is just the Grüneisen formula eval-
uated with frozen-lattice parameters. Its high-T form is

α0 =
kB
B0V0

∑
Q

γQ0. (32)

The high-T quasiharmonic correction is explicitly linear
in T ,

∆αQH = 2Tα0

 kB
B0V0

∑
Q

(γ2Q0 + γ̇Q0)

− Ḃ0T

B0
α2
0.

(33)
These are smaller than the leading term α0 by a factor
like Tα0 ∼ ε. The high-T anharmonic correction is

∆αAH =
kB
B0V0

∑
Q

(
δQ0 −

∆
(2)
Q0

ωQ0
γQ0

)
. (34)

This is also smaller than α0 by one power of ε. The
anharmonic factors δ − (∆/ω)γ vary linearly with T at
high T . This is why the factors of 1/2 multiplying δQ0

and (∆
(2)
Q0/ωQ0)γQ0 in Eq.(30) disappear in Eq.(34) after

taking the temperature derivative.

The QH calculations of Karki et al.58 for MgO show
that QH corrections, Eq.(33), can cause a large effect,
even exceeding the experimental linear rise in α. The
calculations of Mounet and Marzari39 also show a sig-
nificant QH linear increase of α(T ) in diamond, but
less than the shift observed experimentally by Slack and
Bartram62. These results indicate that the anharmonic
part of Eq.(31) is as important as the QH part. A path
integral Monte Carlo study by Herrero and Ramirez22

confirms this.
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VI. THERMAL CORRECTION TO BULK
MODULUS

The literature about B(T ) is large because of its im-
portance in geoscience. The bulk modulus is the simplest
and most accessible part of the elastic constant matrix
Cij , all components of which show related zero-point and
thermal alteration. This paper focuses on B for simplic-
ity, but generalization to the full elasticity tensor is not
hard.6,7,38,39,58,63–69 The bulk modulus is dominated by
the large electronic contribution B0. Corrections to first
and second order in ε can be found from the quasiparticle
free energy, Eq.(8), and pressure, Eq.(15). The first-order
shift of the isothermal bulk modulus uses only the first
two correction terms in Eq.(15),

P (V, T ) = −B0ζ−
1

2
Ḃ0ζ

2−
∑
Q

~ωQ
V

γQ(nQ + 1/2) (35)

There is no anharmonic contribution to B = −V ∂P/∂V
in first order. The simulations by Ramirez et al.57 (using
a fluctuation formula9 for B(T ) ) confirm the accuracy
of quasiharmonic theory for phases of ice. For cases like
ice, where volume shifts are relatively large, it is insuf-
ficient to compute only low-order derivatives of energy
and vibrational frequency. But QH theory, with γQ(V )
computed separately for different volumes along the QH
V (T )-curve, has been shown to work.57

Taking the volume derivative of Eq.(35),

BT,QH(T ) =
V

V0
(B0 + Ḃ0ζ)

−B0

∑
Q

(
~ωQ
B0V

)[
T

(
∂nQ
∂T

)
H

γ2Q +

(
nQ +

1

2

)
γ̇Q

]
.

(36)

The last term uses the identity ∂(ωQγQ/V )/∂V =
ωQγ̇Q/V

2. The next to last term uses the fact that
V ∂nQ/∂V equals T (∂nQ/∂T )HγQ. The first term of
Eq.(36) is the purely electronic term, Bel. To first order

in ε it can be written as B0+(B0+Ḃ0)ζ0. The high T ver-
sion of ζ0 is given in Eq.(23), and the general expression
is the same as the Grüneisen version, Eq.(20), except fre-
quencies and derivatives are evaluated at (V, T ) = (V0, 0).
Then Eq.(36) becomes(

∆B

B0

)
T

=
∑
Q

(
~ωQ0

B0V0

)[
−T

(
∂nQ0

∂T

)
H

γ2Q0

+

(
nQ0 +

1

2

)(
γQ0

[
1 +

Ḃ0

B0

]
− γ̇Q0

)]
,(37)

This equation is contained in somewhat hidden form in
Leibfried and Ludwig6. Born and Huang5 and Wallace7

also give this result, except altered because frequencies
and derivatives are evaluated at (V, T ). The paper of
Karch et al.,65 gives an alternate derivation. Many in-

correctly simplified versions exist.

The parameter ε is not truly small for ice Ih. For this
reason, Eq. 37 does not work particularly well57,70. Di-
rect computation and minimization of the QH free en-
ergy (Eq. 8 without the last term) may work. This
has done used for many years, even in cases where
the shifts are small enough that Eq.(37) should be
adequate.38,39,64,66,71,72 In cases, like ice Ih, where ε is
too large to use Eq.(37), there is no guarantee that truly
anharmonic terms of order ε2 and higher are not as im-
portant as QH terms found by direct minimization.

It is important to distinguish between adiabatic (BS)
and isothermal (BT ) conditions63. The definitions are

BT = −V (∂P/∂V )T = V (∂2F/∂V 2)T (38)

BS = −V (∂P/∂V )S = V (∂2U/∂V 2)S (39)

where U and F are the internal energy and Helmholz
free energy respectively. Thermodynamics gives exact
relations6,7,23,24,38,63,73–75,

BS
BT
− 1 =

CP
CV
− 1 =

Tα2BTV

CV
=
Tα2BSV

CP
, (40)

where CV /V is the heat capacity per volume. The prod-
uct αT is of order ε, and CV T/BTV is also of order ε,
so the shift (BS − BT )/B is positive and order ε. The
full tensor version also is available7,75–77. The vibrational
corrections δS (adiabatic) and δT (isothermal) are both
first order in ε, and they differ from each other in the
same order. The leading order value of Tα2BTV/CV is
sufficient for correcting isothermal to adiabatic. Using
Eq.(21) and the harmonic specific heat, the result is

BS −BT =
T

V

[∑
Q ~ωQ0

(
∂nQ0

∂T

)
H
γQ0

]2
∑
Q ~ωQ0

(
∂nQ0

∂T

)
H

. (41)

Figure 1 shows approximate high T slopes (dB/dT )
of both BS and BT for NaCl. In the high T limit
where ~ωQ(dnQ/dT ) → kB , Eq.(41) reduces to d(BS −
BT )/dT = 3kB γ̄

2/Va, where γ̄ =
∑
Q γQ/3N . The slopes

shown in Fig. 1 then require γ̄ ≈ 1.5, in good agreement
with other estimates of γ̄ for NaCl.

Appendix A

This appendix tries to illuminate the quasiparticle
thermodynamics of Eqs.(1-4) by using anharmonic ther-
mal perturbation theory. According to Cowley4, the vi-
brational thermal Green’s function matrix, in the basis
of harmonic eigenstates |λ〉 with frequencies ωλ,H , is

(G−1)λλ′ = (ω2
λ,H − ω2)δλλ′ + 2(ωλωλ′)1/2[∆λλ′ − iΓλλ′ ]

(A1)
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The eigenvalues ω2 of the matrix Ĝ−1 + ω21̂, with the
imaginary part Γ̂ omitted, are denoted ω2

λ. They are
the renormalized squared normal mode frequencies. If
anharmonicity is weak, then in leading approximation
these eigenvalues are ω2

λ = ω2
λ,H + 2ωλ∆λλ. At the same

level of approximation, ωλ = ωλ,H + ∆λλ. Cowley gives
an explicit formula from lowest-order perturbation the-

ory, for the anharmonic shift ∆
(2)
λλ = ∆

(2)
Q = ωQ − ωQ,H .

The normal mode index λ is now replaced by Q = ( ~Q, j).
Cowley’s formula can be written in the form

∆
(2)
Q =

1

N

∑
Q′

∂ωQ
∂nQ′

(nQ′ + 1/2), (A2)

∂ωQ
∂nQ′

=
24

~
V (4)(QQ,Q′Q′)

− 36

~2
∑
Q′′

|V (3)(QQ′Q′′)|2
[

1

ωQ′′ + ωQ′ + ωQ
+

1

ωQ′′ + ωQ′ − ωQ
+

1

ωQ′′ − ωQ′ + ωQ
+

1

ωQ′′ − ωQ′ − ωQ

]
. (A3)

This is an explicit form for Eq.(4). Here V (3) and V (4)

are third and fourth derivatives of the BO potential
taken around the periodic sites of the crystal of volume
V0, and the frequencies ωQ and the occupation num-
ber nQ′ use anharmonic renormalization (computed self-
consistently.)

Cowley also derives the anharmonic free energy at the
same level of perturbation theory. His answer can be
written as

F = FH,0 +
~
2

∑
Q

∆
(2)
Q (nQ + 1/2) + FA0 (A4)

FA0 = − 3

2~
∑

QQ′Q′′

|V (3)(QQ′Q′′)|2 ×

[
1

ωQ′′ + ωQ′ + ωQ
− 3

ωQ′′ + ωQ′ − ωQ

]
(A5)

where FH,0 is the free energy of non-interacting (har-
monic) quasiparticles. Now find the corresponding en-
tropy, S = −dF/dT . The non-interacting part gives the

harmonic entropy,

SH,0 = kB
∑
Q

[(nQ + 1) ln(nQ + 1)− nQ lnnQ] (A6)

Consider what happens if the “quasiparticle entropy”
is constructed by replacing the harmonic frequencies in

Eq.(A6) by the anharmonic frequencies ωQ,H+∆
(2)
Q . Tay-

lor expanding to first order in ∆Q, the answer is

∆S = SQP − SH,0 = −~
∑
Q

∂nQ
∂T

∆
(2)
Q . (A7)

This is the same as the entropy dF/dT from Eq.(A4).
The factor 1/2 in A4 disappears when using Eq.(A2)
while differentiating Eq.(A4) for ∆F , because ∂ωQ/∂nQ′

is symmetric in Q and Q′. An alternate derivation using
a variational principle is given in ref. 55. This suggests
that the use of QP energies in the harmonic entropy for-
mula may be valid somewhat beyond low-order pertur-
bation theory.

Consider then what happens if the same substitu-
tion ωQ,H → ωQ is done in the harmonic free energy
FH =

∑
Q ~ωQ,H(nQ + 1/2) − TSH . The answer is

∆FH = ~
∑
Q ∆

(2)
Q (nQ+1/2)−T∆S. This differs from the

correct anharmonic free energy, Eq.(A4), by not having
the correct factor of 1/2. This is a proof of the double-
counting correction that was added to the internal energy
in Eq.(3). The correct formula Eq.(A4) does differ from
the QP theory of Eqs.(1-4) by a small T -independent
term FA0.
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