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Chemical bonding is the central concept of chemistry that has been used to explain the properties
of molecules and solids as well as chemical processes. In recent years, considerable progress has
been made toward a simple and yet fundamental understanding of this concept for isolated systems.
Here we propose the quantum pressure to study electron localization in molecules and solids as
well as the influence of an external magnetic field. A high pressure indicates chemical bonding and
electron localization, while a low pressure indicates intershell region and electron delocalization. We
find that electrons become more localized between nuclei when exposed to a magnetic field. We
demonstrate that our quantum pressure not only can reveal electronic shell structure of atoms, but
also can be used to visualize chemical bonding in molecules and solids, significantly extending the
applicability of this tool to wide-ranging problems.

PACS numbers: 31.10.+z, 71.15.-m, 75.10.-b

Since the concept of the chemical bond was originally
introduced one century ago [1], it has undergone a se-
ries of evolutions [2], leading to modern chemical bond
theory of two schemes: valence bond theory and molec-
ular orbital theory, both of which stem from the Pauli
exclusion principle and involve the linear combination of
atomic orbitals (LCAO) [3, 4]. A subset of descriptive
concepts derived from the chemical bond theory, such as
atomic shell structure, electron-pair bond, lone electron
pair, conjugated π-subsystem, bond order, etc. have be-
come the standard language of chemistry. According to
the valence bond theory, electrons become localized in
pairs between nuclei when a molecule is formed. The na-
ture of the chemical bond can be rigorously understood
by quantum-mechanical laws such as wave function-based
ab initiomethods and first-principles approach (e.g., den-
sity functional theory [5]). However, there is no proce-
dure that can extract an intuitive picture of the chemical
bond from numerical data, because either the wave func-
tion or the electron density alone cannot clearly reveal
the bonding structure. Chemists tend to rely on the con-
cepts that are less rigorous but can be easily explained.
Theories based on descriptive concepts such as VSEPR
(valence shell electron pair repulsion theory) [6, 7] and
orbital hybridization [3, 4] are still popular today. How-
ever, it is a great challenge to develop the breadth of the
concept and make it as rigorous as we can, yet as simple
as possible, so that it is more powerful and more useful.

Orbital overlap population analysis [8] based on the
Pauli exclusion principle provides an elegant way to un-
derstand the chemical bond in terms of atomic orbital
contributions. The idea is that one can express the wave
functions in terms of the LCAO, whose coefficients can
be calculated with the variational approach. From the
LCAO coefficients, we can easily identify the contribution
of each atomic orbital to the chemical bond, including
bonding, non-bonding, and anti-bonding. Since the anal-

ysis can be easily understood, it has been widely used to
describe the chemical bonding structure of π-subsystems.
Based on this method, Dronskowski and Blöchl [9] pro-
posed crystal orbital Hamilton populations (COHP) to
study electron localization in solids. COHP offers an al-
ternative way to visualize the chemical bond from energy
resolution via population weighted density of states.

A frequently-asked question is “What does a chemi-
cal bond look like?”. To explore the answer, Bader [10]
proposed an electron localization indicator based on the
Laplacian of the density ∇2n(r), which can reveal the
bonding structures intuitively. This leads to the theory
of atoms in molecules [10], offering a rigorous interpreta-
tion of the descriptive concept “atoms in molecules” [4].
It has been applied to study the electron localization
in solids [11]. However, ∇2n(r) is a mathematical con-
struction. In the search for electron localization indi-
cators, an important step was made by Becke and Edge-
combe [12]. They constructed an electron localization in-
dicator, called electron localization function (ELF), from
the curvature of the conditional pair probability. It was
shown [13] that the ELF can reveal excellent bonding
structures. In addition, it can be interpreted in terms
of the Pauli exclusion principle and is uniquely defined
without any ambiguity [14]. Due to its simplicity and the
remarkable properties, it has been widely used to study
the bonding structures of molecules and solids [15, 16].
In particular, it was extended [17] to time-dependent sit-
uations to visualize bond breaking and formation.

In iso-orbital regions of atoms and molecules such
as the core region, pair bond region, and the density
tail, the non-interacting kinetic energy density τ(r) =
(1/2)

∑

l |∇φl(r)|
2 tends to the von Weizäscker kinetic

energy density τW (r) = |∇2n|/8n2, while in other re-
gions such as intershell regions, τW < τ . In the uniform
electron gas, τ(r) reduces to the Thomas-Fermi kinetic
energy density, while τW (r) vanishes. Therefore, the ra-
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tio τW /τ can be used to reveal the bonding structure. Be-
cause of this feature, this combination [18] has been em-
ployed to construct density functional approximations.
Recently, de Silva and Corminboeuf [19] suggested a den-
sity-based bonding descriptor, which can clearly exhibit
both covalent and non-covalent bonding.

The ELF (and other bonding indicators) have achieved
practical success in the description of the chemical bond.
When a molecule is exposed to an external field, the elec-
tron density will be deformed in response to the exter-
nal field. The ELF can still capture part of this effect
by the implicit dependence of orbitals and the electron
density on the external field. This effect may be prop-
erly described by the quantum pressure p(r) [20–22], a
physically meaningful quantity related to the Hamilto-
nian [23, 24]. It was shown [22] that, like the ELF, p(r)
can excellently reveal atomic shell structure. Since p(r)
describes the local stress or force on electrons, it should
be able to reveal the bonding structure of molecules as
well. However, our study shows that the original formula-
tion of p(r) does not clearly display the chemical bonding
(see Fig. S1 in Supplemental Material). We identify that
this problem is simply due to the ∇2n(r) term [Eq. (2)
below]. Recent works have shown [25–28] that this dif-
ficulty can be reduced or fixed by the adjustment of the
amount of ∇2n(r) in the kinetic part of the stress ten-
sor, making use of the fact that there is an ambiguity
in the definition of the kinetic energy density and the
stress tensor. Since this offers flexibilities in optimizing
the bonding index, without violation of any exact condi-
tion, a growing body of research regarding this ambiguity
is accumulating in recent years.

Study of the influence of external magnetic fields on
molecules and solids has long been a topic of interest.
Many current-density functional theory (CDFT) meth-
ods [29, 30] have been proposed to describe this effect. In
recent years, many papers have appeared studying mag-
netic field effects on chemical reactions [31, 32]. Based
on experimental observations, controversial views on the
influence of magnetic fields was recently proposed [33].
To have an intuitive and yet fundamental understanding
of this effect on the chemical bonding, here we formulate
the quantum pressure in a magnetic field based on the
stress tensor. Then we generalize it to finite systems to
study the bonding structure of molecules and solids, with
and without magnetic fields. We find that the quantum
pressure can clearly exhibit the chemical bonding, and
that electrons in a molecule become slightly more local-
ized between nuclei, when exposed to a magnetic field.

The quantum pressure is defined as one-third of the
trace of the stress tensor in quantum systems. It describes
the local force density exerted on electrons. However, in
addition to the Laplacian discussed above, it can be also
altered by adding any divergence-free stress tensor with-
out changing the force [34, 35]. To make clarification, we
start with the conventional definition of the stress tensor

satisfying the local force balance equation [24] ∂νpµν +
n∂µvext = 0, which can be obtained from the equation of
motion. Here the first term is the internal force exerted
on electrons, while the second is the external force, with
vext being the external potential due to the nuclei. pµν is
the stress tensor consisting of the kinetic and potential
parts [36]. Clearly the external force or potential does
not cause any shell structure. So, the bonding structure
must arise from the internal force or stress tensor. In the
uniform electron gas, the external force identically van-
ishes and electrons are fully delocalized. According to
the local force balance condition, pµν must be a constant
stress tensor. In inhomogeneous systems, if the pressure
is high in some (bonding) regions, there must be some
(intershell) regions in which the pressure is low. There-
fore, the quantum pressure reflects the variation of the
local force exerted on electrons and bonding structure.
In the presence of a magnetic field B = ∇ × A, the

kinetic stress tensor [24] can be obtained by replacing the
momentum operator with the canonical one, i.e.,

pkµν(r) = (1/2)〈[(−i∂µ +Aµ/c)ψ̂]
†[(−i∂ν +Aν/c)ψ̂]

+ h.c.− δµν∇
2n̂/2〉, (1)

where c is the speed of light, ψ̂ is the field operator,
and n̂ is the density operator. Here the density Laplacian
(∇2n̂) arises from a transformation from the Laplacian

(ψ̂†∂2µνψ) to the gradient (∂µψ̂
†∂νψ) expression [35, 36],

and thus is part of the stress tensor. After simple algebra,
we obtain

pk(r) =
1

3
Tr pkµν =

2

3
τ −

∇2n

4
+

2

3c
A · jp +

n

3c2
A2, (2)

where τ = (1/2)
∑

l |∇ψl|
2 is the kinetic energy den-

sity, ψl are the Kohn-Sham occupied orbitals, and jp
is the paramagnetic current density defined by jp =
(1/2i)

∑

l(ψ
∗
l ∇ψl − ψl∇ψ∗

l ). For a uniform magnetic
field, A = B×r/2 satisfies the Coulomb gauge∇·A = 0.
From Eq. (2) we see that magnetic fields can affect pk(r)
explicitly by coupling to the current of electrons (last two
terms), and implicitly via the orbitals.
The kinetic pressure contains ∇2n, which originates

from the definition of the stress tensor [22, 24]. It is diver-
gent at a nucleus, where the exact pressure remains finite,
because n is finite everywhere. This problem [37] can be
fixed by eliminating it from Eq. (2) through the second-
order gradient expansion of the kinetic energy density
τ = τTF+ |∇n|2/(72n)+∇2n/6, which is valid for slowly

varying densities. Here τTF = (3/10)(3π2)2/3n5/3 is the
Thomas-Fermi kinetic energy density. Since the kinetic
energy is a physical quantity, it should be magnetically
gauge-invariant. Therefore, we should replace τ with the
gauge-invariant kinetic energy density [30] τ − |jp|

2/2n
in the slowly-varying gradient expansion. This leads to

pk = (2/3)τTF + |∇n|2/(48n)− 5(τ − τTF)/6

+ 5|jp|
2/(12n) + 2A · jp/(3c) + nA2/(3c2). (3)



3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

S
ca

le
d 

pr
es

su
re

  L

r (bohr)

pkq with jp included

pkq with jp neglected

pxc

Al atomK
L M

FIG. 1: Variation of the scaled pressure and its XC component
for the Al atom and the effect of the paramagnetic current
density. r is the radial distance from the nucleus.

(Note that jp and A are antiparallel.) The slowly vary-
ing density is the paradigm of condensed matter physics,
and the gradient expansion of the kinetic energy density
has been used to eliminate the Laplacian in developing
semilocal density functional approximations [18]. From
Eq. (3) we see that the quantum pressure will become
higher in a magnetic field, suggesting that electrons be-
come more localized in a magnetic field [39–42]. For visu-
alization purpose, we limit the scaled quantum pressure
in the range of 0 ≤ L ≤ 1. This can be achieved with [22]

L =
1

2

[

1 +
pkq/pTF

√

1 + (pkq/pTF)2

]

, (4)

where pTF = (2/3)τTF is the Thomas-Fermi classical
pressure, and pkq is the kinetic part of the quantum pres-
sure given by

pkq = |∇n|2/(48n)− 5(τ − τTF)/6 + 5|jp|
2/(12n)

+ (2/3c)A · jp + nA2/(3c2). (5)

To emphasize the role of the quantum effect (which van-
ishes in the thermodynamic limit), here we choose pkq,
instead of pk, as our electron localization indicator.
Now, we turn to the potential part. Since the Hartree

part does not yield atomic shell structure [22], we only
consider the exchange-correlation (XC) contribution. It
was shown that the XC stress tensor may be calculated
with DFT-LDA [20, 21] or GGA [22] via a nonlinear coor-
dinate transformation [21, 24]. In the presence of a mag-
netic field, we can calculate it from CDFT. In CDFT, a
current-density functional can be written as Exc[n, jp] =
∫

d3r nǫXC(n,∇n, τ, jp). According to Ref. [30], current-
density functionals can be constructed from ordinary
density functionals. Then the XC stress tensor is ob-
tained as pxcij = δij [nvxc + jp · Axc/c] − 2δExc/δgij,

FIG. 2: Isosurfaces (gold) and image plots (blue-green-red) of
the scaled quantum pressure L for (a) H+

2 , (b) H2O, (c) N2,
(d) benzene, (e) C20 fullerene, (f) graphene, (g) porphyrin-
Fe2+ complex, (h) NaCl, and (i) silicon. The isosurfaces are
plotted with L = 0.1 for (a)-(f), L = 0.15 for (g), and L = 0.5
for (h)-(i). Except for (f)-(i) in which pseudopotentials are
used, all other are performed with all-electron calculations.

where vxc is the XC potential, and gij is the metric ten-
sor [21, 22] for curvilinear coordinate systems. In carte-
sian coordinates, gij = δij . Evaluating the functional
derivative of Exc with respect to the metric tensor gij
and taking the trace of the stress tensor yield the XC
pressure

pxc = nvxc + jp ·Axc/c− exc − (1/3)(s ∂exc/∂s

+ 2τ ∂exc/∂τ + jp∂exc/∂jp). (6)

where jp = |jp|. (See SI for detailed derivation). For
closed-shell systems, as in most molecules, the XC pres-
sure is relatively small, compared to the kinetic part, be-
cause external magnetic fields only affect it through the
implicit dependence of the wave function or orbitals in
this case.
Figure 1 shows the scaled quantum pressure for the

open-shell atom Al, the effect of the paramagnetic cur-
rent density on the quantum pressure, and the XC ef-
fect, evaluated with Eqs. (4) and (6), respectively. For
open-shell atoms, even when magnetic field B = 0, there
exists orbital current, due to the use of complex orbitals.
In this cases, the orbital current effect can be calculated
from Eq. (4), with the assumption [18] that the physical
current is zero, leading to A = −cjp/n. We can see from
Fig. 1 that the atomic shell structure is largely due to the
kinetic quantum pressure, while the XC effect also shows
atomic shell structure similar to that exhibited by the
kinetic part. The current effect is visible, though quite
small.
Figure 2 shows the isosurface of the kinetic quantum

pressure [Eq. (4)] and the contour plot for diverse systems



4

ranging from small molecules (H+
2 , H2O, N2, benzene),

nanoscale molecules (C20 fullerene and porphyrin-Fe2+

complex), to extended systems (graphene, NaCl, and Si).
In our calculations, the electron density and orbitals are
generated with DFT-GGA [43], using the locally modi-
fied Octopus code [44]. The XC effect is included only
implicitly via the Kohn-Sham orbitals. The top of Fig.
2(a) is the isosurface of the scaled quantum pressure for
a H+

2 molecule (paradigm in quantum chemistry), while
the bottom is the contour plot. Red color represents high
pressure, indicating that the electrons are localized be-
tween the nuclei to form a chemical bond.

The top of Figure 2(b) is the isosurface of a water
molecule that characterizes the OH bond and the lone-
pair electrons of the oxygen atom, while the contour plot
at the bottom shows that the OH bond is formed by
electrons localized around hydrogen atoms, due to the
Coulomb repulsion from the lone electron pair on the
oxygen atom. Specifically, the bright (yellow-green) area
close to the oxygen nucleus represents the high pressure
region arising from the two 1s-core (K-shell) electrons.
The outer blue area represents the low-pressure core-
valence intershell region of the oxygen atom. The green-
red area close to the hydrogen nucleus is the bonding
region due to the L-shell electrons of the oxygen atom
and the K-shell electron of the hydrogen atom. The
light green area below the oxygen nucleus corresponds to
the lone-pair electrons. Figure 2(c) illustrates the spa-
tial variation of the quantum pressure for a N2 molecule.
From Figure 2(c) we observe that the quantum pressure
is highest in the middle between two nitrogen nuclei, de-
cays in the intershell region, and then reaches local max-
ima in the 1s core regions. We also see the signatures of
core-valence intershell regions and non-bonding or lone
electron pairs by the left as well as right sides of the two
nitrogen atoms.

Figure 2(d)-(f) display the quantum pressure for sys-
tems with conjugated π-electrons (benzene, C20 fullerene,
and graphene.) The variation of the quantum pressure
share similar features in these three systems: all C-C
bonds exhibit identical patterns with the quantum pres-
sure, which reaches the highest value at bond midpoint
and the lowest in the core-valence intershell regions. The
absence of high pressure region close to carbon nuclei in
C20 fullerene and graphene is simply due to the use of
pseudopotential for carbon atoms. Figure 2(g) shows the
quantum pressure of porphyrin-Fe2+ complex, which is
of biological interest. From the image plot of Figure 2(g)
we can see a small high pressure region between Fe and
N atoms, indicating the chemical bonding between these
two atoms, and high pressure regions between C and N
atoms and between C atoms, suggesting strong bond-
ing between these atoms. Finally we study the quantum
pressure in NaCl and silicon solids. Figure 2(h) shows the
isosurface of the quantum pressure in NaCl and the con-
tour plot. From the isosurface of the quantum pressure,

FIG. 3: The change of the quantum pressure, ∆L = L(B =
1)−L(B = 0), in (a) C2H4 and (b) C6H

−

6 , due to the external
magnetic field of B = 1 a.u. along the z direction, and con-
tributions from the three current-dependent terms in Eq. (3)
from left to right in each panel. 1 a.u. = 2.35 × 105 T.

we see that the electrons in NaCl are basically localized
around the chlorine atom, reflecting the ionic character of
the Na-Cl bond, while the contour plot displays the shell
structure of NaCl. Since the pseudopotential is used in
solid-state calculations, the 1s core region in which the
pressure is highest is not shown in the contour plot. Fig.
2(i) shows the isosurface of the quantum pressure in bulk
silicon. From Fig. 2(i) we can see that electrons in silicon
are largely localized in the middle region between two Si
nuclei, illustrating the typical covalency of the Si-Si bond.

Figure 3 shows the change of the kinetic quantum pres-
sure, ∆L = L(B = 1)− L(B = 0), in (a) ethene (closed-
shell) and (b) benzene anion (open-shell), in a uniform
magnetic field with B = 1.0 a.u., and the contributions
from the three current-dependent terms in Eq. (3). It can
be seen from Fig. 3(a) that when we apply a magnetic
field normal to the molecular plane, the quantum pres-
sure increases around the bond axis, while it decreases in
the usual π-electron region off the bond axis, suggesting
that the electrons become more localized toward the bond
axis. A similar phenomenon can be observed in benzene
anion exposed to a magnetic field normal to the C6H

−
6

plane. From Fig. 3(b), we see that, in a uniform mag-
netic field, the quantum pressure becomes slightly higher
in the middle region of the c-c bond, suggesting that the
electrons become more localized toward the bonding re-
gion between carbon atoms.

However, due to the asymmetric orbital occupation of
electrons, the change in the quantum pressure is also
not perfectly symmetric. Our calculations show that the
magnetic field effect on the quantum pressure in C6H

−
6 is

much stronger than in C2H4 by two order of magnitudes.
This is because in C6H

−
6 , electrons can have a circular

motion generating a ring current, under the influence of
the magnetic field. Finally, we calculate the difference
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between the ELF of Becke and Edgecombe [12] with and
without a magnetic field, ELF(B = 1) − ELF(B = 0),
in C6H

−
6 . We find that the ELF can also capture the

magnetic field effect, showing that, in a magnetic field,
electrons become more localized between C atoms, but
this effect is expectedly smaller than that on the quan-
tum pressure.
In summary, we have formulated the quantum pressure

in a magnetic field. Like an energy density, it has phys-
ical significance, although it is not uniquely defined. A
nice feature of the quantum pressure is that it does not
require any transformation [2]. We have demonstrated
that the quantum pressure can reveal the bonding struc-
ture. This provides an alternative view on the chemical
bond. Our study shows that electrons become more lo-
calized between nuclei, when a molecule is exposed to
a magnetic field, but this effect can be only observable
when molecules are exposed to ultrahigh magnetic fields
such as those in astrophysics [40–42]. In laboratory-ac-
cessible magnetic fields, this effect is too small to be ob-
servable, as discovered experimentally in chemical reac-
tions [33]. Since it is a local stress related to the Hamilto-
nian, we can study many other phenomena (e.g., spin-flip
transition [45]) by incorporating various interactions such
as spin-orbit coupling [46] into the quantum pressure.
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