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The effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T−1
1

is studied in a complete phase diagram of a 2D superconductor above the upper critical field line
Hc2(T ) . In the region of relatively high temperatures and low magnetic fields, the relaxation rate W
is determined by two competing effects. The first one is its decrease in result of suppression of quasi-
particle density of states (DOS) due to formation of fluctuation Cooper pairs (FCP). The second
one is a specific, purely quantum, relaxation process of the Maki-Thompson (MT) type, which for
low field leads to an increase of the relaxation rate. The latter describes particular fluctuation
processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to
phase-breaking length `φ which becomes possible due to an electron spin-flip scattering event at
a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation
rate are possible upon approaching the normal metal – type-II superconductor transition. The
character of fluctuations changes along the line Hc2(T ) from the thermal long-wavelength type in
weak magnetic fields to the clusters of rotating FCP in fields comparable to Hc2(0). We find that
below the well-defined temperature T ∗

0 ≈ 0.6Tc0, the MT process becomes ineffective even in absence
of intrinsic pair-breaking. The small scale of FCP rotations (ξxy) in so high fields impedes formation
of long (. `φ) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose
its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields
and low temperatures to just the suppression of quasi-particle DOS, analogously to the Abrikosov
vortex phase below the Hc2(T ) line.

PACS numbers: 74.40.-n,74.25.nj

I. INTRODUCTION

Nuclear magnetic resonant (NMR) spin-lattice relax-
ation is a result of nuclei-interactions with low frequency
excitations available in the investigated system1. This
fact makes NMR a powerful tool for studying low-energy
excitation dynamics in novel materials2.

In the Abrikosov phase of the type-II superconductors,
for magnetic fields well above the critical field Hc1 but
still below Hc2, magnetic flux lines are separated by su-
perconducting regions at distances of the order of the
coherence length ξxy. The low-energy excitations driving
spin-lattice relaxation are the weighted average of the
intra-vortex excitations and of the contribution from the
inter-vortex regions, possibly connected by a spin diffu-
sion process1. In the vortex liquid phase, flux line dif-
fusion provides an additional possible relaxation mecha-
nism (see Ref. [3] and references therein).

In a recent work4 the authors pointed out that a dy-
namic state with clusters of coherently rotating FCP
is formed above the Hc2(T ) line at low temperatures.
It is therefore of special interest to study the effect of
this fluctuation analogue of the vortex state on the mag-
netic field dependence of the relaxation rate near Hc2 (T ).
Some preliminary experimental studies were performed5

by measuring the 11B NMR relaxation rates in a single
crystal of superconducting YNi2B2 (Tc0 = 15.3K in zero
field). The authors discussed an anomalous peak in the
NMR relaxation rate magnetic field dependence W (H)

at temperatures 2K and 4K in fields close to Hc2(T ),
which they tentatively attributed to quantum fluctua-
tions of magnetic flux lines.

Superconducting fluctuations affect the NMR spin-
lattice relaxation rate of superconductors in a wide range
of magnetic fields and temperatures above the upper crit-
ical field line Hc2(T ) [6–16]. First of all, they suppress
the density of quasi-particle excitations17,18, which en-
ters quadratically into the NMR relaxation rate, and, as
a consequence, they reduce W . Nevertheless, this is not
the only way for fluctuations to influence nuclear relax-
ation. There exists another, purely quantum, relaxation
process of the Maki-Thompson (MT) type which con-
sists of the fluctuation self-pairing of a single electron on
a self-intersecting trajectory due to an electron spin-flip
scattering event at a particular nucleus6,7,19 (see Fig. 1).
The latter process opens a new channel of NMR signal
relaxation leading to the increase of W .

Below, intending to investigate first of all the region of
the Abrikosov lattice formation from the side of normal
metal, we study the effect of superconducting fluctua-
tions both of the thermal and the quantum nature on the
NMR relaxation mechanisms. We concentrate mainly on
the most interesting case of a two-dimensional s−wave
superconductor restricting our consideration by the rep-
resentative dirty limit Tc0τ � 1, where τ is the electron
scattering time. We will derive the general expression for
the fluctuation contribution to the NMR relaxation rate
valid for the whole phase diagram above the line Hc2(T ).
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FIG. 1. (Color online) The relaxation process of Maki-
Thompson (MT) type related to the fluctuation pairing of
electrons on self-intersecting trajectories involving their spin-
flip scatterings on the investigated nuclei. (a) Initially elec-
tron moves along the trajectory 1 (clockwise, red), due to
several impurity scattering events it returns to the departure
point. In result of interaction with the nuclei, its spin and
momentum flip and electron returns along almost the same
trajectory 2 (counter-clockwise, green). During this motion it
interacts with “itself in past” (corresponding superconduct-
ing interactions are shaded). Such process is possible due
to “fast” motion of the electron along the trajectory and re-
tarded character of electron-phonon interaction. (b) Repre-
sentation of the same process as a Feynman diagram (compare
with Fig. 2(c).

Its analysis for temperatures close to Tc0 and fields much
less than Hc2(0) confirms the picture of the competition
of two contributions already studied in previous theoret-
ical works6–11.

The situation qualitatively changes when temperature
decreases well below Tc0. The nontrivial finding con-
sists of the fact that below some universal temperature
T ∗2D,0 ' 0.6Tc0 the superconducting fluctuations are no
longer able to contribute positively to the NMR relax-
ation: the coherent MT scattering is suppressed by strong
fields H & Hc2(T ∗2D), and the remaining effect of the
quasi-particle DOS depletion results in the opening of
a fluctuation spin gap in the magnetic field dependence
of W . In order to compare the obtained results with
the available low-temperature experimental data5,20, in

the last section we extend our theory to the case of quasi-
two-dimensional spectrum and study the evolution of the
crossover temperature T ∗0 (in general, T ∗ is a function of
the pair-breaking parameter and we denote the lowest
value of T ∗ for vanishing pair-breaking as T ∗0 ) versus the
anisotropy parameter r = 4ξ2

z/ξ
2
xy of a layered supercon-

ductor. It turns out that three-dimensialization of the
spectrum increases the value of T ∗ with respect to T ∗2D,
which completely excludes the superconducting quantum
fluctuations as the reason of the peak in NMR relaxation
rate observed in Ref. [5] for T < 0.25Tc0.

The paper is organized as follows. In Sec. II we intro-
duce the method of calculating superconducting fluctu-
ation corrections to the NMR relaxation rate. The only
relevant contributions to the first order in perturbation
theory, the DOS and MT processes, are calculated sepa-
rately in Sections III and IV, respectively. In Section V
we present the total correction to the normal metal Ko-
rringa law, which is the main result of this paper. We
derive asymptotic expressions for the total NMR correc-
tion in the regimes of quantum and thermal fluctuations
and provide a rigorous numerical analysis of the results.
In Section VI we present the generalization of the ap-
proach to quasi-2D and 3D superconducting materials
and outline the main consequences of the above general-
ization. Finally, Section VII summarizes the main results
of the paper and explains the physical picture behind the
competition of the DOS and MT relaxation processes at
different temperatures and magnetic fields in the fluctua-
tion regime. The crossover temperature between the two
regimes is obtained from qualitative considerations.

II. MODEL

We begin with the dynamic spin susceptibility
χR±(k, ω) = χ±(k, ων → −iω + 0+), where

χ±(k, ων)=

∫ 1/T

0

dςeiωνς
〈
T̂ς

(
Ŝ+(k, ς)Ŝ−(−k, 0)

)〉
. (1)

Here Ŝ± are the spin raising and lowering operators, ς is

the imaginary time, T̂ς is the time ordering operator, k is
momentum, ων = 2πTν (ν = 0, 1, 2...) is a bosonic Mat-
subara frequency corresponding to the external field, and
the angle brackets denote thermal and impurity averag-
ing in the usual way. In what follows we use the system
of units where } = kB = c = 1. The NMR relaxation
rate W is determined by the imaginary part of the static
limit of the dynamic spin susceptibility integrated over
all momenta:

W = T lim
ω→0

A

ω
Im

∫
(dk)χR+−(k,−iω) , (2)

where (dk) ≡ dDk/(2π)D, D is the spectrum dimension-
ality, A is a positive constant involving the gyromagnetic
ratio.
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For noninteracting electrons χ
(0)
± (k, ων) is determined

by the correlator of two single-electron Green’s functions
G (k, εn) = (iε̃n − ξ (k))

−1
, [ε̃n = εn + (2τ)

−1
sign(εn),

εn = 2πT (n+ 1/2) is the fermionic Matsubara
frequency, ξ (k) is the quasiparticle energy measured
from the Fermi level], i.e. by the usual loop diagram

with the Ŝ±(k, τ) operators playing the role of external
vertices (electron interaction with the external field).
Its trivial calculation leads to the well-known Korringa
law: W0 = 4πATN2(0), with N(0) as the one-electron
density of states. Below we will present the fluctua-
tion contribution to W in the dimensionless form by
normalizing it to the latter result.

The first-order fluctuation contributions to χ± in a
dirty superconductor above the line Hc2(T ) can be ex-
pressed by means of the standard fluctuation “dressing”
(see Fig. 2) of the loop of two Green’s functions by the
fluctuation propagator Lm(Ωk) (wavy lines in the dia-
grams) and impurity vertices λm and Cm (shaded three-
and four-leg blocks representing the result of averaging of
the two Green’s functions products over elastic impurity
scatterings in the ladder approximation). Their explicit
expressions in the representation of Landau levels and
Matsubara frequencies read as

L−1
m (Ωk) = (3)

−N(0)

{
ln

T

Tc0
+ ψ

[
1

2
+
|Ωk|+ ωc

(
m+ 1

2

)
4πT

]
− ψ

(
1

2

)}

λm(ε1, ε2) =
τ−1Θ(−ε1ε2)

|ε1 − ε2|+ ωc(m+ 1/2) + τ−1
φ

, (4)

and the four-leg Cooperon is Cm = [2πN(0)τ ]
−1
λm.

Here m is the quantum number of the FCP Landau state,
Ωk = 2πTk (k = 0,±1,±2...) is the bosonic Matsubara
frequency corresponding to the FCP, Θ(x) is the Heavi-
side theta function. An important characteristic of these
expressions is that they are valid even far from the crit-
ical temperature [for temperatures T � min{τ−1, ωD}]
and for magnetic fields as strong as H � Hc2(0)/(Tc0τ).
For the sake of convenience, we introduce the reduced
temperature t = T/Tc0 and reduced magnetic field

h =
π2

8γE

H

Hc2(0)
= 0.69

H

Hc2(0)
,

where γE ' 1.78 is the Euler constant. The propaga-
tor (3) in these variables takes the form L−1

m (T,H,Ωk) =
−N(0)Em(t, h, |k|), with

Em (t, h, x) = ln t+ ψ

[
1 + x

2
+

2h

t

(2m+ 1)

π2

]
− ψ

(
1

2

)
.

(5)

We will also use its derivatives E(p)
m (t, h, x) ≡

∂pxEm (t, h, x), which can be expressed through
polygamma functions:

2pE(p)
m (t, h, x) = ψ(p)

[
1 + x

2
+

2h

t

(2m+ 1)

π2

]
. (6)
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FIG. 2. (Color online) The diagrams for spin susceptibility.
The solid lines correspond to free electron Green’s functions,
bold wavy lines to the fluctuation propagator, dashed trian-
gles and rectangles account for electrons scatterings on impu-
rities. The two diagrams (a) represent the density of states
(DOS) correction, the diagrams (b) represent the renormal-
ization of the diffusion coefficient (DCR), while the diagram
(c) corresponds to the Maki-Thompson (MT) process.

Let us return to Fig. 2. The two diagrams (a) represent
the effect of fluctuations on the single-particle self-energy,
leading to a decrease in corresponding DOS at the Fermi
level. Consequently, in accordance with the Korringa
law, one can expect them to reduce the relaxation rate
W with respect to its normal value, opening some kind
of fluctuation spin-gap upon approach of the transition
line Hc2(T ) from the normal phase.

Diagrams (b) with the four-leg Cooperon impurity
blocks account for the corrections to the NMR relaxation
rate due to the electron diffusion coefficient renormaliza-
tion (DCR) by superconducting fluctuations. The anal-
ogous contribution turns out to be the dominant one in
the region of quantum fluctuations in the case of fluctu-
ation conductivity21. However, in the case under consid-
eration, the additional integration over the external mo-
mentum with respect to the case of conductivity makes
their contribution proportional to the square of the small
Ginzburg-Levanyuk number19

Gi2D =
7ζ(3)

32π3N(0)Tc0ξ2
,

which strongly suppresses the entire DCR contribution9.
Finally, the diagram in Fig. 2(c) is nothing else but the

diagrammatic representation of the MT process shown in
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Fig. 1, where the region of attractive interaction (in grey)
interrupted periodically by impurity scattering events
(circles) is replaced by the fluctuation propagator (wavy
line). This MT type diagram for χ± in this graphic form
appears to be identical to the one for conductivity. Nev-
ertheless, the process shown in Fig. 1(c) shows us the im-
portant difference in the topology of the former and latter
that arises from the spin structure. The MT diagram in
Fig. 2(c) is a non-planar graph with a single fermion loop.
In contrast, the MT graph for conductivity is planar and
has two fermion loops. The number of loops, according
to the rules of the diagrammatic technique22, determines
the sign of the contribution. In the case of spin suscepti-
bility, which is under consideration, the topological sign
of the MT diagram turns out to be opposite to that one
for conductivity.

The presence of the Ŝ±(k, τ) operators, taking over the
role of external vertices, changes not only the formal sign
of the MT diagram. The fact that two fermion lines at-
tached to such vertex must have the opposite spin labels
(up and down) eliminates the Aslamazov-Larkin diagram
from our present consideration: one simply cannot con-
sistently assign a spin label to its central fermion lines
for spin–singlet pairing6.

III. DOS CONTRIBUTION

Let us start with the calculation of the DOS contribu-
tion determined by the two diagrams in Fig. 2(a). The
corresponding expression for the dynamic spin suscepti-
bility integrated over all momenta is

∫
(dk)χDOS

+− (k, ων) =
h

πξ2

∑
m

T
∑
Ωk

Lm (Ωk)

·T
∑
εn

λ2
m (εn,Ωk−n) g (εn+ν) J

DOS(εn,Ωk−n) , (7)

where the first summation is performed over Landau lev-
els and

g (εn+ν) =

∫
(dk)G (k, εn+ν) = −iπN(0) sgn (εn+ν) ,

(8)

JDOS (εn,Ωk−n) =

∫
(dp) G2 (p, εn)G (p,Ωk−n)

= 2πiN(0)
Θ (−εnΩk−n) sgn (εn)(

iε̃n − iΩ̃k−n
)2 . (9)

In the approximation of a dirty metal (Tτ � 1),∫
(dk)χDOS

+− (k, ων) =
2πN2(0)T 2h

ξ2
(10)

·
∑
m

∑
Ωk

Lm (Ωk) Ξm (Ωk, ων)

with

Ξm (Ωk, ων) =
∑
εn

Θ (−εnΩk−n) sgn (εn) sgn (εn+ν)

(|εn − Ωk−n|+ αm)
2 ,

(11)
where we have defined αm ≡ ωc (m+ 1/2). For the
Heaviside theta function we assume Θ(0) = 1. Now
one can perform the summation over fermionic fre-
quencies by splitting its domain into three inter-
vals: (−∞,−ν − 1], [−ν,−1], and [0,∞). The part
of Eq. (10) depending on the external frequency ων ,
which determines the imaginary part of the susceptibility
ImχR+−(k,−iω) in Eq. (2), is

Ξ(ω)
m (Ωk, ων) = −2

ν−1∑
n=0

Θ (εn + Ωk)

(2εn + Ωk + αm)
2 . (12)

The summation over fermionic frequencies again can be
performed by splitting the domain of further summation
over the bosonic frequencies into three: k ∈ [0,∞), k ∈
[−ν,−1], and k ∈ (−∞,−ν − 1]. Summation over the
last interval results in zero and Eq. (12) is presented as
the sum of regular and anomalous parts:

Ξ(ω)
m (Ωk, ων) = Ξ(reg)

m (Ωk, ων) + Ξ(an)
m (Ωk, ων) , (13)

where

Ξ(reg)
m (Ωk, ων) =

Θ (Ωk)

8π2T 2

[
ψ′
(

1

2
+

ων
2πT

+
Ωk + αm

4πT

)
− ψ′

(
1

2
+

Ωk + αm
4πT

)]
(14)

and

Ξ(an)
m (Ωk, ων) =

Θ (−Ωk) Θ (Ωk + ων)

8π2T 2

[
ψ′
(

1

2
+

ων
2πT

+
Ωk + αm

4πT

)
− ψ′

(
1

2
+
−Ωk + αm

4πT

)]
. (15)

The regular part (14) is an analytic function of the exter-
nal frequency ων and can be easily continued to the up-

per half-plane of the complex frequencies by substitution
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ων → −iω. As a result, by putting together Eqs. (2),(10),
(11), and (14), one finds [the identity (6) was used to fi-

nalize Ξ
(reg)
m (Ωk)]:

WDOS(reg)(t, h) =
AN(0)

8π2ξ2
h

M∑
m=0

∞∑
k=0

4E ′′m (t, h, |k|)
Em (t, h, |k|)

, (16)

with M = (tTc0τ)
−1

as the cut-off parameter.

Re(z)

Im(z)

0

νi

C 

i 

2i 

FIG. 3. (Color online) Closed integration contour C in the
plane of complex frequencies.

Now, let us proceed to the analysis of the anomalous
DOS contribution to the relaxation rate determined by
Eqs. (2), (10), (11), and (15). Here, the upper limit of
summation over bosonic frequencies contains the external
frequency and one should be cautious with the analytic
continuation to the upper half-plane of complex frequen-
cies. One can write

∫
(dk)χ

DOS(an)
+− (k, ων) = −N(0)h

2πξ2

∑
m

θm (ων) , (17)

where

θm (ων) =

ν−1∑
l=1

fm(l, ων) (18)

and

fm(l, ων) =
[E ′m (2ν − l)− E ′m (l)]

Em (l)
. (19)

Note that the summation limit in Eq. (18) can be ex-
tended from (ν − 1) to ν, since fm(l = ν, ων) = 0.

The analytic continuation of Eq. (18) to the upper half-
plane of complex frequencies was performed in Ref. [23]
(see also Eq. (8.84) in Ref. [19]). By means of the Eliash-
berg transformation24, the corresponding sum can be
presented as an integral over a counterclockwise closed
contour C consisting of two horizontal lines, two vertical
lines, and a semicircle in the upper complex plane around
the pole z = 0 (see Fig. 3):

θm (ων)=
1

2i

∮
C

coth (πz) fm(−iz, ων)dz . (20)

The integrals over the vertical line segments are zero and
the integral over the semi-circle reduces to minus half
of the residue of the integrand at z = 0. By inverting
the direction of integration along the line Im z = ν and
shifting the integration variable as z − iων/2πT → z in
the corresponding integral, one finds:

θm (ων) = −fm(0, ων)

2
+

1

2i

∫
−
∞

−∞
coth (πz)

× [fm(−iz, ων)−fm(−iz+ων/2πT, ων)] dz . (21)

Eq. (21) is an analytic function of ων and one can perform
its continuation by the standard substitution ων → −iω.
By the change of variables z + ω/2πT → z in the second
integral and with the help of the identity

coth(a)− coth(b) = − sinh(a− b)
sinh(a) sinh(b)

,

one finally finds

θRm (−iω) = −fm(0,−iω)

2
(22)

+ i
sinh (ω/2T )

2

∫ ∞
−∞

fm(−iz,−iω)dz

sinh (πz) sinh (πz − ω/2T )
.

Substitution of the explicit expression for function
fm(−iz,−iω) from Eq. (19) into Eq. (22) results in

∫
(dk)χ

DOS(an)
+− (k, ω) = −N(0)h

4πξ2

M∑
m=0

{
−
E ′m
(
− iω
πT

)
− E ′m(0)

Em(0)
+i sinh

( ω
2T

) ∞∫
−
−∞

[
E ′m
(
−iz− iω

πT

)
−E ′m(−iz)

]
dz

sinh(πz) sinh (πz − ω/2T ) Em(−iz)

 .

(23)

By sending the external frequency to zero, one finds the anomalous DOS contribution to the NMR relaxation rate:

WDOS(an)(t, h) =
AN(0)

8π2ξ2
h

M∑
m=0

{
2E ′′m(0)

Em(0)
+ 2π

∫ ∞
−∞

Im E ′m(iz) Im Em(iz) dz

sinh2(πz)
[
Re2Em(iz) + Im2Em(iz)

]} (24)
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Let us note that along the line Hc2(T ), where the Eq. (5)
can be simplified as

Em (t, h, iz) =
h− hc2(t)

hc2(t)
+

iπ2zt

4hc2(t)
,

the second term in Eq. (24) exactly cancels the first one
and in this region only the regular part of the DOS dia-
grams contributes to the NMR relaxation rate. This fact
justifies the approximation of static fluctuations (account
for the term with Ωk = 0 only) assumed in the previous
works6–11 in their consideration performed close to Tc0.

IV. MAKI-THOMPSON CONTRIBUTION

The mentioned above MT contribution to the pro-
cess of NMR relaxation is described by the diagram in
Fig. 2(c). The corresponding expression for the dynamic
spin susceptibility integrated over all momenta is∫

(dk)χMT
+− =

hT 2

2πξ2

∑
m

∑
Ωk

Lm (Ωk)
∑
n

λm (εn,Ωk−n)

·λm(εn+ν ,Ωk−n−ν)I2g(εn,Ωk−n)I2g(εn+ν ,Ωk−n−ν) (25)

Restricting ourselves by the assumed above case of the
dirty superconductor, one can write an explicit expres-
sion for the integral of the product of two Green’s func-
tions:

I2g=

∫
(dp)G(p, εn)G(−p,Ωk−n)=2πN(0)τΘ(−εnΩk−n)

and express Eq. (25) in the standard form∫
(dk)χMT

+− =
2πN2(0)T 2h

ξ2

∑
m

∑
Ωk

Lm(Ωk) Υm(Ωk, ων) .

The summation over fermionic frequencies in the expres-
sion

Υm =
∑
n

Θ [εn (εn − Ωk)] Θ [εn+ν (εn+ν − Ωk)]

(|2εn − Ωk|+ αm) (|2εn+ν − Ωk|+ αm)

= Υ(reg1)
m (Ωk, ων) + Υ(reg2+an)

m (Ωk, ων)

is performed in complete analogy with the previous sec-
tion, and one finds as a result:

Υ(reg1)
m (Ωk, ων) =

1

4πT

1

ων

[
ψ

(
1

2
+

2ων + |Ωk|+ αm
4πT

)
−ψ

(
1

2
+
|Ωk|+ αm

4πT

)]
and

Υ(reg2+an)
m (Ωk, ων) =

Θ (ων−1 − |Ωk|)
4πT (ων + αm)

·
[
ψ

(
1

2
+

2ων − |Ωk|+ αm
4πT

)
− ψ

(
1

2
+
|Ωk|+ αm

4πT

)]
.

Analitic continuation of Υ
(reg1)
m (Ωk, ων) is trivial, while

that one of Υ
(reg2+an)
m is performed by means of the

Eliashberg transformation (20). Finally, one obtains

WMT(t, h) =
AN(0)

16π2ξ2
h

M∑
m=0

[ ∞∑
k=−∞

4E ′′m (t, h, |k|)
Em (t, h, |k|)

+
π3

γϕ + 2h
t (m+ 1/2)

∞∫
−∞

dz

sinh2(πz)

Im2Em(t, h, iz)

Re2Em(t, h, iz) + Im2Em(t, h, iz)

 ,

with γφ = π/(8Tc0τφ) and τφ as the phase-breaking time.

V. MAIN RESULT

Collecting DOS and MT contributions in one expres-
sion and normalizing it to the normal metal Korringa re-

laxation rate, one can write the expression forW fl valid in
the whole phase diagram (with the restrictions discussed
above):

W fl(t, h)

W0
=

Gi2D

7ζ(3)

(
h

t

) M∑
m=0

[ ∞∑
k=−∞

8E ′′m(t, h, |k|)
Em(t, h, |k|)

+ 4π

∫ ∞
−∞

dz

sinh2(πz)

Im E ′m(t, h, iz) Im Em(t, h, iz)

Re2Em(t, h, iz) + Im2Em(t, h, iz)

+
π3

γφ + 2h
t (m+ 1/2)

∞∫
−∞

dz

sinh2(πz)

Im2Em(t, h, iz)

Re2Em(t, h, iz) + Im2Em(t, h, iz)

 . (26)
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One can analyze it in different limiting cases. Close
to Tc0 and for magnetic fields not too high (h� 1)
but arbitrary with respect to reduced temperature

ε = (T − Tc0) /Tc0 � 1 and phase-breaking rate γφ � 1
one can perform the integrations and summations in
Eq. (26) and get

W fl(ε, h� 1)

W0
= −3Gi2D

{[
ln

1

h
− ψ

(
ε

2h
+

1

2

)]
− π4

168ζ(3)

1

ε− γφ

[
ψ

(
ε

2h
+

1

2

)
− ψ

(
γφ
2h

+
1

2

)]}
. (27)

In the limit of weak fields h� min{ε, γφ}

W fl

W0
= 3Gi2D

[
π4

168ζ(3)

1

ε− γφ
ln

ε

γφ
− ln

1

ε

]
−Gi2D

h2

2ε2

[
π4

168ζ(3)

γφ + ε

γ2
φ

− 1

]
. (28)

The first line of Eq. (28) reproduces the results of
Refs. [6–9], while the magnetic field dependence of W fl

for weak fields (second line of Eq. (28)) was firstly an-
alytically found in Ref. [11]. One can see that the MT
contribution dominates when the pair-breaking is weak.
In this case superconducting fluctuations in weak fields
increase the NMR relaxation; increase of the field reduces
the latter. As the phase-breaking grows, the role of the
first term in Eq. (28) weakens and the effect of fluctua-
tions can change sign: the MT trajectories shorten and
the negative contribution of superconducting fluctuations
due to the suppression of the quasi-particle density of
states becomes the dominant. Since γφ . 1 the effect of
magnetic field on W fl is always negative.

In the opposite case 1� h� max {ε, γφ} the MT con-
tribution dominates11: intrinsic pair-breaking here is
weak while the effect of magnetic field on the motion

of Cooper pairs is not yet strong enough:

W fl

W0
≈ 3Gi2D

[
π6

672ζ(3)

1

h
− ln

1

h

]
.

Concluding discussion of the closeness of Tc0, one can
write the explicit expression for W fl along the line Hc2(T )
in its beginning, where ε+ h→ 0:

W fl

W0
= 3Gi2D

{
π4

168ζ(3)

2h

(ε+ h)(γφ + h)
− ln

1

h

}
.

Now let us turn to the main subject of our study: the
domain of the phase diagram above the second critical
field at relatively low temperatures. Our general for-
mula (27) allows to obtain the explicit analytical ex-
pressions, for instance, along the line Hc2(T ), where
t� hc2(t). Here the main contribution is due to the
lowest Landau level of the FCP motion. Corresponding
propagator (3) has the pole structure:

LR0 (t, h, iz) = − 1

N(0)

1

h̃+ iπ2zt
4hc2(t)

.

Performing summation over bosonic frequencies and in-
tegration in Eq. (26) one finds

W fl(t� hc2(t))

W0
= −4π2Gi2D

7ζ(3)

ln
1

h̃
+

2h̃γφ
π2

ψ′(4hc2(t)h̃

π2t

)
− π2t

4hc2(t)h̃
− 1

2

(
π2t

4hc2(t)h̃

)2


At very low temperatures t� h̃,

h̃ ≡ [H −Hc2(0)] /Hc2(0), and just above Hc2(0),
the regime of quantum fluctuations is realized. They
suppress the NMR relaxation due to decrease of the
quasi-particle density of states.

W fl
(
t� h̃

)
W0

= −4π2Gi2D

7ζ(3)

[
ln

1

h̃
+

π4t3γφ

192h3
c2(t)h̃2

]
. (29)

At higher temperatures, h̃� t� hc2(t), superconduct-
ing fluctuations become of thermal nature, while the DOS

suppression of the NMR relaxation remains dominant:

W fl
(
h̃� t�hc2(t)

)
W0

=−4π2Gi2D

7ζ(3)

[
ln

1

h̃
+

π2t2γφ

16h2
c2(t)h̃

]
.

(30)
The results of numerical analysis of Eq. (26) for dif-

ferent pair-breaking rates are presented in Figs. 4–5. In
the case of a small enough pair-breaking, there is a large
domain of the phase diagram where superconducting fluc-
tuations result in the increase of the NMR relaxation rate
(see Fig. 4). Growth of the pair-breaking suppresses MT
contribution and when γφ ∼ 1 the only effect of quasi-
particle DOS suppression on W fl dominates in the whole
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FIG. 4. (Color online) Top: The temperature and magnetic
field dependence of the relaxation rate W fl in case of a very
weak pair-breaking γφ = 0.003. The thick isoline (red) repre-
sents a zero relaxation rate, while the dashed isolines corre-
spond to relaxation rate values of −1 and −2. The mesh-line
t∗ (red) marks the critical temperature for γφ → 0, while the
light (cyan) contour line indicates the value of W fl at hc2(t∗)
(−3.04) (see Fig. 6). Bottom: Contour plot of the region close
to hc2(t∗).

phase diagram (see Fig. 5). It is interesting that even in
the absence of the pair-breaking (γφ → 0) there exists a
crossover temperature T ∗0 below which the MT relaxation
process is suppressed by strong magnetic fields and the
fluctuation correction W fl cannot be positive. In the case
of a two-dimensional superconductor T ∗0,2D ≈ 0.6Tc0. The

temperature and field dependence of W fl(T,H) near the
point {T ∗2D, Hc2 (T ∗2D)} is very singular, see the close-up
view of its vicinity in the bottom panel of Fig. 4.

Closer analysis of the crossover region, see Fig. 6, re-
veals that near hc2(t∗) the total correction curves cal-
culated along the line hc2(t) cross at a single point

FIG. 5. (Color online) The temperature and magnetic field
dependence of the relaxation rate W fl in case of a strong pair-
breaking γφ = 0.3. The dashed isolines correspond to relax-
ation rate values of −1.5 and −2.

at temperature t∗(γφ), i.e. the total correction to the
NMR relaxation rate becomes independent of the field
close to the point {t∗, hc2(t∗)}. This can also be seen
on Fig. 4, where the isoline corresponding to the value
W fl(t∗, hc2(t∗)) ≈ −3.04 is seen to be parallel to the
t = t∗ line in the immediate vicinity of the superconduct-
ing region.

Below the crossover temperature t∗, the total correc-
tion exhibits monotonic (increasing) field-dependence for
fixed temperature t < t∗. For t� hc2(t), both in the
regime of quantum and thermal fluctuations, our numer-
ical analysis is in full agreement with the asymptotic ex-
pressions (29) and (30), confirming the negative sign of
the total correction. At the same time, Fig. 6 reveals
a non-monotonic behavior at intermediate temperatures
t . t∗ when going along the hc2(t) line.

Above the crossover temperature, the field dependence
of W fl always shows a non-monotonic behavior as a result
of the two competing contributions, as can be seen by
from Fig. 4. The total correction is positive (for not-too-
strong pair-breaking γφ) close to the line hc2(t); it then
decreases rapidly reaching a minimum negative value at
some intermediate distance from hc2(t) before increasing
up to zero when sufficiently far from the superconducting
region.

Overall, our result for the total fluctuation correction
W fl is in qualitative agreement with that of Ref. 10,
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where the temperature range between 0.75Tc0 and 1.5Tc0

was analyzed to compare with experimental data. The
authors correctly point out the strong dependence of W fl

on the pair-breaking parameter γφ. Our analysis based
on Eq. (26) in the entire temperature range along Hc2(T )
enables us to identify the temperature T ∗(γφ) at which
the DOS and MT relaxation mechanisms fully compen-
sate each other, such that the fluctuation correction W fl

completely vanishes (in the leading order of perturba-
tion theory). The dependence of this temperature on the
pair-breaking parameter γφ is presented in Fig. 6c). The
asymptotic crossover temperature T ∗0 is then defined as
T ∗(0), i.e. the temperature below which the negative
DOS contribution always dominates, regardless of the
values of γφ and h. The physical picture behind this
observation is explained in more detail in Section VII.

VI. QUASI-TWO-DIMENSIONAL
SUPERCONDUCTOR

The effect of three-dimensionality of the spectrum can
be easily accounted for by the direct generalization of the
Eq. (26). Indeed, the properties of a quasi-two dimen-
sional superconductor can be described well in the frame-
work of the phenomenological Lawrence-Doniach (LD)
model25, which provides a Ginzburg-Landau functional
for a layered superconductor. In the case under consid-
eration, when the magnetic field is applied perpendicular

to the layers, it takes the form:

F (LD)[Ψ] =
∑
l

∫
d2r

[
αTc0ε |Ψl|2+

b

2
|Ψl|4

+
1

4m

∣∣(∇‖−2ieA‖
)
|Ψl

∣∣2+J |Ψl+1 −Ψl|2
]
.

Here Ψl is the order parameter of the l-th superconduct-
ing layer and the phenomenological constant J is propor-
tional to the energy of the Josephson coupling between
adjacent planes. The gauge with Az = 0 is chosen.

In the immediate vicinity of Tc, the LD functional
is reduced to the GL one with the effective mass
M =

(
4J s2

)−1
along z-direction, where s is the inter-

layer spacing. One can relate the value of J to the coher-
ence length along the z-direction, or, what is more con-
venient, with the degree of three-dimensionality of the
system r = 4ξ2

z/s
2: J = αTc0r/2 (see Ref. [19] pp. 26

and 220). Corresponding generalization can be done
also in the microscopic approach: it is enough to en-
rich the propagator and Cooperons (or directly the fi-
nal Eq. (26)) by the account of the transversal motion:
ωc

(
m+ 1

2

)
→ ωc

(
m+ 1

2

)
+ J

2 (1− cos qzs) and perform
the additional integration over the transversal momen-
tum. In order to avoid the cumbersome expressions, let
us show explicitly how it works only for the regular DOS
contribution (16):

WDOS(LD,reg)(t, h) =
AN(0)

8π2ξ2
h

∫ π/s

−π/s

dqz
2π

M∑
m=0

∞∑
k=0

ψ′′
[

1+|k|
2 + 2h

t
(2m+1)
π2 + 4r

π2t sin2 qzs
2

]
ln t+ ψ

[
1+|k|

2 + 2h
t

(2m+1)
π2 + 4r

π2t sin2 qzs
2

]
− ψ

(
1
2

) . (31)

One can see that the averaging in Eq. (31) over the
transversal modes effectively reduces it to the same
Eq. (16) with addition of some positive constant λr/t
in the arguments of all polygamma functions. Hence, in
order to satisfy the same conditions for T ∗ (r = 0) but at
some temperature T ∗ (r > 0), one should have

hc2 (t∗2D)

t∗2D

=
hc2 (t∗r)

t∗r
+ π2λ

r

t∗r
.

This means that hc2 (t∗2D) /t∗2D > hc2 (t∗r) /t
∗
r , or, taking

into account the monotonous increase of the second criti-
cal field with the decrease of temperature, one makes sure
that t∗r > t∗2D, i.e. the temperature T ∗ should grow with
the increase of r. This qualitative speculation is confirmed
by the numerical study of correspondingly generalized
Eq. (26) (see Fig. 7), where the asymptotic crossover
temperature is increased to t∗0,3D ≈ 0.75.

VII. DISCUSSION

Here we discuss the physical aspect of the results ob-
tained and consequences for the general understanding
of the fluctuation picture. As already explained above,
it is the MT process of the self-electron pairing at the
self-intersecting trajectories that is responsible for the
growth of W (T,H). Its contribution to the NMR relax-
ation rate is proportional to the superconducting inter-
action strength g (T,H) and to the total probability for
the formation of such trajectories (see Ref. [19]):

WMT
2D (T,H) ∼ g(T,H)

∫ min{`φ,LH}/vF

ξFCP(T,H)/vF

λF vF dt

Dt
.

Here LH =
√
c/2eH is the FCP magnetic length, while

ξFCP(T,H) is its effective size. Close to Tc0 and in weak
fields, where the long wave-length Ginzburg-Landau fluc-
tuation picture takes place ξFCP(T,H) = ξGL = ξxy/

√
ε.

In the opposite case of quantum fluctuations at zero
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FIG. 6. (Color online) Total correction (a) in the 2D case for γφ = 0.003 calculated parallel to, but at different distances from
the line hc2(t) in the fluctuation regime. Different colors correspond to different separations defined by the scaling parameter
a from hc2(t) given in the legend, see the (b) panel. (c) t∗(γφ) shows a linear dependence for all experimentally relevant
values of γφ. For fixed temperatures below t∗ the relaxation rate W fl is monotonically increasing with field, while for larger
temperatures the relaxation rate is non-monotonic and grows strongly when approaching hc2 from above. The asymptotic value
is t∗0 = t∗(γφ = 0) = 0.59.
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FIG. 7. (Color online) Quasi-2D result for different r values
very close to hc2(t) with a = 1.01 (see Fig. 6) for γφ = 0.003.

temperature and in the vicinity of Hc2(0), the size
of FCP clusters, including many pairs, is of the or-

der of ξxy/
√
h̃, but the length corresponding to one of

them is ξFCP(0, H) ∼ ξxy (see Refs. [4] and [21]). At
some intermediate region of temperatures along the line
Hc2(T ) to low temperatures the increasing magnetic field
“breaks” GL waves and the vortex description becomes
more adequate. The obtained crossover temperature
T ∗ allows us to define where it happens: namely for
ξFCP [T ∗, H(T ∗)] ∼ LH =

√
c/2eH(T ∗), where the MT

mechanism of NMR relaxation becomes irrelevant when
going to lower temperatures (see Figs. 4 and 6). The
crossover temperature depends on the pair-breaking pa-
rameter γφ and becomes minimal in the limit γφ → 0
with a value t∗0 ≈ 0.6 which can be clearly seen in Figs. 4
and 5.

Now let us return to discussion of the experiments of
Ref. [5 and 20], which partially motivated this work. The

authors observed a well pronounced peak of W (T,H)
versus magnetic field in the low temperature part (t =
0.12; 0.25) when crossing the line Hc2(T ) and attributed
it to the possible manifestation of the quantum fluc-
tuations. Unfortunately, our analysis of all fluctuation
contributions definitely excludes this hypothesis: below
t∗0 ≈ 0.6 fluctuations can only open the spin gap in the
NMR relaxation rate, but they cannot lead to its growth.
The observed decay above Hc2(T ) is therefore not related
to quantum fluctuations.
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Appendix A: Numerical evaluation of the NMR
relaxation rate

In order to utilize the complete expression for the NMR
relaxation rate W fl to analyze experimental data we need
an efficient and accurate method to evaluate Eq. (26) nu-
merically. Here we describe the method used throughout
this work. The integral contributions (z-integrations) can
be straight-forwardly evaluated using a suitable quadra-
ture scheme. Here we use the Gauss-Legendre 5-point
method, which also allows integration of integrable poles
or principle values. Due to the presence of the sinh−2(πz)
term in the integrand we can restrict the support to
z ∈ [−5, 5]. Outside this interval the integrand is smaller
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than the numerical accuracy (of double precision floating
point numbers). This sum over Landau-levels is calcu-
lated up to M = (tTc0τ)−1 explicitly.

In contrast, the summation over k in the MT contri-
bution to Eq. (26) is more involved and only slowly con-
verging. For the numerical summation of the k-sum we
separate the k = 0 term and sum from k = 1 to kmax

(twice, due to symmetry) which is determined by the ar-
guments of the ψ(n) functions being equal to Ω = 1000.
For k ≥ kmax we transform the sum into an integral and
use only the asymptotic expressions for the polygamma
functions as the difference to the exact expression is again
below the floating point accuracy. Then the integration
variable is inverted and we have a finite integral for the
remaining part of the sum.

Therefore we concentrate on

SMT
m ≡

∞∑
k=−∞

E ′′m (t, h, |k|)
Em (t, h, |k|)

and write

SMT
m =

[
kmax−1∑
k=0

(2− δ0,k) + 2

∫ ∞
kmax

dk

]
E ′′m (t, h, |k|)
Em (t, h, |k|)

≡ SMT(s)
m + SMT(i)

m

with

kmax = max

{
2Ω−

⌊
4h

π2t
(2m+ 1)

⌋
, 1

}
.

The sum part S
MT(s)
m is calculated straightforwardly,

which leaves the calculation of the “rest-integral” S
MT(i)
m :

SMT(i)
m =

1

2

∞∫
kmax

dk
ψ′′
(

1+k
2 + xm

)
ln t− ψ

(
1
2

)
+ ψ

(
1+k

2 + xm
)

$−1

2

∞∫
kmax

dk

(
1+k

2 + xm
)−2

ln t− ψ
(

1
2

)
− ln(2) + ln (1 + k + 2xm)

with xm ≡ 2h
t

(2m+1)
π2 .

A convenient substitution is

1

z
=

8

π2
+

(1 + k)t

h (m+ 1/2)
=

8

π2xm

[
xm +

1 + k

2

]
,

dz

z2
= − t

h (m+ 1/2)
dk = − 4

π2

dk

xm
,

zmax =
π2

4

(
2 +

1 + kmax

xm

)−1

.

Therefore,

SMT(i)
m =

π2

8

0∫
zmax

dz

z2

xm

(
8z

π2xm

)2

ln (tπ2xm/4)− ψ
(

1
2

)
− ln(2)− ln(z)

= − 8

π2xm

zmax∫
0

dz
1

Am − ln z

= − 2t

h (m+ 1/2)

zmax∫
0

dz
1

Am − ln z

with Am ≡ ln [h (m+ 1/2)]− ψ
(

1
2

)
− ln(2).

This integral is integrable and calculated by the Gauss-
Legendre 5-point method (with avoids the singular point
at z = 0) with only a few support points in the small
interval 0 to zmax using 125 support points.

Overall this yields a highly accurate numerical value
of the k-sums.

In the quasi-two-dimensional case the additional finite
q-integral is calculated by the Gauss-Legendre 5-point
method using 25 support points, which is sufficient to
obtain high accuracy.
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