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Abstract

The transfer or exchange of multipartite quantum states is critical to the realization of large-scale

quantum information processing and quantum communication. In this work, we demonstrate that

by using a single quantum two-level system - qubit - as a coupler arbitrary multipartite quantum

states (either entangled or separable) can be transferred or exchanged simultaneously between two

sets of qubits. During the entire process the coupler remains unexcited minimizing the effect of

coupler decoherence on the process. This feature allows one to use qubits with rapid frequency

tunability and large range of frequency tuning, such as phase qubits, as couplers. Our findings

offer the potential to significantly reduce the resources needed to construct and operate large-

scale quantum information networks consisting of many multi-qubit registers, memory cells, and

processing units.

PACS numbers: 03.67.Bg, 42.50.Dv, 85.25.Cp, 76.30.Mi
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I. INTRODUCTION

Entanglement arises from nonclassical correlation between the constituents of multipar-

tite quantum systems. It is one of the most profound and difficult to understand aspects of

quantum physics. Entanglement is indispensable in quantum information science as demon-

strated by Shor’s factorization algorithm [1] and various quantum key distribution protocols

[2,3]. Recently, considerable interest has been devoted to the application of entangled states

in quantum computation [4,5], quantum cryptography [2,6], teleportation [7-9], and quantum

copying [10,11] and many previously unknown or unexpected properties of entanglement,

such as entanglement swapping [10] and entanglement sudden death [12], have been discov-

ered. Over the past decade, experimentalists have generated and verified entanglement in a

variety of physical systems, including eight photons via linear optical devices [13,14], four-

teen trapped ions [15], two atoms in cavity QED [16,17], two excitons in a single quantum

dot [18], electron spins in two proximal nitrogen-vacancy centres [19], up to three supercon-

ducting qubits coupled via a single cavity [20-24], and five superconducting qubits coupled

via capacitors [25].

Because transfer or exchange of arbitrary multipartite states (TEAMS) is of great impor-

tance to utilizing entanglement for quantum information processing (QIP) and quantum

communication, it has attracted much attention. In principle, TEAMS can be accom-

plished by expanding either entanglement-based quantum teleportation protocols or non-

teleportation protocols. For instance, many theoretical schemes [26-30] and experiments

[31-35] have investigated how to transfer or exchange quantum states between two qubits

using entanglement-based quantum teleportation protocols [7]. Among experiments, quan-

tum state transfer between two superconducting qubits has been demonstrated in circuits

consisting of multiple superconducting qubits coupled to planar resonators [36-39]. Alterna-

tively, quantum state transfer or exchange can also be realized using non-teleportation pro-

tocols. For instance, by using photons (transmitted via an optical fiber) as the information

carriers the transfer of quantum states from one atom to another has been explored [40-42].

In addition, a quantum network, with single atoms placed in fiber-connected cavities, has

been proposed and the transfer of atomic quantum states and the creation of entanglement

between two distant nodes of the network have been demonstrated experimentally [43].

Because in the work mentioned above the states being transferred or exchanged are
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single particle states, it is not granted that these protocols can be applied to multipartite

states without a substantial increase of resources (e.g., multiple EPR pairs). As quantum

networks play an increasingly important role in scalable QIP it is imperative to explore new

and efficient methods to realizing TEAMS.

In this work, we consider a generic model system consisting of 2N qubits (e.g., spin 1
2

particles) coupled to a two-level coupler C (Fig. 1). The 2N qubits are divided arbitrarily

into two sets, labelled as the set A and set B respectively, each containing N qubits. It is

also assumed that qubits in the same set may or may not have direct intra-set coupling and

that no direct coupling exists between qubits in different sets. The two-level coupler acts as

an intermediary to allow quantum information, in the form of multipartite quantum states,

flow from A to B and vice versa. We show that for N ≥ 2 by multiplexing a single two-level

coupler it is sufficient to generate coupler-mediated effective interaction between the N pairs

of qubits and that arbitrary N -partite states can be transferred or exchanged between A

and B in a single step. In addition, the coupler can also be used to mediate interactions

between qubits in the same set, allowing creation and manipulation of entanglement within

each set.

We point out that the method proposed here has several distinctive advantages: (i) Only

a two-level coupler is needed, and TEAMS can be performed simultaneously in a single step

without the use of classical rf/microwave/optical pulses during the state transfer/exchange

operation. This unique feature reduces the complexity of the circuits and operations. (ii)

The two-level coupler C can be either a true quantum two-level system (TLS), such as

an electron spin, or an effective TLS, such as the two lowest levels of a superconducting

qubit, so that the scheme can be applied to a large variety of physical quantum information

networks. (iii) During the operation the coupler stays mostly in its ground state so that

the effects of quantum channel decoherence is greatly suppressed. This property allows the

use of couplers with shorter decoherence time but has other desirable attributes such as

rapid frequency tunability, design flexibility, or good scalability. (iv) It offers the flexibility

of reconfiguring interactions between pairs of qubits, either intra-set or inter-set, in situ

to perform various QIP tasks without changing hardware wirings. (v) By connecting the

qubits to multiple coupler qubits, the structure can be expanded readily into one- and two-

dimensional quantum networks - a promising architecture for scalable QIP [44].

This paper is arranged as follows. In Sec. II, we derive the interaction Hamiltonian that
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FIG. 1: (Color online) Two sets of qubits coupled by a two-level coupler C. Here, the large circle

at the center represents the two-level coupler C, the smaller circles on the left (right) indicate the

N qubits a1, a2, ..., aN (b1, b2, ..., bN ) in the register A (B) connected to the coupler C by lines with

the same color form an interacting qubit pair. In (a), the N pairs of qubits are (a1, b1), (a2, b2),...,

and (aN , bN ); while in (b) the N pairs of qubits are randomly chosen as, e.g., (a1, b2), (a2, bN ),...,

and (aN , b1). For (a) and (b), arbitrary N -partite states can be transferred or exchanged between

A and B. In addition, various entangled states of qubits in A and B can be generated by the same

coupler mediated qubit-qubit interaction.

governs the system dynamics of the 2N qubits plus one two-level coupler. It is evident

from the Hamiltonian that N pairs of in situ programmable qubit-qubit superexchange

interaction can occur in parallel without interference to each other allowing the possibility

of realizing TEAMS in a single step (e.g., by making all coupler-mediated effective pair

interactions the same strength). In Sec. III, as an example, we describe in detail how to

perform N -partite state exchange (swap) and transfer using this generic configuration. In

Sec. IV, we propose a circuit QED-based implementation of the scheme. With realistic

device and circuit parameters, numerical simulations show that the fidelity can reach 99.1%

for Bell-state transfer and no less than 96.3% for Bell-state swap. In Sec. V, we summarize

the key result and its impact on the future development of quantum information science.

II. HAMILTONIAN

Without the loss of generality we consider two sets of otherwise noninteracting qubits

connected to a two-level coupler C, hereafter referred to as coupler C for simplicity, as

illustrated in Fig. 1(a). The first set contains N qubits {a1, a2, ...aj , ...aN} while the second
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set contains the remaining N qubits {b1, b2, ..., bk, ...bN}. The two logic states of qubit aj (bk)

are labelled as |0〉aj(bk) and |1〉aj(bk) and that of the coupler C are denoted as |g〉c and |e〉c ,

respectively. As will be shown, either an bosonic mode or an atom can act as qubit aj (bk)

and we will focus our discussions on bosonic qubits. In this case the state flipping operators

for qubit aj correspond to the bosonic annihilation and creation operators âj and â
+
j , which

satisfy âj |0〉aj = 0, âj |1〉aj = |0〉aj , and â
+
j |0〉aj = |1〉aj . Analogously, the bosonic operators

b̂k and b̂+k is equivalent to the state flipping operators for qubit bk. We define the raising and

lowering operators σ = |g〉c 〈e| and σ
+ = |e〉c 〈g| for the coupler C. The discussion below is

based on Fig. 1(a). However, it should be mentioned that the results can directly apply to

Fig. 1(b) to accomplish the same tasks, by mapping the large detuning conditions, required

for the qubit pairs (a1, b1), (a2, b2),..., and (aN , bN), to the qubit pairs (a1, b2), (a2, bN),...,

and (aN , b1) in Fig. 1(b), respectively.

In general, qubits aj and bk can be tuned to have the same detuning with respect to

the coupler’s transition frequency ωc. However, for the sake of simplicity, we set j = k in

the following discussion. Suppose qubit aj (bj) is coupled to the coupler C, with coupling

strength gj (µj) and detuning ∆j . In the interaction picture, the Hamiltonian of the whole

system is given by

HI =
N∑

j=1

(
gje

i∆jtâjσ
+ + µje

i∆jtb̂jσ
+ +H.c.

)
, (1)

where ∆j = ωc − ωaj = ωc − ωbj (Fig. 2) and ωaj (ωbj) is the frequency of qubit aj (bj).

Under the large detuning condition ∆j ≫ gj, µj, the two sets of qubits do not exchange

energy with the coupler. However, the coupler can mediate N independent pair-wise su-

perexchange interactions between the two sets of 2N qubits. Qubit aj is only coupled to

qubit bj when the detunings satisfy the following conditions

|∆j −∆k|

∆−1
j +∆−1

k

>> gjgk, gjµk, µjµk; j 6= k. (2)

Then we obtain the effective Hamiltonian Heff = H0 +Hint, with

H0 =

N∑

j=1

(
g2j
∆j

âj â
†
j +

µ2
j

∆j
b̂j b̂

†
j

)
|e〉 〈e|

−
N∑

j=1

(
g2j
∆j

â†j âj +
µ2
j

∆j
b̂†j b̂j

)
|g〉 〈g| , (3)
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FIG. 2: (Color online) Illustration of qubit-coupler dispersive interaction. The two horizontal

solid lines represent the two energy levels of the coupler C. The bottom dashed line represents the

common ground energy level of the 2N qubits, while the top dashed lines in different colors represent

the higher energy levels of the 2N qubits, respectively. A vertical line, linked to the bottom dashed

line and a top dashed line, represents the level spacing between the two energy levels of a qubit.

The frequency of qubit aj (bj) is labelled as ωaj (ωbj) (not shown), while the frequency of the

coupler C is denoted as ωc (not shown). Qubit aj (bj) is dispersively coupled to the coupler C with

coupling constant gj (µj) and detuning ∆j (j = 1, 2, ..., N). Here, ∆j = ωc − ωaj = ωc − ωbj.

Hint =

N∑

j=1

λj(âj b̂
†
j + â†j b̂j)(|e〉 〈e| − |g〉 〈g|), (4)

where λj = gjµj/∆j. The first (second) term in the first bracket of H0 is an ac-Stark shift

of the level |e〉 of the coupler C, induced by the interaction with qubit aj (bj); while the

first (second) term in the second bracket of H0 is an ac-Stark shift of the level |g〉 of the

two-level coupler, induced by the interaction with qubit aj (bj). Here and below, we have

defined |g〉 ≡ |g〉c and |e〉 ≡ |e〉c for simplicity.

To simplify discussions hereafter we set gj = µj and ωaj = ωbj = ωj which can be realized

readily by design and fabrication. Consequently, the qubits aj and bj have the same detuning

∆j . It is also understood that ωi 6= ωj and gi 6= gj for i 6= j. In this way, each pair of qubits
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has its own unique frequency and qubit-coupler interaction strength while all pairs have

the same effective coupler mediated interaction strength. In a new interaction picture with

respect to the Hamiltonian H0, we have H ′
int = eiH0tHinte

−iH0t = Hint. When the coupler C

is initially in the ground state |g〉, it will remain in this state throughout the interaction as

the Hamiltonian Hint cannot induce any transition for the coupler. In this case, based on

Eq. (4) and H ′
int = Hint, the Hamiltonian H ′

int is reduced to

He = −
N∑

j=1

λj(âj b̂
†
j + â†j b̂j), (5)

which is the effective Hamiltonian governing the dynamics of the two sets of qubits.

The two sets of qubits can be any type of qubits such as bosonic qubits or atomic qubits

(e.g., artificial atoms or natural atoms). In principle, we can employ this effective Hamil-

tonian to implement several fundamental quantum operations on two sets of qubits, such

as entanglement swap, multi-qubit logic gates, and creation of quantum entanglement in or

between two sets of qubits. As a concrete example, in the next section we explicitly show

how to apply this Hamiltonian to implement TEAMS between two sets of bosonic qubits.

As a final note, we point out that the condition gj = µj is unnecessary. As shown in

Appendix I, for the case of gj 6= µj, the effective Hamiltonian (5) can be obtained by setting

the detuning of the qubit aj slightly different from that of qubit bj (j = 1, 2, ..., N).

III. QUANTUM STATE SWAPPING AND TRANSFER

Let us go back to Fig. 1(a), where any initially unentangled state of the first set of

N bosonic qubits (a1, a2, ..., aN) and the second set of N bosonic qubits (b1, b2, ..., bN) can

be described by the joint state |ψA (0)〉 ⊗ |ψB (0)〉 . Here, the first (second) part of the

product is the initial state of the first (second) set of N qubits, taking a general form of

|ψA (0)〉 =
∑1

nj=0 c{nj}
∏N

j=1 |nj〉aj (|ψB (0)〉 =
∑1

mk=0 d{mk}
∏N

k=1 |mk〉bk). The subscript aj

(bk) represents qubit aj (bk), c{nj} is the coefficient of the component
∏N

j=1 |nj〉aj of the

initial state for the qubits (a1, a2, ..., aN), and the same notation applies to d{mk} for the

qubits (b1, b2, ..., bN ). In terms of |1j〉aj = â†j |0〉aj and |1k〉bk = b̂†k |0〉bk , we can write down

the initial state as

|ψA (0)〉 ⊗ |ψB (0)〉

=
∑

nj=0,1

c{nj}
∑

mk=0,1

d{mk}

N∏

j=1

N∏

k=1

(
â
+nj

j b̂+mk

k |0〉a |0〉b

)
, (6)
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where |0〉a = |0〉a1 ... |0〉aN , |0〉b = |0〉b1 ... |0〉bN ,
(
â+j

)0
= 1, and

(
b̂+k

)0

= 1.

For bosonic qubits, the operators (âj , â
+
j ) and (b̂j , b̂

+
j ) obey

[
âj , â

+
j

]
=

[
b̂j , b̂

+
j

]
= 1.

The effective Hamiltonian He leads to the transformations e−iHetâ†je
iHet = cos(λjt)â

†
j +

i sin(λjt)b̂
†
j , and e−iHetb̂†je

iHet = cos(λjt)b̂
†
j + i sin(λjt)â

†
j . These transformations have the

following property: (i) by setting |λj| = λ, i.e., gjµj/ |∆j | = λ (independent of j). This

condition can be met by using frequency-tunable qubits (or resonators). In the case of

fixed frequency resonators one can design and fabricate the qubits aj and bj to have the

proper frequencies (ωaj = ωbj = ωj) and coupling strengths (gj, µj) respectively and to

set |∆j | = gjµj/λ accordingly, and (ii) for λt = π/2, we obtain e−iHetâ†je
iHet = iλj/λb̂†j and

e−iHetb̂†je
iHet = iλj/λâ†j . Accordingly, we have e−iHetâje

iHet = −iλj/λb̂j and e−iHetb̂je
iHet =

−iλj/λâj . These unitary transformations will be employed in the derivation of Eq. (7) below.

Under the Hamiltonian He, the state of the subsystem, consisting of the 2N qubits in

sets A and B, after an evolution time t = π/ (2λ) is given by

|ψAB (t)〉 = e−iHet |ψA (0)〉 ⊗ |ψB (0)〉

=
∑

nj=0,1

c{nj}
∑

mk=0,1

d{mk}

N∏

j=1

N∏

k=1[
(i)njλj/λ (i)mkλk/λ

(
b̂†j

)nj
(
â†k

)mk

|0〉a |0〉b

]

=
∑

mk=0,1

d{mk}

N∏

k=1

(i)mkλk/λ |mk〉ak

⊗
∑

nj=0,1

c{nj}

N∏

j=1

(i)njλj/λ |nj〉bj , (7)

where λj/λ = ±1 and λk/λ = ±1. Note that in the last two lines of Eq. (7), the first part

of the product represents the N -qubit state of (a1, a2, ..., aN ) while the second part is that

of (b1, b2, ..., bN).

After returning to the original interaction picture, the state of the whole system,

|ψ′
ABC (t)〉 = e−iH0t |ψAB (t)〉 |ψc (t)〉 , can be further written as |ψ′

ABC (t)〉 = |ψ′
AB (t)〉 ⊗ |g〉c .

By letting H0 act on the state |ψAB (t)〉 , we obtain a decomposition of |ψ′
AB (t)〉 =

|ψA (t)〉 ⊗ |ψB (t)〉 with

|ψA (t)〉 =
∑

mk=0,1

d{mk}

N∏

k=1

(
eiφkmkπ |mk〉ak

)
, (8)
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|ψB (t)〉 =
∑

nj=0,1

c{nj}

N∏

j=1

(
eiθjnjπ |nj〉bj

)
, (9)

where φk = (λk+g
2
k/∆k)/(2λ) and θj = (λj+µ

2
j/∆j)/(2λ). This is equivalent to the quantum

state swap operation plus single-qubit phase shifts eiφkπ (eiβjπ) on the state |1〉 of qubit ak

(bj). These additional phase shifts can be corrected by local single-qubit rotations e−iφkπâ
†
k
âk

and e−iθjπb̂
†
j b̂j . Notice that the multiplexed quantum state exchange protocol described above

becomes the state transfer protocol by initializing all qubits in the second (i.e., receiving)

set in the state |0〉. More importantly, because the states |ψA (0)〉 and |ψB (0)〉 considered

above take a general form, the protocol can be applied directly to swap or transfer any

type of multipartite entanglement, such as the GHZ state |00...0〉 + |11...1〉 , the W- state

1√
N
(|00...001〉+ |00...010〉+ ...+ |10...000〉) , the cluster state, and so on, between the two

sets of multiple qubits.

It should be mentioned that in reality a physical coupler usually has more than two levels.

However, if the coupler is a nonlinear quantum element such as a superconducting qubit,

population leakage out of the two-dimensional Hilbert space formed by |g〉 and |e〉 of the

coupler can be made negligible by choosing proper coupler parameters. In contrast, when

the coupler is a single-mode resonator [45], the probability of population leaking into higher

energy levels of the coupler could be significantly greater due to its uniform energy level

spacing. This problem becomes apparent as the number of qubits increases.

Quantum dynamics of two bosonic qubits/resonators coupled by a superconducting qubit

as a quantum switch has been studied previously in [46,47]. However, although our method

of TEAMS is based on the same type of coupler mediated dispersive interaction between

qubits described in [46,47], it is not a simple extension of the latter. The reasons for this

are as follows. First, the physical mechanism of our scheme is quite different from that of

the quantum switch proposal [46,47]. For the latter, the intercavity cross coupling between

the two resonators is an indispensable resource for quantum state transfer or exchange,

which can be made negligibly small according to the recent experiments [37,48-50] and is

not required in our scheme. Second, the methods in [46, 47] would require the use of N

couplers for N pairs of qubits/resonators. One of the advantages of our method is to utilize

the “frequency multiplexing” capability of our effective Hamiltonian to have each qubit in

one set coupled uniquely to only one of the qubits in the other set and to have all N pair-wise

interactions occur concurrently, so that one-step TEAMS between the two N -qubit sets with
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only one coupler qubit, rather than N couplers, becomes possible.

It is noted that if one chooses to perform TEAMS between two sets of resonators the

preparation of the initial state of the resonators would in general require the use of additional

qubits as well as tunable qubit-resonator couplings [51-54]. For example, this task could be

accomplished by coupling one ancilla qubit to each resonator [48,55]. However, because the

main objective of this work is to show how to perform TEAMS in a single step we assume

the states to be transferred or exchanged already exist. Thus, we will not discuss the details

of how to prepare the initial states of the resonators.

The two-level coupler is assumed to be a frequency-tunable (by several hundred MHz

within a few ns) superconducting qubit (a.k.a. artificial atom) [56-59]. Generally speaking,

it is highly desirable to use qubits with frequency and coupling strength (gj and µj) both

tunable to implement the proposed one-step TEAMS as the double tunability would provide

maximum operational and configurational flexibility in satisfying all required conditions,

in particular |λj| = gjµj/|∆j| = λ. In practice, however, frequency tunability is readily

available for artificial atoms and to a less extent for resonators [60,61] while tunable coupling

strength is significantly more difficult to obtain.

We emphasize that assumption of uniform effective coupling strength is unnecessary and

it is only used for the clarity of discussion above. For instance, a manufactured circuit with

fixed coupling strengths may have j-denpendent effective coupling strengths λj . In this

case, TEAMS cannot be completed by turning on/off the effective coupling for all pairs of

qubits simultaneously. Fortunately, this problem can be circumvented by relaxing the strong

condition to a weaker one: instead of requiring all λj’s to have the same magnitude they

can be different as long as the condition ωaj = ωbj = ωj 6= ωi (j 6= i) is still satisfied. The

weaker condition can be met by using frequency tunable qubits or resonators. A simple case

to consider is the effective qubit-coupler coupling strengths for all 2N qubits (resonators)

are non identical or approximately equal. Experimentally, this is the easiest to realize and

most likely to be encountered. With this setup all one needs to do is to switch on the

effective dispersive interaction between qubits aj and bj at a proper time τj = tmax − tj by

tuning their frequencies to have the proper ∆j , where tmax = max(π/2λ1, π/2λ2, ... π/2λN)

and tj = π/2λj, and switch off all the effective interactions at the time tmax by tuning

the coupler frequency ωc far off-resonance with those of all 2N qubits. In the last step

the coupler is used essentially as a N -channel switch [46,47] to simultaneously cut off the
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effective interaction between all pairs of qubits.

The coupling between the resonators and the coupler qubit can be effectively turned

on (off) by adjusting the level spacings of the coupler qubit [48,50]. When the coupler

qubit frequency is highly detuned from the resonator frequencies the couplings are effectively

switched off, and when the coupler qubit frequency is detuned from the resonator frequencies

by a suitable amount they are dispersively coupled as the case discussed above. For a

superconducting coupler qubit, the level spacings can be readily adjusted by varying external

control parameters (e.g., magnetic flux applied to phase, transmon, Xmon, or flux qubits,

see, e.g., [56-59]).

It should be pointed out that for fixed-frequency qubits and resonators using a common

capacitor as a coupler could not accomplish the task because the capacitor mediated inter-

action between qubits that have the same frequency cannot be turned off. For the sake of

concreteness, let us consider the case of four (2N = 4) fixed-frequency resonators with pa-

rameters listed in Table 1, connected to a common coupler with the same coupling constant

g. It is obvious that in this case transferring or exchanging quantum states (e.g., Bell states)

between two pairs of resonators could not be accomplished if the coupler was a capacitor.

In stark contrast, using a qubit as the coupler the coupler mediated dispersive interaction

between all qubit pairs can be easily switched on (off) by tuning the frequency of the coupler

qubit to 6 GHz (|ωc − ωi=1,2| > 1 GHz ≫ g).

IV. EXPERIMENTAL IMPLEMENTATION

In practice, the proposed scheme can be implemented using either the artificial atoms

(e.g., superconducting qubits) or resonators [e.g., superconducting coplanar waveguide

(CPW) resonators] as the physical objects to demonstrate the proposed one-step TEAMS

protocol. The artificial atoms have the advantage of tunable frequency, better separation

between the computational states and the non-computational ones because they are nonlin-

ear oscillators, and the ease of initial state preparation. On the other hand, high-Q CPW

resonator is comparatively easier to design and fabricate. For example, CPW resonators

with quality factor on the order of 106 (i.e., about 30 µs of the lifetime of photons for a

6 GHz resonator) have been demonstrated with a single layer of sputtered superconduct-

ing films [62-64]. In addition, frequency tunable resonators have also been demonstrated

recently [60,61].
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FIG. 3: (Color online) Setup for four resonators a1, a2, b1, b2 coupled by a superconducting Xmon

coupler (i.e., the circle C). Each resonator here is a one-dimensional coplanar waveguide resonator.

The superconducting Xmon qubit is capacitively coupled to each resonator via a capacitance.

In the example discussed below, we choose resonators as the realization of bosonic qubits

for the following reasons: (1) Systems of superconducting resonators and qubits have been

considered one of the most promising candidates for quantum information processing [65-

68] and there is a growing interest in quantum information processing based on microwave

photon qubits. Within circuit QED, several theoretical proposals have been put forward for

utilizing microwave photons stored in two superconducting CPW resonators as qubits/qudits

for quantum gates [69-72]. (2) Microwave photons have been considered as candidates for

quantum memories [61,73-75]. When performing quantum information processing, TEAMS

between different multi-qubit memory banks would become a ubiquitous task. (3) Because

it is in general more difficult to tune the frequency of the resonators than artificial atoms

and linear resonators are a poor realization of qubits, if our scheme can be demonstrated

to work well with fixed frequency and coupling strength resonators it would work better

and/or easier to implement with frequency tunable artificial atoms or resonators. Namely,

we choose a more difficult case to study.

Let us now consider four fixed-frequency superconducting coplanar waveguide (CPW)

resonators, capacitively coupled to a superconducting Xmon coupler [76] as illustrated in

Fig. 3. We emphasize again that using frequency tunable resonators [60,61] or artificial atoms

12



would make the implementation considerably easier. For simplicity, we use (a1, a2, b1, b2) to

denote the four resonators. For the setup here, aj (bj) is a bosonic mode of the resonator

aj (bj), and the two logic states of the qubit aj (bj) are represented by the vacuum state

and the single-photon state of the bosonic mode of resonators aj (bj) (j = 1, 2). In the

following, we first present a general discussion on the fidelity of the operation. To quantify

operation fidelity of the proposed protocol, we then numerically calculate the fidelity for

transferring and exchanging each of the four Bell states |ψ±〉 = 1√
2
(|01〉 ± |10〉) and |φ±〉 =

1√
2
(|00〉 ± |11〉) between the two pairs of qubits (i.e., the case of N = 2).

In the above discussions, we have considered each qubit as a two-level bosonic mode

and defined the operators âj , b̂j, â
+
j , and b̂

+
j using the two energy eigenstates |0〉 and |1〉 as

the computational basis states. It is noted that during the operation, more than a single

photon could reside in each resonator when the large detuning conditions (2) are not well

satisfied. For this reason, we treat the above-defined operators âj , b̂j , â
+
j ,and b̂

+
j as the usual

photon annihilation and creation operators introduced in quantum optics. Note that after

this replacement, the Hamiltonian HI in the interaction picture, describing the interaction

of the four resonators with the Xmon coupler, takes the same form as that given in Eq. (1)

with N = 2. By doing this, the effects of excited states of the resonators are taken into

account.

When the dissipation and dephasing are included, the dynamics of the open system is

determined by the following master equation

dρ

dt
= −i [HI , ρ] +

2∑

j=1

κajL [âj] +
2∑

j=1

κbjL
[
b̂j

]

+γL [σ] + γϕ (σzρσz − ρ) , (10)

where HI is the interaction Hamiltonian given in Eq. (1), σz = |e〉 〈e| − |g〉 〈g| , and L [Λ] =

ΛρΛ+ − Λ+Λρ/2 − ρΛ+Λ/2 (with Λ = âj , b̂j , σ). In addition, κaj (κbj ) is the decay rate of

the resonator mode aj (bj); γ is the energy relaxation rate for the level |e〉; and γϕ is the

dephasing rate of the level |e〉 of the coupler.

The numerical simulation is carried out by solving the master equation (10) which de-

scribes the dynamics of four resonators coupled to a superconducting Xmon. As shown in

13



TABLE I: (Color online) Parameters for a system of 4 resonators coupled by a Xmon qubit. The

values of ωaj , ωbj , Qaj , and Qbj (j = 1, 2) are estimated for α = 8.1 (both Bell-state transfer and

exchange), ωc/2π = 6.0 GHz, and g/2π = 40 MHz. Here, Qaj = ωajκ
−1
aj and Qbj = ωbjκ

−1
bj

. Notice

that T1 and T2 can be made to be on the order of 20 − 60 µs for state-of-the-art superconducting

qubits [49,77-80]. Superconducting CPW (coplanar waveguide) resonators with a quality factor

Q ∼ 106 have been experimentally demonstrated [61-63]. In addition, the coupling strength g/2π ∼

360 MHz has been reported for a superconducting qubit coupled to a one-dimensional standing-

wave CPW resonator [81]

Symbol Bell-state transfer Bell-state exchange

Resonator photon lifetime κ−1
a1 , κ

−1
b1
, κ−1

a2 , κ
−1
b2

5 µs 5 µs

Coupler energy relaxation time T1 = γ−1 15 µs 15 µs

Coupler dephasing time T2 = γ−1
ϕ 10 µs 10 µs

Coupling strength g 2π × 40 MHz 2π × 40 MHz

Coupler frequency at working point ωc/2π 6.0 GHz 6.0 GHz

Resonator frequecy, pair I ωa1/2π, ωb1/2π 5.676 GHz 5.676 GHz

Resonator frequecy, pair II ωa2/2π, ωb2/2π 6.324 GHz 6.324 GHz

Resonator quality factor, pair I Qa1 , Qb1 1.78 × 105 1.78 × 105

Resonator quality factor, pair II Qa2 , Qb2 1.98 × 105 1.98 × 105

Table I [49,62-64,76-80], the simulation takes the effects of dissipation and dephasing on

the fidelity into account. Specifically, we selected a conservative set of resonator and Xmon

parameters in the numerical simulation to demonstrate experimental feasibility. In addition,

assuming all coupling constants are equal g1 = µ1 = g2 = µ2 ≡ g = 2π×40 MHz (again this

is an undesirable situation). The fidelity of the operations is given by F =
√
〈ψid| ρ̃ |ψid〉

[81], where |ψid〉 = |ψA (t)〉 |ψB (t)〉 |g〉c , with |ψA (t)〉 given in Eq. (8) and |ψB (t)〉 in Eq. (9),

is the output state for an ideal system (i.e., without dissipation, dephasing and leakage to

high excited states) after completing the operations and ρ̃ is the final density operator of

the system.

In the numerical simulation, we set ∆ ≡ ∆1 = −∆2. The simulated fidelity as a function

of the dimensionless detuning α ≡ ∆/g in the range of 6 ≤ α ≤ 10 for Bell-state transfer

and exchange are shown in Figs. 4 and 5, respectively. For α ≡ ∆/g ∼ 8.1, the fidelity
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FIG. 4: (Color online) Fidelity versus α for the Bell-state transfer. (a) corresponds to transferring

the Bell state |ψ+〉. (b) corresponds to transferring the Bell state |ψ−〉. (c) is for transferring the

other two Bell states |φ±〉. Numerical simulation shows that the fidelity for transferring both Bell

states |φ±〉 is the same.

of transferring the four Bell states |ψ±〉 and |φ±〉 from the resonators (a1, a2) to (b1, b2)

or vice versa is equal to or better than 96.2%, while for exchanging |ψ+〉 with |ψ−〉 , |φ+〉

with |φ−〉 , |φ±〉 with |ψ+〉, and |φ±〉 with |ψ−〉 the fidelity is 94.3%, 93.3%, 94.9%, and

91.8%, respectively. Furthermore, the high fidelity is hardly affected by weak residual inter-

resonator crosstalk as often the case in experimental situations (see Appendix II). However,

it should be pointed out that the value of the detuning parameter α at which the high fidelity

is achieved depends on other parameters, such as the photon decay rate, of the resonators

and thus is not universal. In experiments, α needs to be fine tuned to obtain a high fidelity.

Finally, note that the operational time depends on the value of α. For the optimal point

α ∼ 8.1, the operational time for the Bell state transfer or exchange is estimated to be

∼ 0.05 µs, which is much shorter than decoherence times of the resonators and the coupler

used in our numerical simulation.

As discussed previously, one of the advantages of the single-step TEAMS method pro-

posed here is that the coupler remains separable from the qubits and it stays mostly in

the ground state so that the effects of coupler’s decoherence on the fidelity of TEAMS is

significantly reduced. To confirm this property numerical simulations were performed and

the result confirms that for Bell-state transfer (exchange) the population of the coupler’s

excited state |e〉 (averaged over the entire operation time) is 0.014 ≤ P e ≤ 0.040 (0.008 ≤
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FIG. 5: (Color online) Fidelity versus α for the Bell-state exchange. (a) corresponds to exchanging

|ψ+〉 with |ψ−〉. (b) corresponds to exchanging |φ+〉 with |φ−〉. (c) corresponds to exchanging |φ±〉

with |ψ+〉. (d) is for exchanging |φ±〉 with |ψ−〉.

P e ≤ 0.012) for the operations described above.

As the above example and parameters listed in Table 1 show, our scheme does not require

the use of tunable resonator-coupler coupling strength and/or tunable frequency resonators.

Furthermore, gj = µj is not a necessary condition and it is chosen only to simplify discus-

sions. The strong condition that needs to be satisfied for simultaneous TEAMS is the effec-

tive pair-wise coupling strength λj = gjµj/∆j should have the same value for all j = 1, 2, ..N

qubit pairs. Therefore, our scheme does not require, though it would be more convenient, to

have tunable resonator-qubit coupling strength gj and µj. For example, it is straightforward

to design and to fabricate pairs of resonators aj and bj to have j-dependent frequency ωj

and coupling strength gj such that |λj| = g2j/|∆j| = λ. When the resonator frequencies can

be individually tuned, the scheme also works for non-identical effective coupling strengths.

In this case the TEAMS can be completed by switching on the effective dispersive interac-

tion of each pair at a different time commensurate with its effective coupling strength and

switching off the coupler mediated effective interactions of all pairs at the same time

The advantage of utilizing positive as well as negative detunings is worth to discuss.

Because our scheme essentially explores the frequency multiplexing property of the effective
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Hamiltonian (5) it will encounter the “frequency crowding” problem. Because the system

dynamics does not depend on the signs of detunings according to Eqs. (6-9), utilizing the

positive as well as the negative detunings would double the maximum number of qubits that

can be accommodated by a given circuit. This advantage is most clearly demonstrated by

the example presented above: when all four resonators have the same coupling strength to

the coupler the only way to satisfy λ1 = |λ2| = λ is to have ∆1 = −∆2.

We would like to point out that although the proposed scheme of TEAMS can be im-

plemented for a small number of qubits or resonators with fixed frequency and/or coupling

strength, it is in general desirable and even necessary to have the frequency tunability for a

moderate number of qubits or resonators. This is especially true if one wants to realize the

reconfigurable network as that of illustrated in Fig. 1. Note that tunable frequency artificial

atoms are readily available and tunable superconducting resonators have been demonstrated

by incorporating nonlinear elements, such as a small dc SQUID, into the design [60,61].

V. CONCLUSION

We have shown that simultaneously transferring or swapping arbitrary multipartite quan-

tum states between two sets of otherwise noninteracting qubits each having a 2N -dimensional

Hilbert space can be achieved using a single two-level coupler. This result means that ar-

bitrary N -qubit states that span a 2N -dimensional Hilbert space can be transferred or ex-

changed between two N -qubit registers in a single step via a coupler whose Hilbert space

is 2-dimensional only. In addition, during the entire process the coupler remains separa-

ble from the qubits and stays mostly in the ground state throughout the entire process

thus suppressing the undesirable effects of coupler decoherence. The method presented here

for simultaneously transferring or swapping arbitrary N -partite states in a single step is

of great interest and fundamental importance in quantum information science. If realized

experimentally, it would be a big step forward in the direction of building scalable quantum

information processing networks because in principle the operation time required is inde-

pendent of the number of qubits involved. In addition, as a concrete example we show that

transferring (exchanging) the Bell states between two pairs of resonators (bosonic qubits)

interacting via a superconducting Xmon coupler can achieve fidelity as high as 96.2% (no

less than 91.8%) with conservative device and circuit parameters. Because the constituents

of the two registers can be reassigned in situ through the reconfigurable coupler-mediated
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pair interaction described by Eq. (4) and illustrated in Fig. 1(b), the proposed scheme can

greatly reduce the complexity of the circuit and can serve as one of the fundamental building

block for the development of more sophisticated quantum network architectures in the fu-

ture. Finally, the result presented here is general and thus in principle can be applied to any

type of physical qubits such as electronic and nuclear spins, photons, atoms, and artificial

atoms.

Note added - After completing this work, we noticed a work published recently by E.

A. Sete et al. [82] on transferring a quantum state between two resonators connected by a

superconducting transmission line.
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APPENDIX I

Suppose that qubit aj (bj) is coupled to the coupler C, with coupling strength gj (µj)

and detuning ∆aj (∆bj ). In the interaction picture, the Hamiltonian of the whole system is

given by

HI =
N∑

j=1

(
gje

i∆aj
tâjσ

+ + µje
i∆bj

tb̂jσ
+ +H.c.

)
, (11)

where ∆aj = ωc − ωaj and ∆bj = ωc − ωbj .

Under the large detuning condition ∆aj ≫ gj and ∆bj ≫ µj, and when the detunings

satisfy the following condition
∣∣∆αj

−∆βk

∣∣
∆−1

αj
+∆−1

βk

≫ gjgk, µjµk, gjµk; j 6= k (12)
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(where αj ∈ {aj , bj} and βk ∈ {ak, bk}), we can obtain the effective Hamiltonian Heff =

H0 +Hint, with

H0 =

N∑

j=1

(
g2j
∆aj

âj â
†
j +

µ2
j

∆bj

b̂j b̂
†
j

)
|e〉 〈e|

−

N∑

j=1

(
g2j
∆aj

â†j âj +
µ2
j

∆bj

b̂†j b̂j

)
|g〉 〈g| , (13)

Hint =

N∑

j=1

λj

[
ei(∆aj

−∆bj
)tâj b̂

†
j +H.c.

]
(|e〉 〈e| − |g〉 〈g|), (14)

where λj =
gjµj

2
(∆−1

aj
+∆−1

bj
). When the coupler C is initially in the ground state |g〉, it will

remain in this state as the Hamiltonians H0 and Hint cannot induce any transition for the

coupler. In this case, the Hamiltonians H0 and Hint reduce to

H0 = −
N∑

j=1

(
g2j
∆aj

â†j âj +
µ2
j

∆bj

b̂†j b̂j

)
|g〉 〈g| , (15)

Hint = −
N∑

j=1

λj

[
ei(∆aj

−∆bj
)tâj b̂

†
j +H.c.

]
|g〉 〈g| , (16)

In a new interaction picture with respect to the Hamiltonian H0, we obtain

H ′
int = eiH0tHinte

−iH0t

= −

N∑

j=1

λj

[
ei(g

2

j /∆aj
−µ2

j/∆bj
)tei(∆aj

−∆bj
)tâj b̂

†
j +H.c.

]
|g〉 〈g| . (17)

For the setting

g2j/∆aj − µ2
j/∆bj = −(∆aj −∆bj ), (18)

the Hamiltonian (17) becomes

H ′
int = −

N∑

j=1

λj(âj b̂
†
j + â†j b̂j) |g〉 〈g| , (19)

which is exactly the one given in Eq. (5) after dropping the atomic operator |g〉 〈g|.

Note that condition (18) can be achieved by setting

∆bj =
∆2

aj
+ g2j +

√
(∆2

aj
+ g2j )

2 − 4∆2
aj
µ2
j

2∆aj

. (20)
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For gj = µj , we have ∆bj = ∆aj , i.e., the case that we discussed previously. In contrast, for

gj 6= µj , we have ∆bj 6= ∆aj from Eq. (20). This result implies that if the coupling gj is not

equivalent to µj, one can still obtain the time-independent effective Hamiltonian (5) or (19)

by setting the detuning ∆bj slightly different from ∆aj .

APPENDIX II

When the inter-cavity crosstalk between resonators are considered, the Hamiltonian (1)

is modified as follows

H ′
I =

2∑

j=1

(
gje

i∆jtâjσ
+ + µje

i∆jtb̂jσ
+ +H.c.

)

+
(
ga1a2e

iδta1a
†
2 + ga1b2e

iδta1b
†
2 +H.c.

)

+
(
ga2b1e

−iδta2b
†
1 + gb2b1e

−iδtb2b
†
1 +H.c.

)

+
(
ga1b1a1b

†
1 + ga2b2a2b

†
2 +H.c.

)
, (21)

where the terms in the last three lines represent the inter-cavity crosstalk between any

two resonators, with the coupling constants (ga1a2 , ga1b2 , ga2b1 , gb2b1 , ga1b1 , ga2b2) and detuning

δ = ωa2 − ωa1 = ωb2 − ωa1 = ωa2 − ωb1 = ωb2 − ωb1 of the two associated resonators, due to

ωa1 = ωb1 and ωa2 = ωb2 .

The numerical simulation is performed by solving the master equation (10), with the

Hamiltonian HI there replaced by H ′
I. For simplicity, we set ga1a2 = ga1b2 = ga2b1 = gb2b1 =

ga1b1 = ga2b2 ≡ 0.01g (a conservative consideration for weak direct inter-resonator crosstalks).

In our numerical simulation, the detuning setting ∆1 = −∆2 = ∆, the coupler-resonator

coupling constants g1 = µ1 = g2 = µ2 = g = 2π × 40 MHz, the resonator photon lifetime,

and the decoherence time of the coupler are the same as those used for Figs. (4) and (5) of

the main text. The operational fidelity as a function of the dimensionless detuning α ≡ ∆/g

in the range of 6 ≤ α ≤ 10 for Bell state transfer and exchange are plotted in Figs. 6 and 7,

respectively. Compared Fig. 6 (7) with Fig. 4 (5) of the main tex, it can be seen that the

high fidelity is hardly affected by weak direct inter-resonator crosstalks for both Bell state
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FIG. 6: (Color online) Fidelity versus α for the Bell-state transfer. (a), (b), and (c) correspond

to transferring the Bell states |ψ+〉 , |ψ−〉, and |φ±〉, respectively. Here, the red curves are plotted

without considering the inter-resonator crosstalks, while the blue ones take the weak inter-resonator

crosstalks into account.
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FIG. 7: (Color online) Fidelity versus α for the Bell-state exchange. (a), (b), (c), and (d) corre-

spond to exchanging the Bell states, i.e, |ψ+〉 with |ψ−〉 , |φ+〉 with |φ−〉 , |φ±〉 with |ψ+〉, and |φ±〉

with |ψ−〉, respectively. Here, the red curves are plotted without considering the inter-resonator

crosstalks, while the blue ones are plotted by taking the weak inter-resonator crosstalks into ac-

count.
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transfer and exchange.
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