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Phenomenological theory of the superconducting state inside the hidden-order phase

of URu2Si2

Jian Kang and Rafael M. Fernandes
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

Recent experiments have unveiled important properties of the ground state of the elusive heavy
fermion URu2Si2. While tetragonal symmetry-breaking was reported below the hidden-order (HO)
transition at THO ≈ 17.5 K, time-reversal symmetry-breaking was observed below the superconduct-
ing transition temperature Tc < THO. Although the latter results have been used to argue in favor
of a chiral d+id superconducting state, such an order parameter is incompatible with broken tetrag-
onal symmetry. Here, we employ a phenomenological model to investigate the properties of a chiral
superconducting state that develops inside the hidden-order phase. In this case, there are actually
two superconducting transition temperatures: while Tc marks a normal-state to superconducting
transition, T ∗

c < Tc signals a superconducting-to-superconducting transition in which time-reversal
symmetry is broken. In the phase T ∗

c < T < Tc, the low-energy density of states ρ (ω) is enhanced
due to the crossing of two nodal lines, giving rise to an unusual ω log(ω) dependence of ρ (ω), which
is manifested in several thermodynamic properties. We also investigate the emergence of a soft
amplitude gap mode near T ∗

c . In contrast to the usual amplitude mode near a regular normal-state
to superconducting transition, this mode becomes soft near a superconducting-to-superconducting
transition, which in principle allows for its detection by Raman spectroscopy. Finally, we investigate
the impact of twin domains on the anisotropic properties of the superconducting state, and propose
experiments in mechanically strained samples to explore the interplay between hidden order and
superconductivity in URu2Si2.

I. INTRODUCTION

The nature of the ground state of the body-centered
tetragonal compound URu2Si2 remains one of the most
elusive problems in heavy fermion physics. At the
HO transition temperature THO ≈ 17.5 K, the sys-
tem displays a sharp specific heat anomaly characteris-
tic of a second-order phase transition1–3. However, de-
spite nearly thirty years of intense research, the bro-
ken symmetries of this hidden-order phase remain a
widely debated topic. On the theory front, many
different order parameters have been proposed to ex-
plain the hidden-order state, from high-rank multiple
orders4–16 to exotic states involving the hybridization
of localized and itinerant states17–33. On the experi-
mental front, recent measurements have provided im-
portant pieces for this long-standing puzzle. For in-
stance, torque magnetometry34,35, x-ray diffraction36,
and elasto-resistance measurements37 have reported a
tetragonal (C4) to orthorhombic (C2) transition simulta-
neously to THO, manifested by the inequivalence between
the

[

1 1 0
]

and
[

1 −1 0
]

directions of the crystallo-
graphic unit cell (see Fig. 1). Whether this is the only
broken symmetry in the hidden-order state – in which
case it would be classified as a nematic state – remains
an open issue38,39. For instance, quantum oscillation
measurements also suggest a translational symmetry-
breaking along the c-axis40, and neutron elastic scatter-
ing experiments favor a rank 5 multipole order in the
system41.

In comparison to the hidden-order phase, the super-
conducting state of URu2Si2 that appears at Tc ≈ 1.5K
has received rather less attention. Understanding its na-
ture is relevant not only within the bigger picture of su-

perconductivity in heavy-fermion compounds, but also
as a potential tool to probe the properties of the HO
state42,43, since superconductivity develops well below
THO and disappears when the HO phase is suppressed by
external pressure44,45. An interesting proposal based on
recent angle-resolved specific heat46 and thermal conduc-
tivity data47, which reported indirect evidence for point
and line nodes, is of a chiral d-wave superconducting (SC)
state described by the order parameter47:

∆(k) = ∆0 sin
kz
2

(

sin
kx + ky

2
± i sin

kx − ky
2

)

. (1)

Such a SC state breaks time-reversal symmetry, which
seems to be in agreement with magnetic susceptibility48

and recent Kerr effect measurements49. However, this
order parameter manifestly preserves C4 symmetry,
whereas the HO state, from which SC develops, breaks
tetragonal symmetry.
In this paper, we use a phenomenological model to

reconcile the proposal of a chiral d-wave state with the
experimental observations of a HO state that breaks C4

symmetry. While a phenomenological approach leaves
aside the issue of the microscopic mechanisms involved
in the formation of these phases, it allows for general
conclusions to be drawn regardless of one’s favorite or-
der parameter for the HO phase – as long as it accounts
for C4 symmetry breaking. As a result, it provides gen-
eral benchmarks that must be satisfied if indeed the HO
state breaks C4 symmetry and the SC state is chiral. One
obvious consequence from the fact that SC develops in a
C2 background, as pointed out in different scenarios50–52,
is that the chiral superconducting transition is actually
split into two superconducting transitions Tc and T ∗

c .



2

While at Tc the system first becomes superconducting,
at T ∗

c < Tc time-reversal symmetry (TRS) is broken, sig-
naling a SC-SC transition. Our focus in this paper is on
the thermodynamic properties of these two distinct su-
perconducting phases. We find that, while in the regime
T < T ∗

c the nodal quasi-particle density of states ρ (ω)
depends linearly on ω for low-energies, reflecting the pres-
ence of point and line nodes, in the regime T ∗

c < T < Tc

the density of states acquires an unusual log-dependence
ρ (ω) ∼ ω logω due to the crossing between two nodal
lines. Such a behavior leaves signatures in several ther-
modynamic quantities, such as the specific heat and the
penetration depth.
Furthermore, we investigate how the anisotropies of

the SC state in both regimes – namely T < T ∗

c and
T ∗

c < T < Tc – are affected by the presence of twin
domains with different C2 orientational order. By cal-
culating the angular dependence of the specific heat in
the presence of a magnetic field, we find that a twinned
sample and a sample with no C4 broken symmetry would
display nearly identical behaviors. This helps to reconcile
some of the experimental results that led to the proposal
of a chiral SC state, as in Eq. (1), with the experimen-
tal results that found tetragonal symmetry-breaking in
the HO phase. We propose experiments in mechanically
detwinned samples to unveil the intrinsic anisotropies of
the SC state.
We also find an unusual behavior for the collective SC

modes near T ∗

c . In a common normal-state to SC transi-
tion, the soft amplitude SC gap-mode falls into the con-
tinuum and is strongly damped. However, because T ∗

c

is a SC-SC transition, the corresponding soft amplitude
mode develops in the background of a superconducting
quasi-particle spectrum. Despite the presence of nodal
quasi-particles in this spectrum, which promote under-
damping of the soft amplitude mode, we argue that this
collective mode may still be observed in the excitation
spectrum, as measured by Raman scattering.
The paper is organized as follows: in Section II we

present our phenomenological model for the SC state in-
side the HO phase and discuss its nodal quasi-particle
spectrum for different temperature regimes. In Sec-
tion III we study the impact of twin domains on the
anisotropic thermodynamic properties of the SC state,
with particular emphasis on the angle-dependent specific
heat. Section IV is devoted to the investigation of the
collective modes of the SC state. Concluding remarks
follow in Section V.

II. PHENOMENOLOGICAL MODEL

A. Superconducting free energy

The SC order parameter in Eq. (1) belongs to the
Eg irreducible representation of the tetragonal point
group. Its degeneracy stems from the two-dimensionality
of the Eg representation. However, because the HO state

breaks the C4 symmetry, the SC order parameter must
be modified to reflect the new orthorhombic point group
symmetry of the system. Using as a starting point Eq.
(1), we can describe the chiral d-wave SC order parameter
inside the orthorhombic HO phase as a two-component
order parameter:

∆(k) = ∆1 sin
kz
2

sin
kx + ky

2

+eiθ∆2 sin
kz
2

sin
kx − ky

2
, (2)

where θ is the phase difference between the two com-
ponents of the order parameter, and ∆i are real order
parameters. TRS is kept intact only if θ = 0, π. The
absolute value of the gap function is then:

|∆|2 = sin2
kz
2

[

∆2
1 sin

2 kx + ky
2

+ ∆2
2 sin

2 kx − ky
2

+2∆1∆2 cos θ sin
kx + ky

2
sin

kx − ky
2

]

(3)

Thus, tetragonal symmetry requires θ = ±π/2 and
∆1 = ∆2, but in the HO phase this is not the case.

To proceed, we need to establish how the tetragonal
symmetry is broken in the hidden order phase. There
are two possibilities: either the horizontal

[

1 0 0
]

and

vertical
[

0 1 0
]

directions become inequivalent, in which
case the C2 order parameter belongs to the B1g irre-
ducible representation, or the diagonal

[

1 1 0
]

and anti-

diagonal
[

1 −1 0
]

directions become inequivalent, in
which case the C2 order parameter belongs to the B2g

irreducible representation. Torque magnetometry35, x-
ray diffraction36, and elasto-resistance measurements37

all agree on the second scenario, which is schematically
shown in Fig. 1.

Figure 1. The basal plane across the HO phase transition.
Left: above the HO phase, the crystal structure (here centered
at the U atoms) is body centered tetragonal. Right: The HO
phase breaks the fourfold rotational symmetry on the ab plane
by making the

[

1 1 0
]

and
[

1 −1 0
]

directions (parallel to
the Ru nearest neighbor directions) inequivalent. The crystal
structure becomes base centered orthorhombic.

Thus, we can now write down the phenomenological
Ginzburg-Landau model for the superconducting degrees
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of freedom inside the HO phase53:

FSC =
a

2

(

∆2
1 +∆2

2

)

+
u

4

(

∆4
1 +∆4

2

)

+
1

2
∆2

1∆
2
2 (β + α cos 2θ)− η

2

(

∆2
1 −∆2

2

)

, (4)

Here, a = a0 (T − Tc,0) and the order parameter η 6= 0
describes the C4 symmetry-breaking inside the HO state.
We refrain from calling it the HO order parameter, since
it is unclear whether other symmetries are also broken
in the HO phase. In any case, because THO ≫ Tc, we
consider η to be constant on the temperature regime in
which an expansion in powers of the superconducting or-
der parameter is allowed. Without loss of generality, we
assume in this section that η > 0 – in the next section,
where we consider the effects of domains, this assumption
is no longer valid.

For the SC state to be a chiral d-wave, α must be
positive; furthermore, in order for both order parame-
ter components to coexist, and for the free energy to be
bounded, we must also have u > |β − α|. With this con-
straints, minimization of the free energy with respect to
θ gives always θ = ±π/2, as long as both ∆1 and ∆2 are
simultaneously non-zero.

Figure 2. The SC order parameters in different phases. ∆1

becomes nonzero when T < Tc (SC1 phase), and ∆2 becomes
nonzero at T < T ∗

c (SC2 phase). The system, therefore, has
two different SC phases. The phase difference between ∆1

and ∆2 is π/2, i.e. time reversal symmetry is broken only in
the SC2 phase.

Minimization of the free energy with respect to ∆1 and
∆2 reveal two distinct regimes as shown in Fig 2, defined
by the two transition temperatures:

Tc = Tc,0 +
η

a0

T ∗

c = Tc −
2uη

a0 (u− β + α)
(5)

Here, we assume that a = a0(T − Tc,0) when the tem-
perature is close to Tc,0. For T ∗

c < T < Tc (SC1 phase),
the free energy is minimized by enforcing only one of the
SC components to be non-zero:

∆2
1 = −

(

a− η

u

)

; ∆2 = 0

Fmin = − (a− η)2

4u
. (6)

On the other hand, for T < T ∗

c (SC2 phase), the mini-
mum of the free energy corresponds to the condensation
of the two components with a π/2 phase difference:

θ = π/2 ,

∆2
1 = − a

u+ β − α
+

η

u− β + α
,

∆2
2 = − a

u+ β − α
− η

u− β + α
,

Fmin = − a2

2 (u+ β − α)
− η2

2 (u− β + α)
. (7)

Because the free energy changes smoothly, both tran-
sitions are second-order. At Tc, the system becomes a
single-component SC, whereas at T ∗

c , TRS is broken, and
the system becomes a two-component SC. The anisotropy
induced in ∆1 and ∆2 is proportional to η, as expected,
since this order parameter manifestly breaks the tetrag-
onal symmetry. The splitting between Tc and T ∗

c is also
proportional to |η|.
It is important to discuss the relationship between the

orthorhombic distortion δ in the C2 HO phase and the
electronic anisotropy order parameter η introduced here.
Symmetry arguments enforce them to be proportional
to each other, i.e. 〈δ〉 ∝ 〈η〉. However, the fact that δ
is small in the HO phase (δ ∼ 10−5 as measured by x-
ray diffraction36) does not imply that η is also necessarily
small. If indeed the anisotropy is electronically driven, as
suggested by the elasto-resistance measurements37, one
would expect η to be sizable even if δ is small. This is the
case, for instance, in optimally-doped iron-based super-
conductors, where the in-plane resistivity anisotropy is
ρb/ρa ∼ 1.5 even though δ ∼ 10−4 (for reviews, see54,55).

B. Nodal quasi-particle density of states

Having established the existence of two SC states in
URu2Si2, we now discuss their thermodynamic prop-
erties. At low temperatures, they are determined by
the low-energy properties of the quasi-particle density
of states (DOS) ρ (ω). For instance, the specific heat C,
the penetration depth λp, and the spin-lattice relaxation
rate 1/T1T are given by:

C

T
∝
ˆ

dωρ (ω) (βω)
2

(

−∂f

∂ω

)

λ−2
p − λ−2

p,0 ∝
ˆ

dωρ (ω)

(

−∂f

∂ω

)

(T1T )
−1 ∝

ˆ

dωρ2 (ω)

(

−∂f

∂ω

)

(8)
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At low energies, the DOS is determined by the dis-
persion of the nodal quasi-particles. The latter are re-
markably different for the two SC states. For the higher-
temperature SC state at T ∗

c < T < Tc, which we denote
SC1, only one of the gap components is condensed and
the gap function contains horizontal zeros at kz = 0,±2π
and vertical zeros at kx = −ky (if ∆1 6= 0) or at
kx = ky (if ∆2 6= 0). On the other hand, for the lower-
temperature SC state at T < T ∗

c , which we denote SC2,
the gap vanishes along the plane kz = 0,±2π and along
the line kx = ky = 0.

To proceed, we need to establish whether these gap ze-
ros cross the Fermi surface, forming nodal quasi-particles.
The Fermi surface of URu2Si2 is remarkably complex:
first-principle calculations in the paramagnetic phase
show the existence of hole-like ellipsoids centered at Γ =
(0, 0, 0) and Z = (0, 0, 2π), and electron-like ellipsoids
centered at M = (π, π, 0)27,56. Although it is unclear
how the hybridization with the 5f U states affects this
Fermi surface configuration, or whether there is an ad-
ditional folding of the band structure along the (0, 0, 2π)
momentum, as in the magnetically ordered phase, quan-
tum oscillation measurements40,57–60 seem to be consis-
tent with at least one pocket centered at Γ. For the
purposes of determining the low-energy properties of the
DOS, we therefore consider a single spherical pocket cen-
tered at Γ. In this case, in the SC1 state, there are two
crossing nodal lines at kF,z = 0 and kF,x = ±kF,y. In the
SC2 phase, there remains a nodal line at kF,z = 0 and a
couple of nodal points at kF,x = kF,y = 0. Both nodal
configurations are shown in Fig. 3.

Figure 3. Nodes on a Fermi surface centered at Γ in the two
different SC phases. Left: In the SC1 phase, the Fermi surface
contains the horizontal nodal line kz = 0 (red curve) and the
vertical nodal line kx+ky = 0 (blue curve). Right: in the SC2

phase, the Fermi surface contains only one horizontal nodal
line kz = 0 (red curve) and two nodal points (0, 0,±kF ) (black
dots).

We first consider the higher-temperature SC1 state
(T ∗

c < T < Tc). For concreteness, we assume ∆1 6= 0
and ∆2 = 0, but the results are the same for the con-

verse. The DOS is given by:

ρ(ω > 0) =
1

V

∑

k

δ(ω − E(~k))

= N0

ˆ

dΩk̂

4π

ˆ

dξ δ(ω −
√

ξ2 +∆2(k̂))

= N0ω

ˆ

dΩk̂

4π
Re

1
√

ω2 −∆2(k̂)
, (9)

where N0 is the DOS at the Fermi level, and ∆(k̂) is the
SC gap along the Fermi pocket centered at Γ. The latter
can be conveniently described in terms of the polar and
azimuthal angles θ and φ around the spherical pocket:

∆(k̂) = ∆1 sin
kz
2

sin
kx + ky

2

≈ ∆1 sin 2θ cos
(

φ− π

4

)

, (10)

where ∆1 has been rescaled by the factor ∆1 →
∆1

√
2 (kFa)

2
/8. There are two nodal lines at θ0 = π/2

(kz = 0) and φ0 = −π
4
, 3π

4
(kx = −ky ), which intersect

along the Fermi surface at a single point, giving rise to a
quadratic node. Expanding the DOS for small energies
ω ≪ ∆1, we find the asymptotic behavior:

ρ(ω) ≈ N0

(

ω

2∆1

log
∆1

ω
+

ω

∆1

log 4

)

(11)

Fig. 4 compares the numerically-evaluated DOS with
the asymptotic expression (11) as function of energy, ev-
idencing the dominant ω logω behavior at low energies.
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Figure 4. The low energy DOS computed numerically (red
curve) and via its asymptotic expression (blue curve). Left:
DOS in the high-temperature SC1 phase (T ∗

c < T < Tc).
The blue curve is the asymptotic expression (11) with the
dominant ω log ω behavior at low energies. Right: DOS in
the low-temperature SC2 phase (T < T ∗

c ). The blue curve is
the asymptotic expression (15) with the dominant ω behavior
at low energies.

A careful analysis of Eq. (11) reveals that while the
linear-in-ω term arises from the contribution of each indi-
vidual nodal line, the ω logω term arises from the cross-
ing point between the two nodal lines. To make this
transparent, we expand the SC order parameter in the
vicinity of one of the two crossing points, θ0 = π/2,
φ0 = 3π/4:

∆ (θ, φ) = 2∆1 (θ − θ0) (φ− φ0) . (12)
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Clearly, the nodal dispersion is quadratic rather than
linear61–64. Substituting this expression in Eq. (9) and
restricting the integration to the proximities of the cross-
ing point, |θ − θ0| , |φ− φ0| < Λ, yields:

ρ(ω) ≈ 4N0

ω

2∆1

ˆ Λ

0

dθ̃

ˆ Λ

0

dφ̃Re
1

√

(

ω

2∆1

)2

− φ̃2θ̃2

,

(13)

where θ̃ = θ − θ0, φ̃ = φ − φ0. A straightforward calcu-
lation gives:

ρ(ω) ≈ πN0

ω

∆1

log

(

4Λ2∆1

ω

)

. (14)

Clearly, the additional logarithmic contribution is a
consequence of the quadratic dispersion near the crossing
point of two nodal lines. Note that it will also give rise to
logarithmic corrections to the low-temperature behavior
of the thermodynamic quantities listed in the beginning
of this section. More generally, tunneling experiments
sensitive to ρ (ω) may in principle be able to identify
this additional logarithmic contribution, which would be
unambiguous evidence for this type of superconducting
gap function.

In the low-temperature SC2 phase at T < T ∗

c , ∆2 6=
0 and one of the nodal lines is replaced by two nodal
points. As a result, the logarithmic corrections discussed
above disappear. Indeed, the system in the SC2 phase
contains only one nodal line kz = 0, and two nodal points
kx = ky = 0. Computing the DOS at low energies, ω ≪
∆2,∆1, we find:

ρ(ω) ≈ N0

[

ω

2∆1

ln

(

4∆1

∆2

)

+
ω2

4∆1∆2

]

(15)

As expected, the nodal line gives a linear contribution
to the DOS, whereas the nodal points give a quadratic
contribution. Of course, at energies higher than the
scale of ∆2, but still much smaller than ∆1, there is a
crossover to the logarithmic behavior found in the SC1

phase, which may be detectable experimentally.

Interestingly, the coefficient of the linear-in-ω term de-
pends on the ratio ∆1/∆2, which in turn depends on the
C4 symmetry-breaking parameter η, according to Eq. (7).
The dependence of this linear coefficient on η is shown in
Fig. 5 below. This result reveals an interesting possibility
to probe the impact of the tetragonal symmetry break-
ing of the HO phase on the SC properties. Specifically,
one could experimentally extract this linear coefficient –
either from tunneling experiments or from penetration
depth data – and study its dependence on compressive
and tensile external strain, which would tend to increase
or reduce the value of η.

2 3 4 5
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�2

0.4

0.5

0.6

0.7

0.8

� /N0

� /�2��0

Figure 5. The linear coefficient of ω in the low energy DOS
of the SC2 phase as function of ∆1

∆2
− 1 ∝ η. The red curve

is the numerical result and the blue curve corresponds to the
asymptotic expression (15).

III. ANISOTROPIC PROPERTIES OF THE

SUPERCONDUCTING STATE

Having established the thermodynamic properties of
the SC1 and SC2 phases, we now discuss how the in-plane
anisotropy appearing at the HO transition temperature
is manifested in the superconducting properties. From
symmetry considerations, one expects anisotropies in the
in-plane penetration depth, critical magnetic field Hc2,
etc. Experimentally, the behavior of the specific heat

as function of the angle of an external magnetic field ~H
has been used as a probe of the nodal structure of the
superconducting gap in URu2Si2

46. Thus, given the ex-
perimental feasibility and the existence of current data,
we focus here on the magnetic-field angle-dependent spe-

cific heat, C
(

~H
)

, in both SC1 and SC2 phases. In the
presence of an external magnetic field, a nodal supercon-

ductor acquires a finite density of states ρ
(

~H
)

at T = 0.
As a result, the specific heat at low temperatures is given

by C
(

~H
)

/T ∝ ρ
(

~H
)

. In a tetragonal system, ρ
(

~H
)

dis-
plays four-fold oscillations as the azimuthal angle of the

applied magnetic field ~H changes. However, in an or-
thorhombic system, which is the case of URu2Si2 below
the HO transition, two-fold oscillations are expected.

A complete description of ρ
(

~H
)

, which is beyond the
scope of this work, requires detailed knowledge of the
Fermi surface and of the microscopic mechanisms of the
superconducting state65,66. Here, we are interested in
contrasting the anisotropies introduced by η and man-

ifested in ρ
(

~H
)

in both SC phases, and also in study-
ing the impact of twin domains present in real materi-
als. Therefore, to keep the discussion general and mean-
ingful, we consider a spherical Fermi surface and the

semi-classical approximation for ρ
(

~H
)

first introduced by

Volovik51. Valid in the regime of low fields and low tem-
peratures, where the vortex lattice of the mixed state is
dilute, this approximation focuses on the contributions
of the extended quasi-particles around a single vortex,
neglecting the contribution from the vortex core states.
The main effect arises from the supercurrent ~vs (~r) gener-
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ated by an isolated vortex, which causes a Doppler shift

∆E = ~k ·~vs (~r) in the quasi-particle excitation spectrum.
Taking the spatial average over the unit cell of the vortex
lattice then gives the zero-energy DOS51,65:

ρ( ~H) =
1

V

∑

~k

ˆ

d2r

A
δ
(

~k · ~vs − E~k

)

(16)

where A = Φ0/H = πR2 is the area of the vortex lattice
unit cell, which in turn is approximated by a circle of
radius R =

√

Φ0/(πH). Here, Φ0 is the flux quantum

and E~k
=

√

ξ2~k
+∆2

(

~k
)

is the quasi-particle energy. For

an arbitrary magnetic field along the n̂ direction, ~H =
Hn̂, the supercurrent velocity ~vs is given by:

~vs =
1

2mr
n̂× r̂ . (17)

To proceed, it is convenient to define the angle-
dependent Doppler-shift energy:

ED(~k) =
kf

2mR

∣

∣

∣n̂× k̂
∣

∣

∣ , (18)

Evaluation of the DOS in Eq. (16) then gives:

ρ( ~H)

N0

=

ˆ

dΩk̂

4π











E2
D(k̂)

∆2(k̂)
if ED(k̂) ≤ |∆(k̂)|

1 if ED(k̂) ≥ |∆(k̂)|
(19)

It is convenient to define the ratio between the
Doppler-shift energy scale and the magnitude of the SC
gap:

γ =
kF

4mR∆1

, (20)

We consider first the SC1 state, when ∆1 6= 0 and
∆2 = 0. Since we are interested mainly on the in-plane
anisotropies promoted by the HO tetragonal symmetry-
breaking parameter η, hereafter we consider the situation

in which ~H is swept across the ab plane, and therefore
characterized by the azimuthal angle φh. Using the ex-
pansion (10) for ∆1 yields the expression:

ED(k̂)

2
∣

∣

∣
∆(k̂)

∣

∣

∣

= γ

√

1− sin2 θ cos2 (φ− φh)
∣

∣sin 2θ cos
(

φ− π
4

)∣

∣

(21)

which can be substituted in Eq. (19) for numerical eval-
uation. In the weak field limit, γ ≪ 1, we obtain the
analytical expression:

ρ(φh)

4N0

≈ γ +
∣

∣

∣
cos

(

φh − π

4

)∣

∣

∣
γ

(

1

π
ln

2

γ
− 1

)

(22)

This formula captures the general behavior of the
numerically-calculated ρ (φh), plotted in Fig. 6. In par-
ticular, it reveals a clear in-plane two-fold anisotropy of
ρ(φh), with a maximum at φh = π/4, −3π/4 and a min-
imum at φh = −π/4, 3π/4. This behavior is a conse-
quence of the quadratic node present in the Fermi sur-
face at φ0 = π/4, θ0 = π/2 (see the previous Section):

when ~H is parallel to the quadratic node momentum,
the Doppler shift in the nodal quasi-particle spectrum is

maximum, but when ~H is perpendicular to the quadratic
node momentum, the Doppler shift is minimum.

(a)

(b)

Figure 6. The angle-dependent DOS in the presence of an in-
plane magnetic field in the SC1 state. The ratio between the
Doppler shift energy and the gap is set to γ = 0.1 in panel
(a) and γ = 0.01 in panel (b). φh is the azimuthal angle
of the magnetic field. The red curve corresponds to a single
domain with ∆2 = 0, whereas the blue curve corresponds
to a twin domain with equal-weight ∆2 6= 0, ∆1 = 0 and
∆1 6= 0, ∆2 = 0.

We now consider the SC2 phase, which is the most rel-
evant for comparison with experiments, since the latter
are commonly performed at very low temperatures – pre-
sumably below both Tc and T ∗

c . In the SC2 phase, both
∆1 and ∆2 are non-zero, but non-equal. We obtain:

ED(k̂)

2
∣

∣

∣∆(k̂)
∣

∣

∣

= γ

√

1− sin2 θ cos2 (φ− φh)

|sin 2θ|
√

cos2
(

φ− π
4

)

+
∆2

2

∆2

1

sin2
(

φ− π
4

)

(23)
which can then be substituted in Eq. (19) to compute the
DOS. In Fig. 7, we plot ρ (φh) for two different values of
the parameter γ, considering the ratio ∆1/∆2 = 2. The
behavior is similar to the SC1 phase, namely, the DOS is
two-fold anisotropic and maximum at φh = π/4, −3π/4
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but minimum at φh = −π/4, 3π/4. The contrast be-
tween the maximum and the minimum is proportional to
the ratio ∆1/∆2. In the C4 symmetric case, ∆1 = ∆2,
to leading order in γ, ρ (φh) is angle-independent and
constant, ρ (φh) = 4γ/π + γ2 ln(2/γ).
An important issue is whether the two-fold anisotropy

induced by the difference between ∆1 and ∆2 (which in
turn arises from the HO C4 symmetry-breaking term η)
can be observed experimentally. In our analysis, so far
we have considered only the ideal scenario in which a
single C2 domain is formed. In large samples – at least
large enough to allow one to measure the specific heat
– it is very likely that the system will break up in twin
domains with η > 0 (corresponding to ∆2 = 0 in the
SC1 phase and ∆1 > ∆2 in the SC2 phase) and η < 0
(corresponding to ∆1 = 0 in the SC1 phase and ∆1 < ∆2

in the SC2 phase). As a result, the two-fold anisotropy is
washed out. To capture this effect, we calculated ρt (φh)
of a twin-domain system:

ρt(φh) =
1

2
ρ(φh) +

1

2
ρ (φh + π/2) . (24)

single domain

twin domains

tetragonal

0
�

4

�

2

3�

4
�
�h0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

�(�h)/�(0)

�=0.1

�1/�2=2

(a)

single domain

twin domains

tetragonal

0
�

4

�

2

3�

4
�
�h

0.90

0.95

1.00

1.05

1.10

�(�h)/�(0)

�=0.01

�1/�2=2

(b)

Figure 7. The angle-dependent DOS in the presence of an
in-plane magnetic field in the SC2 state (∆1,∆2 6= 0). The
ratio between the Doppler shift energy and the gap is set
to γ = 0.1 in the upper panel and γ = 0.01 in the lower
panel. φh is the azimuthal angle of the magnetic field. The
red curve corresponds to a single domain with ∆1/∆2 = 2,
whereas the blue curve corresponds to a twin domain with
equal-weight ∆1/∆2 = 2 and ∆1/∆2 = 1/2. The dashed
black curve corresponds to the tetragonal symmetric system,
with ∆1 = ∆2.

The results for both SC1 and SC2 phases in the twin-
domain case are shown by the blue curves in Figs. 6
and 7. While for the SC1 phase there is a small four-
fold anisotropy reminiscent of the anisotropies of the

single-domain case, in the SC2 phase the DOS is basi-
cally angle-independent and indistinguishable from the
tetragonal case (∆1 = ∆2). Interestingly, the in-plane
angle-resolved specific heat data reported in46 is nearly
flat as the field is swept from the a axis to the b axis.

�xy

<�>

Figure 8. Bulk averaged anisotropy 〈η〉 as function of the in-
plain uniaxial strain εxy. Without uniaxial strain, 〈η〉 = 0
as averaged over different domains. It becomes nonzero upon
application of uniaxial strain and remains non-zero even after
the strain is released, inside the symmetry-broken phase.

In order to decide whether the experimentally observed
behavior is compatible with the orthorhombic SC2 phase
or with the tetragonal SC chiral phase, we propose to per-
form angle-resolved specific heat experiments in samples
under uniaxial external strain. In both cases, applying
either compressive or tensile stress along the a (or b) axis
will induce a two-fold anisotropy in ρ (φh) – similarly to
what we calculated for a single-domain case. This is not
surprising, as the external strain explicitly breaks the C4

symmetry – in other words, it generates itself a term η in
the free energy (4) regardless of whether the symmetry
was spontaneously broken at the HO transition. How-
ever, upon releasing the strain, only in the SC2 phase a
non-zero η remains due to the alignment of the twin do-
mains: This is nothing but the manifestation of the hys-
teresis associated with the symmetry-broken phase (see
Fig. 8). Therefore, if the two-fold anisotropies of ρ (φh)
persist after the applied strain is released, this would be
unambiguous proof of the anisotropy in ∆1 and ∆2 char-
acteristic of the SC2 phase. Note that devices capable
of applying and releasing strain in a controlled way have
been now widely used to study the nematic phase of the
iron-based superconductors67.

IV. COLLECTIVE MODES IN THE

SUPERCONDUCTING PHASE

As discussed above, inside the HO phase there are two
SC transitions: at Tc, the system undergoes a normal-
state to SC transition, characterized by the condensa-
tion of one of the two components of the chiral SC or-
der parameter (∆1 if η > 0). At T ∗

c < Tc, a SC-to-SC
transition takes place, in which the second component of
the SC order parameter condenses (∆2 if η > 0) with a
π/2 relative phase with respect to the other component,
breaking time-reversal symmetry. Detection of the sec-
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ond SC transition in URu2Si2 would be strong evidence
for the scenario discussed here. Besides the usual ther-
modynamic signatures of a SC transition, for instance
in the specific heat, the system also displays distinctive
collective SC excitations at T ∗

c – which in turn could
be measured by spectroscopic techniques such as Raman
scattering.
To understand why this is the case, we note that

the collective modes of a single-band superconductor
are the phase and amplitude (also called Higgs) modes.
While the former is always gapped by the Anderson-
Higgs mechanism, the latter becomes soft near the su-
perconducting transition. Near the usual normal-state
to SC transition (such as the one taking place at Tc

in our system), the energy gap of the amplitude mode
is generally larger than the SC gap, implying that the
mode decays into the particle-hole continuum. However,
near a SC-to-SC transition (such as the one taking place
at T ∗

c in our system) the situation is different, because
the electronic spectrum has already been gapped by the
first SC transition. As a result, it becomes in princi-
ple possible to obtain a sharp SC amplitude mode at T ∗

c

that does not fall into the particle-hole continuum68–71.
The situation is similar to the appearance of the so-called
Bardasis-Schrieffer mode in superconductors with nearly-
degenerate superconducting states72.
To investigate this scenario, we include the time-

dependence of the SC order parameter in the free energy

(4):

F̃SC

(

∆i,
∂∆i

∂t

)

=

2
∑

i=1

γsc

∣

∣

∣

∣

∂∆i

∂t

∣

∣

∣

∣

2

− FSC (∆i) , (25)

where FSC is given by Eq. (4) and the coefficient of the
time-dependent term is γsc > 0. Because we are in-
terested in the behavior below Tc, where the SC sys-
tem is particle-hole symmetric, the time-dependent term
must be quadratic in the time-derivative, in contrast to
the usual linear i∆∗ ∂∆

∂t
term that appears in the Gross-

Pitaevskii equation, where particle-hole symmetry is not
necessarily present68,73.

To calculate the collective modes of the system, we
linearize the gap equations near Tc by writing ∆i =
∆i,0 + δ∆i, where ∆i,0 are the solutions of the time-

independent equations, i.e.
(

∂FSC

∂∆i

)

∆i,0

= 0. We obtain

the coupled linear equations:

−γsc
∂2

∂t2







δ∆1

δ∆∗

1

δ∆2

δ∆∗

2






= Λ (∆i,0)







δ∆1

δ∆∗

1

δ∆2

δ∆∗

2






(26)

with the matrix:

Λ (∆i) =









a−η
2

+ u|∆1|2 + β
2
|∆2|2 u

2
∆2

1 +
α
2
∆2

2
β
2
∆1∆

∗

2 + α∆∗

1∆2
β
2
∆1∆2

u
2
∆∗

2

1 + α
2
∆∗

2

2
a−η
2

+ u|∆1|2 + β
2
|∆2|2 β

2
∆∗

1∆
∗

2
β
2
∆∗

1∆2 + α∆1∆
∗

2
β
2
∆∗

1∆2 + α∆1∆
∗

2
β
2
∆1∆2

a+η
2

+ u|∆2|2 + β
2
|∆1|2 u

2
∆2

2 +
α
2
∆2

1
β
2
∆∗

1∆
∗

2
β
2
∆1∆

∗

2 + α∆∗

1∆2
u
2
∆∗

2

2 + α
2
∆∗

2

1
a+η
2

+ u|∆2|2 + β
2
|∆1|2









(27)

Because we are interested only in the energy gap of the
collective modes, and not in their dispersions, we ignore
the spatial dependence of the SC gap. The energies of
the four collective modes are therefore given by:

ωi =

√

λi

γsc
(28)

where λi are the eigenvalues of the matrix Λ. We first
focus in the SC1 phase, T ∗

c < T < Tc, in which the
equilibrium gap functions ∆i,0 are given by Eqs. (6). Di-
agonalizing the matrix Λ gives the following eigenvalues:

λ1 = 0

λ2 = −a+ η

λ3 =
a (u+ α− β) + η (u− α+ β)

2u

λ4 =
a (u− α− β) + η (u+ α+ β)

2u
(29)

with the corresponding eigenvectors:

v
T
1 =

(

−1 1 0 0
)

v
T
2 =

(

1 1 0 0
)

v
T
3 =

(

0 0 1 −1
)

v
T
4 =

(

0 0 1 1
)

(30)

Clearly, the two SC components ∆1 and ∆2 decouple in
this regime. The expressions for the eigenvectors reveal



9

that the eigenvalue λ1 corresponds to the phase mode of
the condensed SC component. Although in our calcu-
lation it vanishes, it becomes a massive mode once the
coupling to the electronic density is included (Anderson-
Higgs mechanism)74–76. The eigenvalue λ2 is the ampli-
tude mode of the ∆1 gap. Although it becomes soft at
Tc , since ac = η, it does not give rise to a sharp collec-
tive mode because at Tc the electronic spectrum is barely
gapped, implying that the mode falls into the particle-
hole continuum.
The other two eigenvalues correspond to modes of the

incipient ∆2 component, which condenses only at T ∗

c .
Because it condenses with a relative phase of π/2 with
respect to ∆1, λ3 corresponds to an incipient amplitude
mode, whereas λ4 corresponds to an incipient relative
phase mode. Because the latter does not couple directly
to the electronic density, it does not become massive be-
low T ∗

c
77. Interestingly, we observe that at T ∗

c , which
corresponds to:

a∗ = −η

(

u+ β − α

u− β + α

)

, (31)

the mode λ3 becomes soft. In this case, because ∆1 has
already been condensed at Tc, the electronic spectrum is
gapped, implying that this collective excitation can be a
sharp mode in the vicinity of T ∗

c . To analyze how these
modes evolve below T ∗

c , we diagonalize the matrix Λ in
the SC2 phase, T ≤ T ∗

c , in which ∆i,0 is given by Eq.
(7). We obtain:

λ1 = 0

λ2 =
−au

u+ β − α
+

√

η2
(

u+ β − α

u− β + α

)

+
a2(β − α)2

(u+ β − α)2

λ3 =
−au

u+ β − α
−
√

η2
(

u+ β − α

u− β + α

)

+
a2(β − α)2

(u+ β − α)2

λ4 =
−2aα

u+ β − α
(32)

Although the corresponding eigenvectors are straight-
forward to obtain, we refrain from writing explicitly their
lengthy expressions here. In Fig. 9, we plot the eigenval-
ues λ2, λ3, and λ4 as function of temperature inside the
SC state. As discussed above, λ3, corresponding to the
incipient ∆2 amplitude mode, vanishes at T ∗

c . This opens
the interesting possibility of detecting the second SC
transition spectroscopically. For instance, Raman scat-
tering in the symmetry channel corresponding to the ∆2

component (B3g/B2g irreducible representation of the or-
thorhombic point group) could in principle detect a sharp
mode near T ∗

c inside the gapped region of the spectrum
(ω < 2∆1).
An important issue ignored in the analysis above is

the fact that the superconducting state has nodal quasi-
particle excitations, which in principle couple to the λ3

Figure 9. Eigenmodes of the SC state inside the HO phase,
as explained in the main text: λ2 (red), λ3 (blue), and λ4

(green). λ1, corresponding to the global phase mode, is not
shown, since it becomes massive due to the coupling to the
electronic density.

mode and can cause damping. To investigate this ef-
fect, we compute the one-loop bosonic self-energy di-
agram containing the coupling of ∆2 to the electronic
states (and particularly to the nodal quasi-particles) at
the vicinity of T ∗

c , where the λ3 mode becomes soft (see
Fig. 10). At this temperature, the SC gap ∆1 is fully
developed. Therefore, in Nambu space, the electronic
Green’s function is given by:

G(~k, iνn) =

ˆ

dz

2π

A(~k, z)

iνn − z
, (33)

with νn = (2n+ 1)πT and the spectral function:

A(~k, z) =
π

E~k

(

δ(z − E~k
)− δ(z + E~k

)
)

× (zσ0 + ξ~kσ3 −∆1(~k)σ1) (34)

where E~k
=

√

ξ2~k
+∆2

1(
~k) is the nodal quasi-particle

excitation and σi are Pauli matrices in Nambu space.
Thus, the bosonic self-energy shown in Fig. 10 becomes:

Π (iωn) = −T
∑

m

ˆ

ddk

(2π)d

ˆ

dz1
2π

ˆ

dz2
2π

× π2

E2
~k

tr
[

g(k̂)σ2A
(

~k, z1

)

g(k̂)σ2A
(

~k, z2

)]

(iνm + iωn − z1) (iνm − z2)

(35)

Here we set the external momentum q = 0 (since we are
only interested in the dynamics) and included the Nambu

vertex g(k̂)σ2 = sin(2θ) sin(φ − π/4)σ2 corresponding to

∆2(~k) = ∆2g(k̂)σ2. A straightforward calculation gives:

Π(iωn) =

ˆ

ddk

(2π)d
tanh

(

βE~k

2

)

(

1

iω + 2E~k

− 1

iω − 2E~k

)

g2(k̂) (36)
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∆2 ∆2g(k̂)σ2

g(k̂)σ2

(a)
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Figure 10. Upper panel: Bosonic SC self-energy (in Nambu
space) arising from the coupling between ∆2 and the quasi-

particles near T ∗

c . Here g(k̂) = sin(2θ) sin(φ − π/4). Middle
panel: the real and imaginary parts of the bosonic self energy
when ω ≪ T . Lower panel: The ratio between the real and
the imaginary parts of the frequency-dependent bosonic self-
energy. It is clear that the real part is much smaller than
the imaginary part at low frequencies. Moreover, since the
imaginary part is proportional to ω2 and not to ω, the mode
is under-damped.

Performing the analytic continuation and subtracting
the frequency-independent part, Π (0), we obtain the
imaginary and real parts of δΠ(ω) = Π (ω)−Π(0) (here-
after we consider ω > 0):

δΠ′′(ω) = π tanh

(

βω

4

)
ˆ

ddk

(2π)d
δ(ω − 2E~k

)g2(k̂)

δΠ′(ω) =

ˆ

ddk

(2π)d
tanh

(

βE~k

2

)

ω2g2(k̂)

E~k

(

4E2
~k
− ω2

) (37)

In the limit ω ≪ ∆1, T , we find the low-energy asymp-
totic behaviors of the bosonic self-energy:

δΠ′′(ω) ≈ πN0

24

ω2

T∆1

δΠ′(ω) ≈ N0

6

ω2

T∆1

log

(

2∆1

ω

)

(38)

Thus, at low enough frequencies, not only does the
imaginary part varies quadratically with the frequency,
but also the real part is much larger than the imaginary
part. Consequently, the λ3 mode can still be sharp near
T ∗

c despite the damping introduced by its coupling to
the nodal quasi-particles. To confirm these analytical
results, in Fig. 10, we plot the behavior of δΠ′′ (ω) and
δΠ′ (ω) evaluated numerically from Eqs. (37), evidencing
the sub-leading character of the imaginary part.

V. CONCLUDING REMARKS

In summary, we have investigated the impact of the
tetragonal symmetry breaking promoted by the HO
phase in the low-temperature chiral SC state of URu2Si2.
Besides the anticipated splitting of the SC transition into
two, the two resulting SC phases display very different
low-energy behaviors. In particular, the nodal quasi-
particle density of states of the higher-temperature SC
phase acquires an anomalous logarithmic dependence due
to the crossing of two nodal lines. Although absent in
the lower-temperature SC phase at low energies, this log-
behavior can in principle still be manifested for interme-
diate energy ranges as a crossover effect. We have also
shown the softening of one of the amplitude SC modes
near the second SC transition, providing yet another
signature of the interplay between tetragonal symmetry
breaking and SC. Finally, we showed that the current
angle-resolved specific-heat data is qualitatively consis-
tent with either a tetragonal chiral state or an orthorhom-
bic chiral state. We propose additional measurements in
the presence of uniaxial strain to unambiguously distin-
guish the two scenarios.
It is important to critically analyze our results in face

of recent data on the SC state of URu2Si2. First, our
phenomenological model relies on the applicability of a
Ginzburg-Landau approach. Although this seems to be
the case in URu2Si2 given the behavior of the thermo-
dynamic quantities across Tc, large SC fluctuations have
been recently proposed in Ref.80. As for the existence
of two SC transitions, the temperature dependence of
Hc1 has been interpreted as indirect evidence for one SC
transition at Tc ≈ 1.5 K followed by a second one at
T ∗

c ≈ 1.2 K35. In contrast, recent Kerr data seem to be
consistent with time-reversal symmetry being broken at
Tc

49. If this is indeed the case, it would imply that the
tetragonal symmetry breaking at the HO transition is in-
consequential for SC. On the other hand, the same data
set reveals an anomalous Kerr signal well below Tc, at
T ≈ 1 K. This anomaly, combined with a “background”
Kerr signal that onsets at high temperatures, indicates
that at least for now one cannot rule out the possibility
of two SC transitions in URu2Si2. As pointed out in Ref.
[49], additional data are needed to settle this issue. An
interesting possibility would be to perform Kerr measure-
ments in strained samples. Due to the dependence of T ∗

c

on the strain field, such a measurement would elucidate
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whether the anomalous Kerr signal could be a manifes-
tation of a second SC transition.

Our phenomenological results offer robust benchmarks
that can be employed to study the interplay between the
tetragonal symmetry breaking promoted by the HO state
and the time-reversal symmetry-breaking promoted by
the SC state in URu2Si2. With appropriate modifica-

tions, our model should also be relevant to other systems
in which chiral SC states have been proposed, such as the
ruthenates78 and doped graphene79.
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Department of Energy, Office of Science, Basic Energy
Sciences, under award number DE-SC0012336.
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sumi, and K. Machida, Phys. Rev. Lett. 100, 017004
(2008).

47 Y. Kasahara, H. Shishido, T. Shibauchi, Y. Haga, T. D.
Matsuda, Y. Onuki, and Y. Matsuda, New J. Phys. 11,
055061 (2009).

48 G. Li, Q. Zhang, D. Rhodes, B. Zeng, P. Goswami, R. E.
Baumbach, P. H. Tobash, F. Ronning, J. D. Thompson, E.
D. Bauer, and L. Balicas, Phys. Rev. B 88, 134517 (2013).



12

49 E. R. Schemm, R. E. Baumbach, P. H. Tobash, F. Ronning,
E. D. Bauer, and A. Kapitulnik, Phys. Rev. B 91, 140506
(2015).

50 T. Shibauchi, H. Ikeda, and Y. Matsuda, Philo. Mag. 94,
3747 (2014).

51 G. E. Volovik, JETP Lett. 58, 469 (1993).
52 M. Sigrist, R. Joynt, and T. M. Rice, Phys. Rev. B 36,

5186 (1987).
53 S. Takamatsu and Y. Yanase, Phys. Rev. B 91, 054504

(2015).
54 I. R. Fisher, L. Degiorgi, and Z. X. Shen, Rep. Prog. Phys.

74, 124506 (2011)
55 R. M. Fernandes, A. V. Chubukov, and J. Schmalian. Na-

ture Phys. 10, 97 (2014)
56 P. M. Oppeneer, J. Rusz, S. Elgazzar, M.-T. Suzuki, T.

Durakiewicz, and J. A. Mydosh, Phys. Rev. B 82, 205103
(2010).

57 H. Ohkuni, Y. Inada, Y. Tokiwa, K. Sakurai, R. Settai, T.
Honma, Y. Haga, E. Yamamoto, Y. ōnukia, H. Yamagami,
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