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Abstract 

Using the theory of symmetry and the microscopic model we predicted the possibility of a linear 

antiferrodistortive-antiferromagnetic effect in the perovskites with structural antiferrodistortive 

and antiferromagnetic long-range ordering and found the necessary conditions of its occurrence. 

The main physical manifestations of this effect are the smearing of the antiferromagnetic 

transition and the jump of the specific heat near it. In the absence of external fields linear 

antiferrodistortive-antiferromagnetic coupling can induce a weak antiferromagnetic ordering 

above the Neel temperature, but below the temperature of antiferrodistortive transition. 

Therefore, there is the possibility of observing weak improper antiferromagnetism in 

multiferroics such as bismuth ferrite (BiFeO3) at temperatures T>TN, for which the Neel 

temperature TN is about 645 K, and the antiferrodistortive transition temperature is about 1200 K. 

By quantitative comparison with experiment we made estimations of the linear 

antiferrodistortive-antiferromagnetic effect in the solid solutions of multiferroic Bi1-xRxFeO3 

(R=La, Nd). 
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1. Introduction 

Multiferroics, generally defined as ferroics with several types of long-range order interacting 

with each other, are unique model systems for fundamental physical studies of versatile 

couplings between the spontaneous polarization, magnetization, structural and antiferromagnetic 

order parameters [1, 2, 3, 4]. The most well-known and important effect for applications of 

multiferroics is the magnetoelectric coupling between the polarization and magnetization, 

through which one can write information by an electric field and readout it by a magnetic field 

[1, 4, 5].  

Given the unique importance of multiferroics for wide variety of applications, other types 

of couplings are actively investigated in antiferrodistortive multiferroics in addition to the 

magnetoelectric coupling [6, 7, 8, 9, 10]. The couplings are associated with the presence of 

structural order parameter and its gradient. In the case of a inhomogeneous distribution of the 

order parameter, which is inevitable near the surface or in the presence of developed domain 

structure of ferroelectric, magnetic or structural types, there is a coupling between the various 

order parameters and their gradients [6-10]. Therefore, according to the theory of symmetry, the 

flexoelectric-antiferrodistortive and antiferrodistortive-flexoelectric coupling between structural, 

polar and magnetic order parameters [11, 12, 13] can exist in antiferrodistortive multiferroics in 

addition antiferrodistortive-magnetic and antiferrodistortive-electrical coupling [14, 15]. In the 

work the term "antiferrodistortive symmetry" means only rotational symmetry of the oxygen 

octahedra MO6 with respect to the cube A8 in antiferrodistortive perovskites with the structural 

formula AMO3. Oxygen atoms are displaced with respect to the centers of the cube faces A8 in 

the antiferrodistortive phase, the angle or the value of the corresponding displacement is a 

structural order parameter (see e.g. [16]). 

Coupling between the various orders parameters can be bilinear, linear-quadratic and 

biquadratic in the order parameters powers, depending on the extent to which the relevant 

parameter (or gradient) is proportional to the physical effect it has generated [1]. Biquadratic 

effects exist for arbitrary symmetry of multiferroic [17, 18, 19, 20], but the values of the 

corresponding tensor coupling constants strongly depend on its shape and size [21]. The 

appearance of non-zero bilinear effects is material-specific, they are determined by the spatial 

magnetic and antiferrodistortive- symmetry of the material (see e.g. [4, 7, 14]). Consequently 

bilinear effects are significantly less common, but their physical manifestations can be much 

more strong and non-trivial, rather than the manifestations of biquadratic effects [4]. Perhaps that 

is why researchers are actively "hunting" for bilinear coupling effects in multiferroics. 

In this work we predicted the possibility of linear antiferrodistortive-antiferromagnetic 

coupling existence in perovskites with antiferrodistortive and antiferromagnetic ordering and 
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found the necessary conditions of the coupling occurrence. Also we discuss the main physical 

manifestations of the effect, such as the smearing of antiferromagnetic (AFM) transition, specific 

heat jump near the transition and weak antiferromagnetism above the Neel temperature. We 

chose multiferroic bismuth ferrite (BiFeO3) as the model material. 

Our choice of BiFeO3 is based on the fact that the material is one of the most promising 

multiferroic with a relatively high magnetoelectric coupling coefficient; it reveals 

antiferrodistortive order at temperatures below 1200 K; is ferroelectric with a high spontaneous 

polarization below 1100 K and antiferromagnetic below Neel temperature TN≈(640 – 650) K [4, 

22]. Despite the great amount of experimental studies on the BiFeO3 multiferroic properties [23, 

4, 5], many important issues remain unclear in the sense of understanding of the physical 

mechanisms responsible for the emergence and manifestation of these properties [22]. In other 

words, the theoretical description of BiFeO3 physical properties is far behind the experiment. In 

particular ab initio calculations, which allow determining the parameters of antiferrodistortive 

and antiferromagnetic subsystems, magnetoelectric, antiferrodistortive-magnetic and 

antiferrodistortive-electric couplings of the corresponding long-range order parameters with each 

other in BiFeO3, are absent to date. On the other hand reliable experimental results, which 

analyses, as we will show below, allow making conclusions about the exclusive importance of 

the antiferrodistortive-type couplings in BiFeO3. 

Before presenting the problem statement and original results, let us make some 

comments about chosen research methods. As we discuss the principal possibility of a new kind 

of interaction between two long-range order parameters (antiferrodistortive and 

antiferromagnetic) in the bulk of multiferroic, in order to establish the existence of a particular 

interaction between the order parameters and unambiguously define the structure of 

corresponding material tensor, one can use the theory of symmetry, if its spatial and magnetic 

symmetry group is known [14]. Functional form of the antiferrodistive-antiferromagnetic 

coupling contribution to the free energy and its effect on phase transitions in multiferroics can be 

established within the framework of the continuous medium mean-field Ginzburg-Landau theory 

[11, 13]. However, it is impossible to define the value of the coupling strength, i.e. to calculate 

non-zero coupling constant for a given material, using phenomenological approach and the 

theory of symmetry. One can estimate the strength of antiferrodistive-antiferromagnetic coupling 

either from first principle quantum mechanical calculations within a specific microscopic model, 

or from the fitting to experimental data. Both of these approaches are indispensable to determine 

the coupling constants and complement each other well, but by themselves they are not free from 

drawbacks. Most of the first principle calculations (such as carried out in the framework of DFT) 

do not take into account correctly inhomogeneous long-range depolarization electric field in 

ferroics and the totality of the structural and magnetic antiferrodistortive modes, as well as do 
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not allow to say anything about the temperature dependence of the coupling constants. However 

it is possible to extract the coupling constant from the experiment sufficiently precisely and 

unambiguously, if the contribution of other effects is known within error margins. 

In the work we consider step-by-step the microscopic picture necessary for the 

occurrence of linear antiferrodistortive-antiferromagnetic coupling in antiferrodistortive 

antiferromagnets with the structural formula AMO3, establish the transformation law of linear 

antiferrodistortive-antiferromagnetic effect tensor, find its nonzero components of the theory of 

symmetry and estimate its numerical value from the smearing of specific heat jump near AFM 

transition for bismuth ferrite and its solid solutions Bi1-xRxFeO3 (R=La, Nd). 

 

2. Microscopic model for bilinear antiferrodistortive-antiferromagnetic coupling 

appearance  

The antiferromagnetic order parameter of the two-sublattice antiferromagnet is an axial vector L, 

that is equal to the difference of magnetization vectors of magnetic atoms in two equivalent sub-

lattices А and В, ( ) 2BA MML −= , ∑
=

μ=
A

i
iBA g

1
SM  и ∑

=

μ=
B

i
iBB g

1
SM  (see Figure 1a). The 

antiferrodistortive order parameter is an axial vector, which is the angle of oxygen octahedra tilt 

ϕ . Below we use the equivalent form of order parameters defined as the oxygen displacement 

from symmetric position ϕ=Φ tana , which can be calculated as the product of pseudocubic 

lattice constant a  with tangent of angle ϕ . As a rule, the angle ϕ  changes its sign in 

neighbouring cells, related to different sublattices А and В, namely ΦΦΦ ≡−= BA . The 

contribution of bilinear antiferrodistortive-magnetic coupling into the free energy is described be 

the following expression: 

( ) ( ) jiijjBiAi
ij

BjBiAjAi
ijL

RM LMMMMg Φχ≡Φ−
χ

≡Φ+Φ
χ

=
22

            (1a) 

Equation (1a) should be invariant under the translation on the basic vector of pseudocubic 

lattice, since magnetization vectors of each sublattices Mj change their signs, and the sublattice 

A transforms into the sublattice B under such translation, therefore vector Φ also changes its sign 

and from the macroscopic point of view nothing changes in the system. Thus the necessary 

condition for the linear antiferrodistortive-antiferromagnetic effect appearance is the 

simultaneous sign change of the vectors components Mi and Φj in the neighbouring sublattices А 

and В. Otherwise the corresponding component ijχ  of the antiferrodistortive-antiferromagnetic 

tensor is identically zero in a high temperature parent phase, i.e. is becomes zero everywhere as 

it follows from the free energy expansion continuity on the irreducible representation of the 
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parent phase. The same speculations lead us to the conclusion about impossibility of the nonzero 

linear antiferrodistortive-ferromagnetic term jiij M Φχ  appearance.  

Equation (1a) should be invariant under the time-reversal operation T and therefore the 

transformation law of the linear antiferrodistortive-antiferromagnetic effect tensor components 

ijχ  under the point group symmetry operations with the matrix elements, Сij, has the form 

( ) mkjkim
tr

ij CC χ−=χ 1 . The transformation laws of the order parameters are ( ) fkfk CC Φ=Φ det  

and ( ) ( ) pip
tr

i LCCL det1−= . Determinant det(С) = ±1; the factor tr denotes either the presence 

(tr = 1) or the absence (tr = 0) of the time-reversal operation. Here the summation is performed 

over the repeating indexes. As it follows directly from the transformation law of ijχ , it is T-odd 

tensor (similarly to iL  that is T-odd vector). The T-properties of the bilinear antiferrodistortive-

antiferromagnetic coupling tensor ijχ  are the similar to the properties of piezomagnetic tensor. 

Thus, simply rephrasing Landau and Lifshitz speculations for a piezomagnetism [24], the 

antiferrodistortive-antiferromagnetic coupling is possible only in materials with a magnetic 

structure, since without it the properties are invariant under the transformation T, and therefore 

the effect can exist in antiferromagnets belonging to certain magnetic symmetry classes which 

contain T only in combination with rotations or reflections, or else, do not contain T at all [25].  

Since ijχ  is identically zero in materials without a magnetic structure, it can be 

proportional to the sublattice magnetization or to the antiferromagnetic order parameter, or to 

some other order parameter, as it can be for a linear magnetoelectric [26] or piezoelectric [27] 

tensors. However it is only a possibility, but not a mandatory condition that follows from a 

symmetry theory. To illustrate this, a well-known analogy with a piezoelectric effect tensor can 

be used [24]. The latter can exist in any material without a space inversion (quartz, gallium 

nitride, zinc oxide, etc), but not only in a polar phase of ferroelectrics being proportional to the 

spontaneous polarization. That is why we decided not to limit ourselves by the case when ijχ  is 

proportional to antiferromagnetic order parameter, instead we would like to underline that the 

trilinear antiferrodistortive-antiferromagnetic coupling, described by invariants lkjiijkl L ΦΦΦχ  

are lkjiijkl LLL Φχ~ , should appear simultaneously with the bilinear antiferrodistortive-

antiferromagnetic coupling considered above, as well as higher odd order couplings of the type. 

Below we will concentrate on the study of the bilinear antiferrodistortive-antiferromagnetic 

coupling (1a) physical manifestations, since assume that the bilinear effect should dominate over 

the higher order odd ones under the same other conditions. 
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 For the magnetic and spatial symmetry groups corresponding to BiFeO3 (spatial group is 

cR3 , magnetic group is m3  or ++−
xzI 23  [28]), nonzero components of ijχ  are  

3
33

3
22

3
11

BiFeOBiFeOBiFeO χ≠χ=χ .                                                   (1b) 

Nonzero components for EuTiO3 are 3
21

3
12

EuTiOEuTiO χ−=χ . 
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Figure 1. Schematic illustration to the microscopic model of the bilinear antiferrodistortive-

antiferrodistortive coupling in the antiferrodistortive (AFD) phase of antiferromagnets with the 

structural formulae AМO3. The tilt Φ and spin S local values should be opposite for the 

neighbouring oxygen octahedrons, as shown in the figure for BiFeO3 and EuTiO3.  

 

3. Physical manifestations of the bilinear antiferrodistortive-antiferromagnetic coupling 

Description of an antiferrodistortive antiferromagnet in the framework of the phenomenological 

free energy approach shows, that the bilinear antiferrodistortive-antiferromagnetic coupling, in 

the manifestations we are interested in, does not influence the behaviour of magnetic and 

dielectric susceptibilities in external magnetic or electric fields, i.e. the coupling is unrelated with 

magnetoelectric effect. Thus we can consider an antiferrodistortive antiferromagnet in the 

absence of external fields for the purposes of the study. For the sake of simplicity we regard that 

both antiferrodistortive and antiferromagnetic phase transitions are of the second order. 

The expression for the free energy density of the uniform antiferrodistortive-

antiferromagnet in the absence of external magnetic and electric fields in the isotropic 1D-

approximation has the following form 
L
RMAFDAFM gggg ++= ,                                 (2a) 
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( )
42

4
2 LLTg L

L
AFM β+α= ,    ( ) 42

42
Φ

β
+Φ

α
= ΦΦ Tg AFD ,   Φχ= Lg L

RM          (2b) 

To describe the order parameters saturation behavior at low temperatures we used the quantum-

corrected formula for the coefficient ( ) ( )( )qQQQQTQ TTTTTT cothcoth)( −α=α  in Eqs.(2), 

which is valid in a wide temperature interval including low and high temperatures[29], where 

subscript Q=L and the temperature qT  is equal to Neel temperature NT  of AFM parameter 

appearance; subscript Q=Φ and the temperature qT  is equal to AFD transition temperature ST  of 

the oxygen tilt appearance. At high temperatures QTT >>  the formulae transforms into the 

classical limit, ( ) ( )NLTL TTT −α=α  and ( ) ( )ST TTT −α=α ΦΦ . Further let us solve the 

equations of state approximately in the assumption that the antiferrodistortive order parameter Φ 

appears at essentially higher temperatures TS than the temperature TN of spontaneous reversible 

antiferromagnetic order parameter L appearance. This allows us to make a decoupling 

approximation on the coupling coefficient χ. This is by the way a typical situation realizing for 

e.g. Bi1-xRxFeO3 (R=La, Gd, Nd, x=0 – 0.2) with TN≈(635 – 655) K and TS≈1200 K [4, 28], 

EuTiO3 with TN≈5 K and TS≈280 K [30, 31, 32].  

 Equations of state, 0=∂∂ Lg  and 0=Φ∂∂g , contains built-in fields Φχ  and Lχ  

correspondingly. As we have shown in the Supplement [33], the built-in fields leads to the 

antiferromagnetic (AFM) and antiferrodistortive (AFD) transition temperatures shifts, which are 

quadratic on the parameter χ, namely:  

( ) ( )
TLT

NSSNAFM TTTTT
Φαα

χ
+−−+=

2
2

2
1

2
1

,                                   (3a) 

( ) ( )
TLT

NSSNAFD TTTTT
Φαα

χ+−++=
2

2

2
1

2
1 .                                 (3b) 

The shifts given by expressions (3) are relatively small under the validity of the strong inequality 

( ) 22 χ>>−αα Φ NSTLT TT . Under the simultaneous validity of the later inequality and the 

condition SN TT <<  typical for antiferrodistortive antiferromagnets, expressions (3) can be 

simplified to the form, ( )STLTNAFM TTT Φααχ−≈ 42  and ( )STLTSAFD TTT Φααχ+≈ 42 .  

Besides the shift (3), built-in field Φχ  leads to the smearing of the AFM order parameter 

L above the Neel transition temperature, i.e. in the paramagnetic phase. The smearing effect 

increases under the increase of χ value, as is shown in the Figure 2а by solid curves. Under the 

absence of linear coupling (χ=0) one has ( ) LL TL βα±=  at NTT < . Structural order parameter 
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is practically independent on χ and equal to ( ) ( ) ΦΦ βα±≈Φ TT T  (see dotted curve in Figure 

2а). 

Unfortunately, the antiferromagnetic order parameter L by itself is not directly 

observable, but some notion about its behavior can be obtained from the temperature 

dependences of neutron scattering and specific heat, if the contribution related with the long-

range order appearance can be extracted. In particular the analyses and comparison with 

experiment of the specific heat changes 2

2

dT
gdTCP −=δ  allows us to verify the theoretical 

predictions made. In the typical case AFDAFM TT <  compact expression of the specific heat 

acquires the form: 

⎪
⎩

⎪
⎨

⎧

>

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Φα
+

α
−

=δ
Φ

.,0

,,
22

22

AFD

AFD
L

P

TT

TT
dT

dL
dT

d
dT
dT

C                             (4) 

As one can see from the Figure 2b-c the heat capacity variation peculiarity appeared in the 

vicinity of AFM transition, that is break at 0=χ , which becomes smeared and shifted with χ 

increase. At 0=χ  and temperatures NTT <  the heat capacity change is associated with the 

appearance of AFM order parameter, ( ) LNLT TTL β−α±≈ , in the immediate vicinity below 

the AFM order phase transition. At 0=χ  and temperatures SN TTT <<  the parameter 0=L . 

Therefore under the absence of bilinear coupling between the sublattices magnetization and 

antiferrodistortive tilts, only the sharp jump appears on the specific heat at Neel temperature TN. 

The jump value is equal to ( ) LLTN
N
P TC βα=δ 22 .  

Note that linear magnetoelectric effect (if one exists in a concrete antiferromagnet) does 

not contribute into the specific heat behaviour in the absence of external fields, and so the 

question about the contribution of other coupling, biquadratic e.g. antiferrodistortive-electric, 

magnetoelectric or antiferrodistortive-magnetic, to the specific heat smearing near TN arises. If 

these or others contributions exist how they can be separated from the ones caused by the 

considered bilinear coupling? In order to answer the question let us estimate the contribution of 

the biquadratic couplings between different order parameters and their mean squire fluctuations 

into the specific heat of antiferrodistortive ferroelectric-antiferromagnet. 

In order to calculate the contribution one can modify the free energy (2) by adding the 

ferroelectric contribution, ( ) 42 PPTg pPFE β+α= , and biquadratic couplings, 

222222 LPPLg BQ λ+Φη+Φξ= . Ferroelectric polarization leads to the occurrence of additional 
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term in Eq.(4), that is equal to ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α−≈δ
2

2P
dT
d

dT
dTC P

P  and nonzero in ferroelectric phase at 

temperatures FETT < . 

Rigorously speaking the biquadratic terms can only shift corresponding transition 

temperatures, but cannot lead to any smearing of diffuseness in the transition region. Thus the 

smearing effect is related with the bilinear term ΦχL  in thermodynamic limit.  

Using Ginzburg-Levanuk approach [34] for the estimation of the order parameters mean 

square fluctuations contribution into the specific heat in the vicinity of AFM phase transition, we 

include the gradient terms in the free energy (2), which have the simplest form in the isotropic 

approximation, ( ) ( ) ( )222

222
LPg LP

gr ∇
γ

+∇
γ

+Φ∇
γ

= Φ , and the entropy that density near AFM 

phase transition is approximately equal to ( )∫ γ+−α
π

≈
max

0

22
2 ln

2

k

LAFMLT
BAFM

fl dkkTTkTkg . 

Corresponding expression for the order parameters fluctuations contribution into the specific 

heat change near AFM has the form [34]: 

AFML

LTBfl
P

TT
Tk

C
−πγ

α
≈δ

23

232

8
                                      (5) 

Expression (5) diverges at AFMTT =  for finite Lγ  due to the fluctuations, which contribution 

disappears in the limiting case ∞→γ L  (thermodynamic limit of Landau theory). Elementary 

estimations made for the typical values of parameters αLT, βL и γL [35], have shown, that the 

smearing effect defined in Eq. (5), is essential only in very narrow vicinity of antiferromagnetic 

phase transition (for temperatures interval from fractions of Kelvin to few Kelvin wide), while 

the experimentally observed range of specific heat jump smearing is of order of 20-50 Kelvin. 

Really, at χ=0 the ratio 
NLTNL

LB
N
P

fl
P

TTT
Tk

C
C

−απγ
β

=
δ
δ

23

2

4
 becomes less than 0.01 already at 

1>− NTT К. Consideration of χ-effect Barret's law for temperature dependence of ( )TLα  could 

not change significantly this estimation. Therefore, fluctuation (5) does not make a significant 

contribution to the smearing of the specific heat jump, observable in experiment, approving the 

conclusion that most of the smearing of AFM phase transition is associated with bilinear 

coupling ΦχL  only. 

Below we consider multiferroic BiFeO3, which is antiferrodistive ferroelectric – 

antiferromagnet with critical temperatures TN≈ 645 K, TC≈1100 K and TS≈1200 K [22]. Our 

fitting of temperature dependence of AFM order parameter L in BiFeO3 obtained from neutron 

scattering experiment of Fischer et al [36] is shown Figure 2a. The fitting of temperature 
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dependence of specific heat and its part associated with transition to AFM phase is shown in 

Figure 2b-c for the experimental results of Kallaev et al [37].  
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Figure 2. (a) Sublattices magnetization ( ) ( )0LTL  and (b) heat capacity variation as a function 

of reduced temperature NTT . Symbols are experimental data for BiFeO3 from Fischer et al [36] 

on neutron scattering and Kallaev et al [37] for specific heat correspondingly. Curves are 

calculated by us for effective coupling constant =χ~ 2, 5, 10 SI units (solid curves) and χ = 0 

(dashed curve); 645=NT  K, 550=LT  K, 100=ΦT  K, 1200=ST  K. Dotted curve in the plot 

(b) is the AFD order parameter, 0ΦΦ , that is almost independent on χ value for chosen 

parameters. (c) Temperature dependencies of the anomalous contribution to the BiFeO3 specific 

heat. Symbols are experimental data from [37]. Solid curves are calculated at =χ~ 2, 5, 10 SI 

units, dashed curves corresponds to χ = 0. (d) Specific heat variation of EuTiO3 near the AFM 

transition. Symbols represent the experimental data [30-32]. Effective coupling constant χ = 0 
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(dashed curve) and =χ~ 2 SI units (solid curve); =NT 5.5 K, =ST 285 K. Other parameters of 

EuTiO3 are listed in the Table 1 in the ref [15]. 

 

Solid curves from Fig.2 correspond to nonzero value of effective parameter 

( ) ΦΦ βαβχ=χ TL
~ =2, 5, 10 SI units, dashed curves correspond to the case =χ~ 0. The best 

fitting was obtained for =χ~ 2 SI units. It is clearly seen that abrupt jumps of order parameter L 

temperature dependences, corresponding to the calculation at =χ~ 0, is in a satisfactory 

agreement with experimental points below TN. The same situation is for the curve calculated at 

=χ~ 2 SI units, for which the small L exists above the Neel temperature, decreases with 

temperature increases and tends to zero at STT → . However the specific heat features observed 

at NTT =  are evidently blurred in the temperature region NN TTT 1.1<< , at that the smearing 

can be satisfactory described only at =χ~ 2 SI units, but not at =χ~ 0. Therefore we can conclude 

that the diffuse "tail" of the antiferromagnetic order parameter L (as shown in the Figure 2а), 

that exists at nonzero χ~  values, pointed out on the possibility of the "weak" improper 

antiferromagnetism (WIAFM) induced by the antiferrodistortive structural ordering. 

To the best of our knowledge, the notion WIAFM is introduced here by us, and, naturally, 

requires explanations due to the possible muddle in the terminology related with its verbal 

similarity with a weak (anti)ferromagnetism. A weak ferromagnetism encounters rather often in 

various antiferromagnets and usually it is associated with the anticollinear spin canting. In many 

cases Dzialoshinski-Moriya (DM) interaction leads to the spin canting resulting in the 

appearance of a rather small total ferromagnetic moment M in an antiferromagnetic structure (see 

e.g. review [4] and refs therein). Sometimes weak ferromagnetism is called weak 

antiferromagnetism [38, 39]. However, the weak improper antiferromagnetism, which we 

predicted, should manifest itself in a different way than the aforementioned weak 

(anti)ferromagnetism. Actually, we predict the appearance of the small improper AFM order 

parameter "tail" that is proportional to the AFD order parameter and vanishes with the decrease 

of the AFD order under the temperature increase. No ferromagnetic moment exists in the 

considered case of weak improper antiferromagnetism, because the conjugated built-in field Φχ  

appears only in the equations for AFM order parameter L, namely 

Φχ−=Φξ+β+α 23 LLL L
RMLL , while the equation for M remains homogeneous without external 

magnetic field, 03 =β+α MM MM , and thus has only zero solution. The AFM order parameter 

becomes induced by the built-in the field Φχ . Corresponding region of the WIAFM existence is 

schematically shown by a dotted ellipse in the Figure 2a. 
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Nothing definite can be concluded about the χ~  value from the analyses of the 

experimental data shown in the Figure 2а, because it is extremely complex to register relatively 

small sublattices magnetization values by neutron scattering. On the other hand it is evident from 

the specific heat behavior shown in the Figure 2b-c, that the inequality >χ~ 1 SI units is 

necessary for the satisfactory agreement with experiment.Heat capacity variation of EuTiO3 near 

the AFM transition is shown for comparison in the Figure 2d. As one can see from the plot 

nonzero χ~  (solid curve) describes the experimental data better than χ = 0 (dashed curve). It is 

worth to underline that the smearing of sublattice magnetization and specific heat for BiFeO3 and 

EuTiO3 shown in Figs.2 looks like the smearing of ferroelectric properties in external electric 

field [40]. This obviously confirmed the statement that the terms Φχ  and Lχ  can be considered 

as built-in fields in the lattices. 

In the next section we show how the existence of antiferrodistortive-antiferromagnetic 

coupling can be approved from the specific heat behavior in the BiFeO3-based solid solutions, 

and estimate the effect value. 

 

4. Determination of the antiferrodistortive-antiferromagnetic coupling constant for Bi1-

xRxFeO3 solid solutions 

Available experimental results demonstrate noticeable features of the temperature dependencies 

of the specific heat in Bi1-xRxFeO3 (R=La, Nd, x=0 – 0.2) solid solutions [41]. The features 

appears at the temperature of the antiferromagnetic phase transition that is about (640-650) К. 

Corresponding experimental results are shown by symbols in the Figures 3. As one can see from 

the figure dashed curves calculated at 0~ =χ  and different composition х do not describe the 

specific hear smearing at temperatures NTT > . Solid curves, calculated as =χ~ (2 – 2.5) SI units 

and )655645( −=NT  K in dependence of х, describe the smearing effect adequately, proving 

the importance of the bilinear antiferrodistortive-antiferromagnetic effect for the understanding 

of the specific heat behaviour near the antiferromagnetic phase transition. The inclusion of the 

bilinear antiferrodistortive-antiferromagnetic effect is necessary for the quantitative description 

of the experimental data.  
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Figure 3. Temperature dependence of the specific heat near AFD phase transition of the solid 

solutions Bi1-xRxFeO3 (R=La, Nd, x= 0 – 0.2). Symbols are experimental data for Bi1-xRxFeO3 

from Amirov et al [41] for heat capacity correspondingly. Dashed curves are calculated by us for 

dimensionless coupling constant 0~ =χ . Solid curves correspond to different nonzero =χ~ (2 – 

2.5) SI units and )655645( −=NT  K depending on the composition x, 550=LT  K, 100=ΦT  K, 

1200=ST  K.  

 

Notice that we did not aimed to determine all material parameters of Bi1-xRxFeO3 from 

the fitting of the specific heat variation ( )TC pδ  and normalized antiferromagnetic order 

parameter ( ) ( )0LTL  temperature dependences, because it was impossible. Only the ratio 

( ) LLT βα 22  can be defined from specific heat jump N
pCδ , and the temperature dependence of 

the ratio ( ) LTL T αα  can be determined from the temperature dependence ( ) ( )0LTL . In order to 

define the value of αLT one needs the temperature dependence of the antiferromagnetic 

susceptibility that we could not found in literature. Despite the difficulty we reached our goal 

and found the effective value of the antiferrodistortive-antiferrodistortive coupling constant, 

( ) ΦΦ βαβχ=χ TL
~ , from the fitting of experimental data.  

 

5. Conclusions 

The possibility of the linear antiferrodistortive-antiferromagnetic effect existence in 

perovskite-multiferroics with the structural formula AMO3, antiferrodistive and 

antiferromagnetic ordering is demonstrated. Within the framework of the theory of symmetry 

and the microscopic model the necessary conditions for this effect occurrence are the 

simultaneous change in the sign of the corresponding components of the elementary 
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magnetization vectors in the neighboring antiferromagnetic sublattices coupled with the change 

of the antiferrodistive displacement direction in the neighboring oxygen octahedron MO6. Let us 

underline that the trilinear antiferrodistortive-antiferromagnetic coupling should appear 

simultaneously with the considered bilinear antiferrodistortive-antiferromagnetic coupling, as 

well as higher odd order couplings of the type. 

Physical manifestations of antiferrodistortive-antiferromagnetic effect is smearing of the 

antiferromagnetic phase transition and the emergence of small "improper" antiferromagnetic 

order parameter L above the Neel temperature and below the temperature of antiferrodistortive 

transition. The parameter L is induced by the product of the AFD order parameter Φ on the 

antiferrodistortive-antiferromagnetic coupling constant χ, at that the term χΦ acts as effective 

built-in conjugated field for the parameter. Therefore, there is the possibility to observe weak 

"improper" antiferromagnetism induced by the structural antiferrodistive ordering Φ above the 

Neel temperature. For example, in bismuth ferrite, for which the antiferromagnetic transition 

temperature is of the order of (640-655) K, and the temperature antiferrodistortive transition goes 

above 1200 K, the temperature dependence of L was measured by neutron scattering method. 

However, the available experimental data cannot say anything definite about the value of a 

smearing effect, because it is extremely difficult to register a sufficiently small value of L by 

neutron scattering.  

Antiferrodistortive-antiferromagnetic effect also leads to the smearing of the jump of 

the specific heat near the temperature of antiferromagnetic phase transition. By quantitative 

comparison with experiments we made estimates of the linear effect in antiferromagnetic solid 

solutions of multiferroic Bi1-xRxFeO3 and determine the optimal value of the antiferrodistortive-

antiferromagnetic coupling constants from the fitting to experimental data. Calculated 

dependencies describe the experiment quite satisfactory, thus proving the importance of bilinear 

antiferrodistortive-antiferromagnetic effect for the understanding of the mechanisms responsible 

for the temperature dependence of the specific heat behaviour near the antiferromagnetic phase 

transition. 
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