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We present a study of the scaling behavior of the Rényi entanglement entropy (REE) in SU(N)
spin chain Hamiltonians, in which all of the spins transform under the fundamental representation.
These SU(N) spin chains are known to be quantum critical and described by a well known Wess-
Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our
lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for
both closed and open boundary conditions. As expected for this 1D critical system, the REE shows
a logarithmic dependence on the subsystem size with a prefactor given by the central charge of the
SU(N) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both
periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as
a power law with an exponent proportional to the scaling dimension of the corresponding field. We
find that the use of periodic boundaries (where oscillations are less prominent) allows for a better
estimate of the central charge, while using open boundaries allows for a better estimate of the scaling
dimensions. We also present numerical data on the thermal Rényi entropy which equally allows for
extraction of the central charge.

I. INTRODUCTION

Entanglement is a fascinating aspect of quantum me-
chanics.1 It is able, for example, to determine if a many-
body wave function cannot in general be written as a ten-
sor product of individual single-particle wave functions.
The degree to which a wave function fails to be written
as a product state of two subsystem wave functions can
be quantified in terms of the entanglement entropy (EE)
between these two subsystems. In one dimension, gapped
quantum systems have an EE that stays constant as the
size of the subsystem is increased. This is consistent with
the so-called “area law,” which states that the EE grows
with the area of the boundary of the subsystem.2 How-
ever in gapless conformally invariant systems, the EE vi-
olates the area law and exhibits a logarithmic divergence
with a prefactor given by the central charge.3–5

Oscillatory sub-leading terms in the entanglement en-
tropy have been observed and studied for the XXZ chain
in the case of the von Neumann entanglement entropy un-
der open boundary conditions6 and the Rényi entangle-
ment entropy with both periodic and open boundaries.7–9

A general understanding of these results by CFT meth-
ods is also available.10

In this work we consider the Rényi entanglement en-
tropy (REE) in SU(N) Heisenberg anti-ferromagnetic
spin chains by quantum Monte Carlo simulations. Since
these models have a central charge which increases mono-
tonically with N , they gives us an unusual opportunity to
study various aspects of the REE in a system with very
large quantum entanglement. We note that this study
is possible in part because Monte Carlo is not hindered
by the amount of entanglement in the system, allowing
us to go to rather large values of N , see Appendix A.
In contrast, previous numerical studies which have used
the density matrix renormalization group (DMRG) algo-
rithm have been restricted mostly to low entanglement
ground states of spin chains.11–14 As a result of our study,

we are able to characterize the underlying CFT for the
SU(N) models based on the central charge from the lead-
ing log term, as well as the operator content which is re-
flected in the sub-leading oscillatory terms, which decay
as power laws. In addition, we have measured the Rényi
entropy of a subsystem as a function of temperature in or-
der to gain perspective on finite temperature effects and
as a alternative means of extracting the central charge.

II. THE LATTICE HAMILTONIAN

We consider the following Hamiltonian with the spin
on each lattice site transforming under the fundamental
representation of the SU(N) algebra.

HΠ = J
∑
<ij>

N−1∑
α,β=0

|βiαj〉〈αiβj | (1)

This model15 consists of a sum of bond operators that
permute nearest neighbor spins (colors) which are labeled
by numbers 0 through N−1. HΠ reduces to the spin-1/2
Heisenberg model when N = 2, and provides a natural
extension to larger N .

We will consider the case when J is positive (anti-
ferromagnetic) and spins tend to anti-align with one an-
other. Since it takes N lattice sites to form an SU(N)
singlet, we expect and find that the ground state consists
of equal numbers of each color and is non-degenerate
if the chain is an integer multiple of N . Finally, and
most importantly for the work that we present here, the
ground state is described by the SU(N)1 WZW model
with central charge c = N − 116,17 and N − 1 primary
fields with scaling dimensions ∆a = a − a2/N where
a ∈ [1, N − 1].18,19

Models with SU(N) symmetry are of both theoreti-
cal and experimental interest, since it has been shown
that ultra cold atoms in optical traps can give rise to
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FIG. 1: Comparison of QMC and exact diagonalization for
the ground state REE of a 14 site chain with N=2 under
periodic boundary conditions. This is shown for different
values of the Rényi index α, as indicated in the legend.
Colored points are data from exact diagonalization and black
circles connected by dashed lines are obtained from QMC for
α = 2, 3. Note that under periodic boundaries, oscillations in
the REE appear when α > 1 (see the end of Appendix D).

this symmetry,20 see Ref. [21] for a non-technical in-
troduction. In fact, the model we consider here can be
obtained from the SU(N) Hubbard model at 1/N filling
in the limit of large on-site repulsion.

Entanglement in this class of models has previously
been studied using DMRG for N ≤ 4,11 though the uni-
versal sub-leading oscillations were not present in the von
Neumann entanglement entropy under closed boundary
conditions. Other studies22,23 found oscillations in the
spin-spin correlation function for different values of N ,
verifying that the periodicity is given by 2π/N . In fact,
one can make a precise connection between entanglement
and spin correlations in one dimension.24

Here we will study in detail the scaling form of these
oscillations which are induced in the Rényi entanglement
entropy under both open and closed boundaries. We will
demonstrate quantitatively that the decay of these oscil-
lations contain interesting information about the scaling
dimensions of operators in the WZW field theory.

III. NUMERICAL RESULTS

We begin by first defining the Rényi entanglement en-
tropy (REE). Take a one-dimensional system of length
L and partition it into two segments of length lA and
lB = L − lA. Construct the density matrix for the en-
tire system (ρ), and compute the reduced density matrix
(ρA = TrBρ) by tracing over the degrees of freedom in
lB . The Rényi entanglement entropy is then given by

Sα(ρA) =
1

1− α log(Tr{ραA}), (2)

where one obtains the von Neumann entanglement en-
tropy S(lA) = −Tr{ρA log(ρA)} by taking the limit
α → 1. Appendix D reviews the extended ensemble ap-
proach introduced in [25] that allows for efficient mea-

surements of the REE with QMC. In Fig. 1 we com-
pare our QMC results versus exact diagonalization for
an SU(2) chain of length L = 14 under periodic bound-
aries for several values of the Rényi index (α). The QMC
delivers exact results within controllable statistical error
bars. Similar agreement is found for N > 2 (not shown).

A. REE periodic boundaries

Inspired by previous work on the XXZ spin chain we
fit our numerical data to the following scaling form7

Sα(lA) = Slog
α (lA) + Sosc

α (lA) + c̃α, (3)

where

Slog
α (lA) =

c

6η

(
1 +

1

α

)
log

[(
ηL

π
sin

(
πlA
L

))]
(4)

and

Sosc
α (lA) = Fα(lA/L) cos(2kF lA)

∣∣∣∣2ηLπ sin(πlA/L)

∣∣∣∣−
2∆1
ηα

,

(5)
where η = 1, 2 is for periodic and open boundary condi-
tions, respectively. The universal parameters are the cen-
tral charge c, the Fermi momentum kF , and the scaling
dimension ∆1. Fα(lA/L) is a universal scaling function

(into which a factor of | sin(kF )|
2∆1
ηα has been absorbed)

and c̃ is a non-universal constant. In the present study
we find that approximating Fα(lA/L) to be a constant
allows for a sufficiently accurate extraction of the pa-
rameters of interest. In the rest of this paper we take
kF = π/N, which can clearly be seen in the data. All
of our simulations are performed with βJ = NL, which
ensures that finite temperature effects are negligible.

Fig. 2 shows our data for the REE with periodic
boundary condition for 2 ≤ N ≤ 6. When N = 2, there
is just one primary field with conformal weight ∆1. In
the case of higher N , there are primary fields with less
relevant scaling dimensions that contribute in addition to
the oscillatory behavior. In the periodic case, oscillations
are very small, and one oscillatory term from the most
relevant primary field is sufficient to describe the data.
However, precisely because the oscillations are small, we
are unable to reliably extract the scaling dimensions from
our numerical fits (though it must be included for reliable
extraction of the central charge). Higher values of the
Rényi index indeed make it easier to extract exponents
from the oscillations; however, this route is impractical
since finite size effects become greater for larger α. The
benefit of considering periodic boundaries is that it leads
to very accurate estimates of the central charge with min-
imal finite size effects, as shown in Fig. 2 and Table I.



3

0 10 20 30 40 50
lA

1

2

3

4

5

6
S

2
(l

A
)

SU(6), L = 72

SU(5), L = 70

SU(4), L = 64

SU(3), L = 72

SU(2), L = 64

0.0 0.2 0.4 0.6 0.8

S log
2 (lA)/c

0

1

2

3

4

S
2
(l

A
)
−

S
os

c
2

(l
A
)
−

c̃

FIG. 2: REE as a function of the subsystem size (lA) with
periodic boundary conditions. We set the Rényi index α = 2
and the total chain lengths are integer multiples of N .
Oscillations have Fermi momentum kF = π/N . Solid lines
are best fits to the CFT scaling form. In the right inset we
have subtracted the oscillatory and constant pieces of the
REE, and plotted it against Slog

α (lA)/c. This is plotted on
top of lines with slope N − 1. The best fit values for the
central charges are given in Table I.

N L c cCFT

2 64 0.99(1) 1
3 74 2.01(1) 2
4 64 2.99(1) 3
5 70 3.99(1) 4
6 72 5.01(1) 5

TABLE I: Best fit central charges corresponding to Fig. 2.
Exact values are given by cCFT = N − 1. These results are
obtained by excluding the first few data points when fitting
to the form Eq. (3).

B. REE open boundaries, N < 4

In order to efficiently extract the scaling dimensions
from the REE, we consider open boundary conditions
where oscillations are much more pronounced. We begin
with N = 2, 3 where there is just one distinct scaling
dimension. The second Rényi entropy along with the
best fit of ∆1 is given in Fig. 3. We find that ∆1 in
the SU(2) case is not fully converged due to the presence
of logarithmic corrections to correlations that have not
been accounted for.26 Interestingly, this seems to have
less of an effect in the SU(3) case where the best fit in
the region lA � 1 converges close to the analytical value
in the thermodynamic limit (see Inset of Fig. 3).

In order to see the qualitative signature of the primary
fields, we show in Fig. 4 the discrete Fourier transform of
the REE appearing in Fig. 3. Before taking the Fourier
transform we used the fact that Sα(lA, L) = Sα(L−lA, L)
to reconstruct the REE along the entire chain length.
We then dropped L/4 points from each edge in order to
minimize finite size effects coming from the boundary.
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FIG. 3: Second Rényi entropy with open boundaries for
N = 2, 3. In the inset we plot the scaling dimension (∆1) as
obtained by fitting the QMC data. The solid black lines are
the exact values, and the QMC results are plotted as a
function of the number of boundary points that are excluded
from the fit.
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FIG. 4: Discrete Fourier transform Eq. (6) of the REE data
appearing in Fig. 3. Here we used the fact that
Sα(lA, L) = Sα(L− lA, L) to reconstruct the REE along the
entire chain length, then dropped L/4 points from each edge
before taking the Fourier transform. Peaks in the Fourier
transform appear at integer multiples of 2kF .

The Fourier transform is given by

S̃k =
1√
n

n−1∑
j=0

Sje
−2πikj/n, (6)

where Sj : j ∈ [0, n − 1] is the list of entries in Sα(lA)
after the points have been dropped and n is the total
number of elements left. We have dropped the α index
from the discrete Fourier transform for ease of notation.

C. REE open boundaries, N ≥ 4

We now move to N = 4 which is the first N for which
there is a more than one distinct scaling dimension. We
hence have to generalize Eq. (5) to a sum of oscillating
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FIG. 5: Second Rényi entropy with open boundaries for
N = 4 and L = 32, 64, 128. The inset is similar to Fig. 3,
although now we fit two different primary field scaling
dimensions. Strong finite size effects are apparent in the
extraction of ∆2, the signature of which is much weaker
than that of ∆1. Error bars indicate stochastic error and do
not include the systematic error inherent in the fit.
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FIG. 6: Second Rényi entropy with open boundaries for
N = 5 and L = 30, 70, 120. This figure is similar to Fig. 5.

terms. We use the following form,

Sosc
α (lA) =

N−1∑
a=1

faα cos(2akF lA)

∣∣∣∣2ηLπ sin(πlA/L)

∣∣∣∣−
2∆a
ηα

,

(7)
where we achieve very good fits to our QMC data, again
taking the universal scaling function to be a constant.

In Figs. 5 and 6 we have fit our data from N = 4 and
N = 5 with the oscillatory piece Eq. (7) and use it to
extract the two distinct scaling dimensions. For N = 4, 5
we find it necessary to go to even larger system sizes in
order to show convergence of the scaling dimensions to
their CFT values. Strong finite size effects are apparent
in the extraction of ∆2, however it is essential to include
it as a fit parameter in order to obtain a reasonable esti-
mate of ∆1.

Though it is difficult to obtain accurate quantitative
estimates of ∆2 using this method, clear qualitative sig-
natures of all primary fields are present in the Fourier
spectrum of the REE shown in Figs. 7 and 8.
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FIG. 7: Fourier transform of the second Rényi entropy for
N = 4 given in Fig. 5.
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D. Effect of finite temperature on Rényi entropy

Finally we consider the thermal Rényi entropy, which
is defined in the same way as Eq. (2), except that the
density matrix is no longer pure (constructed from only
the ground state) but rather it is mixed (constructed from
a thermal distribution of excited states):

ρ =
e−βH

Z
. (8)

The thermal Rényi entropy allows us to extract the cen-
tral charge at finite temperature which in practice is
much less computationally intensive.

Fig. 9 shows the emergence of a linear scaling region
in the thermal Rényi entropy that now captures the en-
tanglement between subsystems as well as the thermal
entropy of subsystem A. Since the entropy goes like the
log of the number of states, and in the high temperature
limit all of the N lA states are equally probable, we nat-
urally expect a linear scaling region to emerge at finite
temperature.

We use the following scaling form to fit to our thermal
Rényi entropy data4,27

S2(β|lA) ∼
(

1 +
1

α

)
πclA

12kFβ
, (9)
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where we fix kF = π/N . We tested that this for-
mula gives the correct central charge in the linear scaling
regime for different values of N and α and for both open
and closed boundary conditions. Here we only present
data for N = 3 and α = 2.

In Fig. 10 we use the scaling form Eq. (9) to extract
an effective central charge for N = 3 chains at different
values of L and βJ , which is given in the inset. We clearly
see that the central charge flows to its analytical value in
the limit L → ∞ and βJ � 1. In practice, we find the
central charge approaches a value slightly higher than its
analytical one. This is due to the fact that oscillations
have been neglected by considering only troughs, leading
to a linear fit with a slightly larger slope.

IV. CONCLUSIONS

In this paper we have investigated the Rényi entangle-
ment entropy in the context of critical SU(N) spin chains
which are described by a WZW non-linear sigma model
in the thermodynamic limit. We showed that signatures
of all N − 1 primary fields are present in the oscillations
of the entanglement entropy. We further used the ana-
lytical form of the oscillations given by Eq. (7) to extract
the numerical values of the scaling dimensions, which are
consistent with the results of CFT.

We considered both closed and open boundary condi-
tions, where the former proves effective in extracting the
central charge, while the latter is more suitable for ex-
tracting the scaling dimensions of primary fields. Finally,
we demonstrated universal behavior of the thermal Rényi
entropy that allows for extraction of the central charge
with less computational effort.

These results serve to illustrate the wealth of infor-
mation contained in the entanglement entropy. By mea-
suring this quantity alone, one determines all the pa-
rameters that make up the continuum description in
terms of a CFT. One could extend this work by consider-
ing sub-leading (possibly oscillating) terms in the entan-
glement entropy for different representations of SU(N).
Such models are described by more general WZW CFTs.
These have been studied numerically in Ref. [11] and
Ref. [28], though it would be interesting to see the struc-
ture of oscillations that one observes and whether it is
possible for scaling dimensions to be extracted via some
generalization of Eq. (7).

Partial financial support was received through NSF
DMR-1056536. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number
ACI-1053575; in particular, resources were used on the
Trestles cluster housed at the San Diego Supercomputing
Center (SDSC) allocated under TG-DMR130040. Part of
this work was completed while one author (RKK) held
an adjunct faculty position at the TIFR.

Appendix A: Large-N limitations

It is clear that QMC can handle large values of N quite
easily compared with the näıve scaling encountered in
exact-diagonalization studies or DMRG. In this section
we wish to get a rough perspective on how our method
performs when N becomes much larger. We demonstrate
this by measuring the second Rényi entropy for a length
70 SU(10) chain under periodic boundaries, Fig. (11).
We have done the simulation twice, once at βJ = 2L
and once at βJ = 3L.

This test case serves to illustrate two important fea-
tures. Firstly, finite temperature effects are clearly visible
when the length of the subsystem becomes large. In fact,
we are only able to get a reasonable fit to our zero tem-
perature scaling form, Eq. (3), for βJ = 3L. Secondly, as
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FIG. 11: S2(lA) for a L = 70 SU(10) chain with
βJ = 2L, 3L. Finite temperature effects are visible when the
subsystem size (lA) becomes large. When βJ = 3L we are
able to achieve a reasonable fit to our zero temperature
scaling form, Eq. (3), with a slightly larger central charge.
In the inset we show the best fit central charge as a function
of the number of largest lA points excluded. For each fit we
have also exluded the first 10 points (lA = 1 − 10).

expected, the oscillations are much longer which leads to
unreliable fits if too many points are dropped (these are
not shown in the inset). We cannot fit to our finite tem-
perature formula, as it does not account for oscillations
and it is inpractical to keep only the crests or troughs.

We conclude that even at N = 10, good results are
still within range, although one would need to increase
βJ > 3L. Our finite temperature SU(10) data merely
serves to illustrate this point. Beyond finite temperature
effects, the other limitation is that one would need to
increase the chain length at even larger N in order to
achieve a reliable fit over many oscillations.

Appendix B: Stochastic series expansion

In this section, we briefly review the stochastic series
expansion (SSE) (see [29] for a comprehensive review).
Consider a general spin Hamiltonian which is a sum of
bond operators

H = −
∑
b

(H1
b +H2

b − C1), (B1)

where H1
b is diagonal in the spin basis, H2

b is off-diagonal
and b is the bond index. Here C is a constant which is
adjusted such that the matrix elements of H1

b ≥ 0. Con-
figurations in the SSE come from expanding the partition
function,

Z = Tr{e−βH} =
∑
α

∑
n

βn

n!
〈α|{

∑
b

(H1
b +H2

b )}n|α〉

(B2)

=
∑
α

∑
n

∑
{Sn}

βn

n!
〈α|Sn|α〉, (B3)

FIG. 12: A partition function configuration in the SSE.
Black bars represent off-diagonal operators, and white bars
represent diagonal operators. The operator string satisfies
the trace condition, meaning the initial spins at the bottom
are the same as the spins at the top.

where Sn is a product of n diagonal and off-diagonal bond
operators and the sum on {Sn} includes all possible com-
binations of such operators. We have neglected the con-
stant shift C, which should be taken into account when
computing the energy. At this point we should mention
that since matrix elements of diagonal operators can al-
ways be made positive by the constant shift, minus signs
only enter the SSE through off-diagonal operators. One is
then restricted to models where H2

b ≥ 0, or models where
the number of negative off-diagonals in any configuration
is strictly even. The latter argument will be used in Ap-
pendix C to apply the SSE to our anti-ferromagnetic spin
Hamiltonian.

It is useful to introduce a pictorial representation of a
configuration in the SSE, which is given in Fig 12. Here
we have black (white) bars representing off-diagonal (di-
agonal) operators in the spin basis, and spin colors are
propagated through an operator string that satisfies the
trace condition. The updating scheme for generating new
SSE configurations will be given in the context of our
SU(N) model in Appendix C.

Appendix C: QMC sampling procedure

Previous works22,23 have simulated HΠ by Monte-
Carlo methods. Below we summarize how we applied
the SSE to HΠ, Eq. (1), and how MC updates of the
configurations were carried out.

In order to avoid minus signs associated with diagonal
matrix elements in the SSE (see Appendix B), we shift
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the Hamiltonian by the unit matrix

1 =
∑
α,β

|αβ〉〈αβ| (C1)

H
′

Π = HΠ −Nbond1 =
∑
<ij>

∑
α6=β

(|βiαj〉〈αiβj | (C2)

− |αiβj〉〈αiβj |).

We thus zero out all matrix elements between same-spin
nearest neighbors. The off-diagonal (spin flip) opera-
tors still contribute to minus signs in the SSE, thus any
operator string that satisfies the trace and that has an
odd number of off-diagonal operators will have a negative
weight. On a chain with open boundary conditions, all
configurations that satisfy the trace have an even number
of off-diagonal operators. This can be seen from the fact
that each spin must return to its original position after
propagation through the operator string, which requires
an even number of permutations.

With periodic boundary conditions it is possible for
like-colored spins to trade places, which in general could
be done by an odd number of off-diagonal matrix ele-
ments. However, it can be shown that if a configuration
has a fixed parity, i.e., the total number of each different
type of color is either all odd, or all even, then such neg-
ative weight windings are impossible. This is precisely
what happens in the ground state of chains where the
total length is evenly divisible by N , because the ground
state contains L/N color singlets. Thus we will sample
all configurations with the correct (positive) weight if we
remain at low enough temperature to be in the ground
state subspace and if we consider chain lengths that are
integer multiples of N . In fact we can go further. After
discussing the loop structure in the SSE, we will argue
that we avoid a sign problem even at finite temperature
in the periodic case.

At this point we will review the Monte Carlo sampling
procedure, highlighting the novel loop structure that al-
lows for deterministic sampling of configurations. Monte
Carlo sampling occurs in four stages, the first being a
diagonal update, where diagonal operators are inserted
or removed from the operator string with a probability
given by the ratio of weights in the SSE. Next, linked
lines are constructed that establish a loop structure to
the configuration. A random color and starting position
is then chosen, and one follows along the loop chang-
ing colors according to the starting color until the loop
closes. Painting loops causes the conversion between di-
agonal and off-diagonal operators, and when the loop
closes we generate a new configuration contained in the
SSE of the partition function. Finally, one makes mea-
surements on the newly generated configuration; in the
case of the REE, checking if a transition can be made
between different partition function ensembles (see Ap-
pendix D). Loop moves are constructed so that matrix el-
ements with zero weight are never generated. In our case,
the zero matrix elements are between nearest neighbors
with the same color. Figure 13 shows the possible vertex

FIG. 13: Possible vertices of the Hamiltonian and different
loop updating moves. The left side of each box shows the
vertex before the update, along with path and color of the
loop (arrows). The right side of each box shows the vertex
after it has been updated. The upper boxes show the
“continue straight” and “switch and continue” moves where
the incoming color will not generate a zero matrix element.
The lower boxes are both “switch and reverse” moves that
are required to avoid generating zero matrix elements.

updating moves, or equivalently, how a loop update can
change matrix elements within the SSE of the partition
function.

The upper boxes show updates where the incoming
color poses no threat of a zero matrix element. The lower
boxes require a switch and reverse loop move along with
a loop color switch so as to avoid creating a zero matrix
element. Once a random starting color and starting po-
sition for the loop is chosen, then the path of the loop as
well as the sequence of color changes are uniquely deter-
mined by these rules.

As we increase the value of βJ , the operator string
grows in length (vertical direction of Fig 12), and the
loops increase their spatial (horizontal) extent. Con-
versely, loops at high temperature become localized in
the horizontal spatial direction, and are less likely to wind
around in the horizontal direction. It is precisely for this
reason that the algorithm does not suffer from a sign
problem in the case of periodic boundaries at finite tem-
perature. Negative weight configurations (though possi-
ble), have a negligibly small weight. As the temperature
is lowered and the loops begin to proliferate, we begin to
enter the total spin zero sector of the configuration space
(the same number of every color is present) and negative
winding configurations cannot occur. This is why it is
crucial that we have chain lengths which are integer mul-
tiples N , since free spins (not paired in a singlet) are free
to wander and create negative weight windings.

Appendix D: REE and the replica trick

We will now review the recipe for measuring the Rényi
entanglement entropy within the context of the SSE. The
two basic ingredients are the replica trick,30,31 and an ex-
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FIG. 14: Configuration of Z2 (left) and Z
(2)
A (right). A

transition from left to right can be made when the A spins
in both copies match each other. Transitions from right to
left are made when the A spins in the middle match the A
spins in the outer trace.

tended ensemble QMC approach introduced in [25]. The
Rényi entanglement entropy is given by

Sα(ρA) =
1

1− α log(Tr{ραA}), (D1)

where

ρA =
1

Z
TrB{e−βH} (D2)

is the reduced density matrix, given by tracing over the
basis states in the B subsystem. When considering the
entanglement between A and B at zero temperature, we
need to have β sufficiently large so as to project out only
the ground state contribution to Eq. (D2). We can ex-
press the entanglement entropy in terms of a ratio of

partition functions25

Sα(ρA) =
1

1− α log
Z

(α)
A

Zα
, (D3)

where Zα consists of α copies of the regular partition

function, and Z
(α)
A has a modified trace condition in the

A sub-region, which extends over all copies. An example
of each type of configuration is given in Fig. 14 for the
case α = 2.

To compute the Monte Carlo average of the ratio of
partition functions, one preforms importance sampling
of the extended ensemble of configurations contained in

Zα ∪ Z(α)
A . Transitions between ensembles can be made

when the spin matching condition is satisfied in the A
sub-region. In this way, the ratio is given by the number

of Monte Carlo steps preformed in Z
(α)
A , divided by the

number of Monte Carlo steps preformed in Zα〈
Z

(α)
A

Zα

〉
=

〈
MCstep(Z

(α)
A )

MCstep(Zα)

〉
MC

. (D4)

Sampling the extended ensemble in the SSE is partic-
ularly straightforward, since transitions between ensem-
bles occurs with probability 1 whenever the spin match-
ing condition is satisfied in the A sub-region. This is
due to the fact that the two configurations have identi-
cal weights (number of bond operators), though this idea
can be extended to configurations that have continuous
degrees of freedom.25 In practice, the A spin matching
condition becomes increasingly difficult to satisfy as the
A sub-region grows, so we employ an increment trick used
in both [31] and [25]. We note that the modified parti-

tion function Z
(2)
A locally breaks translational invariance

at a point joining the A and B subsystems.10 This leads
to oscillations in the Rényi entanglement entropy under
periodic boundary conditions. The von Neumann entan-
glement entropy lacks these oscillations under periodic
boundary conditions as it is free from this defect. Both
the Rényi and von Neumann entanglement entropies can
have oscillatory terms under open boundaries due to the
breaking of translational invariance at the edges of the
chain.
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