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Recently it has been proposed that a unitary topological mirror symmetry can stabilize multiple zero energy
Majorana fermion modes in one dimensional (1D) time reversal (TR) invariant topological superconductors.
Here we establish an exact equivalence between 1D “topological mirror superconductivity” and chiral topologi-
cal superconductivity in BDI class which can also stabilize multiple Majorana-Kramers pairs in 1D TR-invariant
topological superconductors. The equivalence proves that topological mirror superconductivity can be under-
stood as chiral superconductivity in the BDI symmetry class co-existing with time-reversal symmetry. Further-
more, we show that the mirror Berry phase coincides with the chiral winding invariant of the BDI symmetry
class, which is independent of the presence of the time-reversal symmetry. Thus, the time-reversal invariant
topological mirror superconducting state may be viewed as a special case of the BDI symmetry class in the
well-known Altland-Zirnbauer periodic table of free fermionic phases. We illustrate the results with the exam-
ples of 1D spin-orbit coupled quantum wires in the presence of nodeless s± superconductivity and the recently
discussed experimental system of ferromagnetic atom (Fe) chains embedded on a lead (Pb) superconductor.

Introduction : Mirror symmetry, when coupled with time-
reversal (TR) and particle-hole (PH) symmetries, has recently
been proposed1 to stabilize a one-dimensional topological su-
perconducting phase with an integer number of spatially over-
lapping zero energy Majorana fermion modes. The number of
Majorana edge modes in a so-called “topological mirror su-
perconductor” is indexed by a mirror Berry phase γm ∈ Z
which was defined in Ref. 1. Mirror symmetry and a mirror
Berry phase topological invariant have been used to theoret-
ically explain the existence of multiple Majorana modes in
heterostructure based topological superconductors involving
a proximity induced s±-wave pairing potential on spin-orbit
coupled semiconductor wires1. A mirror symmetry has also
been recently invoked to discuss the topological properties in
the context of ferromagnetic atomic chains embedded on the
surface of a Pb superconductor2,3.

Topological classification based on a unitary mirror sym-
metry aims to extend the Z2-invariant of the DIII symmetry
class to allow the existence of multiple Majorana Kramers
pairs (MKPs)1,4. In the Altland-Zirnbauer framework of clas-
sification of free fermionic phases5–7, Majorana fermions have
been predicted to occur as edge states in low dimensional sys-
tems belonging to the topological classes D8–15, DIII16–26, and
BDI27–36. This raises the fundamental question of whether or
not mirror symmetry in one dimension refines the topological
classification in the Altland-Zirnbauer framework, and if so,
is mirror symmetry a critical ingredient for the protection of
MKPs in time-reversal invariant DIII systems? In one dimen-
sion it is well known that the chiral BDI symmetry class also
supports an arbitrary number of Majorana end modes due to
its Z invariant27,28,35 and, with concurrent TR symmetry, stabi-
lizes multiple Majorana-Kramers pairs26 as edge modes. It is
therefore natural to ask how these two symmetries (mirror and
chiral), which both produce multiple MKPs in the presence of
concurrent TR, are related and investigate the conditions un-
der which they may differ, if at all.

In this work we formulate a general procedure illustrat-
ing how the presence of mirror symmetry promotes a one-
dimensional class DIII topological superconductor to the chi-
ral topological class BDI that co-exists with a time-reversal

symmetry. We then establish an exact equivalence between
the mirror Berry phase1 used to justify the presence of mul-
tiple MKPs in DIII systems and the integer winding number
invariant of the BDI class26. However, the winding invariant
for the BDI class continues to be well-defined and unchanged
even when the time-reversal symmetry is broken. The equiva-
lence proves that “topological mirror superconductivity”1 can
be viewed as belonging to the BDI symmetry class in the well-
known periodic table of Altland-Zirnbaur classification of
free fermionic phases5–7 and that the co-existing time-reversal
symmetry does not qualitatively modify the topological phase.
Therefore, in one dimension the chiral BDI symmetry is in
fact more general than mirror symmetry in the sense that per-
turbations which break both the symplectic TR symmetry and
topological mirror symmetry may keep the chiral symmetry
invariant, allowing multiple Majorana fermion modes even in
the absence of mirror symmetry. In contrast, chiral symmetry
breaking terms also necessarily break either mirror or time re-
versal symmetry (under either of these circumstances the mir-
ror Berry phase cannot be defined1) and therefore topological
mirror symmetry cannot be thought of as an independent sym-
metry in one-dimension.

Mirror versus chiral symmetric systems: In this paper we
will consider a superconducting system with particle-hole
symmetry Ξ and time-reversal symmetry Θ. Superconducting
systems with mirror symmetry for which the “mirror Berry
phase” is defined1 have an additional unitary symmetry oper-
ator M such that [M,Θ] = [M,Ξ] = [M, H] = 0 (where
H is the BdG Hamiltonian for which explicit examples are
discussed in later sections) and M2 = −1. On the other
hand, systems in the chiral BDI symmetry class have a pseudo
time reversal operatorO (withO2 = 1) which in combination
with the particle-hole symmetry Ξ defines a chirality operator
C = Ξ·O with the properties C2 = 1, {C, H} = 0, [Θ, C] = 0.
Note that we have assumed here that the two time-reversal op-
erators O and Θ commute. From these definitions it is clear
that when these BDI symmetry operators are present one can
define a “mirror” operatorM = O ·Θ, which satisfies all the
properties mentioned for the Mirror operator. Alternatively
for systems with time-reversal and mirror symmetry one can
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define the pseudo-time reversalO = Θ ·M, which is required
to characterize systems in the BDI symmetry class. Therefore,
superconducting systems with TR and BDI symmetries have
the same operator content as systems with TR and mirror sym-
metries.

Equivalence of mirror Berry phase and BDI winding num-
ber: The topological invariant associated with the BDI sym-
metry i.e. the winding number for C coincides with the mirror
Berry phase defined in Ref. [ 1] are also related. To see this,
we follow Ref. [ 1] to define the mirror Berry phase and define
a family of Hamiltonians parametrized by θ as

H(k, θ) = H(k) cos θ + C sin θ. (1)

Note here that we have introduced a slight modification to the
definition used in Ref. [ 1], where for the chirality operator we
have used C = Π·M instead of Π = iΘ·Ξ. But sinceM com-
mutes with H this is essentially equivalent apart from the fact
that with this transformation, the mirror Berry phase in Ref. [
1] becomes the total Chern number of H(k, θ) . The Chern
number is given by integrating the curvature of the Berry con-
nection and using Stokes theorem is related to the integral of
the Berry connection written as

a(k, θ) =
∑
n

fn〈n, k, θ|∇θ,k|n, k, θ〉 (2)

at θ = 0, where |n, k, θ〉 are wave-functions parametrized ei-
ther on the top Hemisphere π/2 > θ > 0 or the bottom Hemi-
sphere −π/2 < θ < 0.

The Hamiltonian H(k) is off-diagonal with an off-diagonal
matrix Q(k) as

H(k) =

(
0 Q(k)

Q(k)† 0

)
(3)

in the basis where C is diagonal and has a winding numberW
defined in terms of the phase Arg(det(Q(k)))27. The matrix
Q(k) can also be decomposed (singular value decomposition)
as

Q(k) = U†kΣkVk, (4)

where Uk, Vk are unitary and Σk is a positive diagonal matrix.
The Hamiltonian H(k) can be transformed using a unitary
transformation

Z(k) =

(
Uk 0
0 Vk

)
(5)

to define another chiral Hamiltonian

H̄(k) = Z(k)H(k)Z(k)† =

(
0 Σ(k)

Σ(k) 0

)
. (6)

Since this Hamiltonian H̄(k) has wave-functions |n, k〉0 that
are easy to write down in terms of the diagonal matrix Σ(k)
one can easily check that this Hamiltonian has vanishing
winding number 0 and also zero Chern number 0. The Berry

connection of the two chiral Hamiltonians are related by

a(k, θ = 0) =
∑
n

fn〈n, k|∇k|n, k〉 (7)

=
∑
n

fn〈n, k|Z(k)†∇k[Z(k)|n, k〉0] (8)

= a0(k, θ = 0) +
∑
n

fn〈n, k|[Z(k)†∇kZ(k)]|n, k〉0 (9)

= ∂kArg[Det(U(k)V †(k))] = ∂kArg[Det[Q(k)]]. (10)

Therefore the integral of the Berry connection, which is re-
lated to the mirror Berry phase, is the same as the winding
number invariant of the BDI class.

Example 1: Spin-orbit coupled nanowire proximity cou-
pled to s± superconductor: As a concrete example, we il-
lustrate the equivalence of topological mirror and chiral su-
perconductivity for a system consisting of a spin-orbit cou-
pled semiconductor nanowire with proximity induced s±-
wave superconductivity1. In principle this may be experimen-
tally achieved by depositing an InSb nanowire onto an Iron
based superconductor with a sign changing extended s-wave
order parameter. The effective Bogoliubov-de Gennes (BdG)
Hamiltonian for the nanowire with proximity induced super-
conductivity is H =

∑
k Ψ†kH(k)Ψk where,

H(k) = (−2t cos(k)− µ)σ0τz + αR sin(k)σyτz (11)
+ ∆s cos(k)σ0τx.

Here k ≡ kx is the 1D crystal momentum and Ψk =

(ck↑, ck↓, c
†
−k↓,−c

†
−k↑)

T is a four component Nambu spinor
acting in the τ (particle-hole) and σ (spin) spaces. Addi-
tionally, t is the nearest neighbor hopping, µ is the chemi-
cal potential, αR is the strength of Rashba spin orbit coupling
(which we haven chosen to be along ŷ without loss of gener-
ality) and ∆s is the proximity induced pair potential.

As with any superconducting mean field BdG Hamiltonian
Eq. (11) is invariant under a particle-hole transformation de-
noted by the operator Ξ. The PH constraint for Bloch Hamil-
tonians is ΞH(k)Ξ−1 = −H(−k) and the anti-unitary PH
operator in our basis is given by Ξ = σyτyK. In addi-
tion to belonging in the time reversal symmetry class DIII
with a Z2 invariant (by virtue of the time-reversal symme-
try ΘH(k)Θ−1 = H(−k) where Θ = iσyτ0K with K the
complex conjugation operator), the Hamiltonian in Eq. (11) is
also invariant under a mirror symmetry1 M = −iσyτ0 since
MH(k)M−1 = H(k) (i.e. [M, H(k)] = 0). Note that the
momentum has not changed sign under the mirror operation
since the mirror operatorM is unitary and the reflection as-
sociated with the mirror symmetry is taken about a 1D mirror
line1.

Since the Hamiltonian in Eq. (11) is invariant under Θ
and M as defined above, it is also clearly invariant under
their composition which we define as O = Θ · M. Ex-
plicitly, O = σ0τ0K which squares to +1 and the Hamilto-
nian in Eq. 11 transforms under this operator according to
OH(k)O−1 = H(−k), which is the pseudo time-reversal
symmetry introduced above. The presence of a TR-operator
with O2 = 1, along with PH symmetry, means that Eq. (11)



3

also satisfies the requirements to be in the topological class
BDI indexed by an integer winding invariantW ∈ Z. As we
showed in the last section, the mirror Berry phase calculated
in the presence ofM and Θ is identical to the BDI winding
numberW that can be defined with the help of the pseudo TR
operator O = Θ · M (with O2 = 1) and the PH operator
Ξ. Below we first review the action ofM and the pseudo TR
operatorO on the Pauli matrices σi, and then consider pertur-
bations which remove each symmetry individually.

It is straightforward to observe the following relations in-
volving the action of TR (conventional as well as pseudo) and
mirror symmetries on the Pauli matrices:

ΘσiΘ
−1 = −σi (12a)

MσiM−1 = +ηiσi (12b)

OσiO−1 = −ηiσi (12c)

where ηi = −1 for i = x, z and ηi = +1 for i = y. The
fermionic TR operator by definition anti-commutes with each
Pauli-matrix (Eq. 12a). Under the mirror operationM, spins
in the x − z plane acquire −1 phase factors while the spin
component normal to the mirror plane (see Fig. 1) does not
acquire a phase of −1. This follows from the fact that spin is
a pseudo-vector, with the parallel components acquiring extra
−1 signs under improper rotations such as reflection about a
plane. Eq. 12c the follows from the composition of the two
operations since O = Θ · M. Note that the SU(2) angular
momentum algebra of the σ operators ([σi, σj ] = 2iεijkσk) is
preserved under the action of O since two (one) operators are
even (odd) under O. In fact, the (anti-)commutation relations
in Eq. 12c are characteristic of a TR operator with O2 = 1.37

In order to restrict this system to a single topological class,
we follow Ref. 7 in removing the unitary symmetries present
until the system is uniquely characterized by a single topologi-
cal class. Consider case (i) – A perturbation which potentially
can break the mirror symmetry of Eq. (11) is a Zeeman term
HZ = V · σ when |Vxz| 6= 0 where |Vxz| =

√
V 2
x + V 2

z , and
V = (Vx, Vy, Vz). Such a perturbation also breaks the con-
ventional TR symmetry Θ but keeps the pseudo TR symmetry
(M · Θ) and hence the chiral symmetry of the total Hamilto-
nian intact so long as Vy = 0. Thus, in this case, even though
the mirror Berry phase can no longer be defined, the BDI chi-
ral invariantW remains well defined and the system can host
an integer number of protected Majorana fermion modes at
the edges. Now consider case (ii) – when V = (0, Vy, 0) the
Hamiltonian is mirror symmetric (M is unbroken) but chiral
and TR symmetries both break down (i.e. the Hamiltonian
is not invariant under Θ and, consequently, also not under
O = M · Θ). In this case, even though the mirror symme-
try persists, the mirror Berry phase procedure is no longer ap-
plicable due to the lack of time reversal symmetry (note that
the mirror Berry phase is only defined in the presence of Θ1).
Thus we find that the mirror symmetry helps us find a suit-
able pseudo TR operator O which in turn helps us define the
chiral operator C = O · Ξ. This procedure is valid as long
as the TR operator Θ is a symmetry or as in case (i) wherein
both Θ and M are broken by the same Zeeman field. Such
a procedure of defining a chiral symmetry does not work in

Operator Symmetry Ex. 1 Ex. 2

Ξ PH σyτyK σyτyK

M Mirror iσyτ0 id̂ · στ0

Θ DIII TR iσyτ0K iσyτ0K

O BDI TR K (d̂ · ŷ + i(d̂× ŷ) · σ)K

Π DIII Chiral σ0τy σ0τy

C BDI Chiral σyτy d̂ · στy

TABLE I. Summary of symmetry operators and their explicit forms
in Examples 1,2. Particle-hole and time-reversal symmetries are anti-
unitary operators which are the product of a unitary operator, acting
in particle-hole and spin space, and the complex conjugation operator
K.

Mxz

x
y

z

α̂

FIG. 1. Mirror symmetry for spin-orbit coupled wires (Example 1).
In this case the 1D nanowire (red) lies along the x-axis. The blue ar-
row denotes the direction of the spin-orbit field in spin space which
defines the mirror plane (light blue). When a Zeeman field lies in the
mirror plane the mirror symmetry is broken but chiral symmetry is
preserved. If a Zeeman field is normal to the mirror plane the mir-
ror symmetry is preserved while time reversal and chiral symmetries
are removed. However, in this case, there is no mirror topological
invariant since the mirror Berry phase is only defined in the presence
of time-reversal symmetry (class DIII). Figure for mirror symmetry
for ferromagnetic atom chain embedded on Pb superconductor (Ex-
ample 2) should be analogous.

case (ii) and also in case (iii): where the mirror symmetry is
broken (say, by an additional next-nearest-neighbor spin-orbit
coupling HSO

k = α′ sin(2k)(c · σ)τz with c ⊥ ŷ26) but Θ
is unbroken. In this case a single Kramers pair of Majorana
bound states will appear at each edge of the system, and any
TR breaking perturbation will gap out the edge modes. Note
that in both case (ii) and (iii) neither mirror Chern nor the chi-
ral winding number invariant can be defined. However, as we
have established in this work, when both invariants are defined
(i.e., in the presence of Θ), they are identical, and the topolog-
ical mirror superconductivity and chiral BDI superconductiv-
ity are equivalent descriptions of the same physical system.
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Example 2: Ferromagnetic atom (Fe) chain embedded
in Pb superconductor: Motivated by recent experimental
findings2,3, as a second illustrative example we consider a
simple effective model for a ferromagnetic (Fe) atom chain
embedded in a Pb superconductor which can support Ma-
jorana modes and topological superconductivity. The effec-
tive mean-field BdG Hamiltonian, which gives a sufficient
description of topological superconductivity of the ferromag-
netic nanowire assuming that the underlying degrees of free-
dom in the Pb substrate have been integrated out, can be writ-
ten as36,38,39 H =

∑
k Ψ†kH(k)Ψk where,

H(k) = (−2t cos(k)− µ)σ0τz (13)
+ ∆p sin(k)d · στx + V · στ0.

In Eq. (13) ∆p is the magnitude of the induced spin-triplet
pairing potential in the ferromagnetic nanowire. The Zee-
man term due to a constant internal magnetization in the fer-
romagnet, V = (Vx, Vy, Vz) (which is assumed to be V =
(0, 0, J)).

A generic d-vector pointing in an arbitrary direction in spin
space is written as d̂ = (sin θ cosφ, sin θ sinφ, cos θ) in polar
coordinates. In order to understand the role of mirror sym-
metry let us first consider Eq. (13) with no intrinsic magne-
tization (i.e V = 0). In this case, the only spin space Pauli
matrix (σ) appears in the superconducting term and the ob-
vious choice of M would be M = id̂ · στ0. Thus the mir-
ror plane is the plane perpendicular to the d̂-vector. Follow-
ing the procedure discussed previously we define an operator
O = Θ·M = (iσz sin θ cosφ+σ0 sin θ sinφ−iσx cos θ)K =

(d̂ · ŷ+ i(d̂× ŷ) · σ)K. Clearly O2 = +1 and OH(k)O−1 =
+H(−k) and thus fulfills the requirements of a class BDI
or pseudo time reversal operator. The chiral operator C is
C = O · Ξ = d̂ · στy for our Hamiltonian. Indeed, the form
of the operators in Example 1 can be understood by the above
relation describing the structure of theO operator. In the spin-
orbit coupled system the direction of the spin-orbit field (re-
member the Rashba term involved a σy) plays the role of an
effective d-vector for the effective p-wave pairing created by
the combination of spin-orbit coupling and singlet supercon-
ductivity.

Now let us turn on the effective Zeeman field V and exam-
ine what happens to the mirror symmetry. As long as the only
non-zero component of V is along the d̂ vector, mirror sym-

metry remains intact because the mirror operator still com-
mutes with the Hamiltonian in Eq. 13. However this direction
of the Zeeman field breaks the chiral symmetry C = O ·Ξ (as
it breaks O = M · Θ) and thus the system belongs to class
D where even number of localized Majorana bound states
hybridize into finite-energy quasiparticles. Thus the mirror
symmetry alone does not protect spatially localized Majorana
multiplets at the sample edges. Let us now introduce a Zee-
man field which only lies in the mirror plane which is per-
pendicular to the d̂-vector. Now the mirror operator no longer
commutes with the Hamiltonian H and thus mirror symmetry
is broken. However in this case since Θ is also broken by the
Zeeman field the pseudo TR operator O = M · Θ remains
unbroken. Thus chiral symmetry C is unbroken and this is a
class BDI system as discussed earlier36,38,39.

Conclusion: In this work we show that one dimensional
topological mirror superconductivity resulting from the co-
existence of a mirror symmetry and symplectic time-reversal
symmetry may also be viewed as a chiral topological su-
perconductor in the BDI symmetry class. The mirror Berry
phase1 is found to be equivalent with the winding number in-
variant characterizing one dimensional BDI systems. How-
ever, the winding number and other qualitative aspects of the
phase, such as number of edge Majorana modes, continue to
survive even when the symplectic time-reversal Θ and mirror-
symmetryM are broken. Thus the topological mirror phase is
adiabatically connected to a BDI phase by perturbations that
break the mirror and time-reversal symmetry while preserv-
ing the BDI chiral symmetry C. Such a perturbation does
not have a qualitative effect such as splitting edge Majorana
modes. We illustrate our point with two examples, a spin-orbit
coupled semiconductor nanowire with proximity induced ex-
tended s-wave pairing potential1, and the recently discussed
experimental system of chains of ferromagnetic atoms on a
spin-orbit coupled substrate of Pb superconductor2,3, in which
integer numbers of Majorana modes could be stabilized by the
BDI chiral symmetry. Our results show that an extension to
the AZ periodic table which incorporates mirror symmetry is
unnecessary for d = 1 superconducting systems.
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