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We study coupling between the ferroelectric polarization and magnetization of granular ferromag-
netic film using a phenomenological model of combined multiferroic system consisting of granular
ferromagnetic film placed above the ferroelectric (FE) layer. The coupling is due to screening of
Coulomb interaction in the granular film by the FE layer. Below the FE Curie temperature the
magnetization has hysteresis as a function of electric field. Below the magnetic ordering tempera-
ture the polarization has hysteresis as a function of magnetic field. We study the magneto-electric
coupling for weak and strong spatial dispersion of the FE layer. The effect of mutual influence
decreases with increasing the spatial dispersion of the FE layer. For weak dispersion the strongest
coupling occurs in the vicinity of the ferroelectric-paraelectric phase transition. For strong disper-
sion the situation is the opposite. We study the magneto-electric coupling as a function of distance
between the FE layer and the granular film. For large distances the coupling decays exponentially
due to the exponential decrease of electric field produced by the oscillating charges in the granular
ferromagnetic film.

PACS numbers: 75.70.-i 68.65.-k 77.55.-g 77.55.Nv

I. INTRODUCTION

Currently the field of multiferroics and materials pos-
sessing magneto-electric effect is a very active area of
research.1–11 It promises numerous applications, but pro-
vides much more fundamental challenges. Vast variety of
different multiferroic materials are currently studied by
many groups who are looking for strong magneto-electric
(ME) coupling. Among them are single crystals possess-
ing intrinsic ME coupling,12,13 and composite multifer-
roics consisting of ferroelectric (FE) and ferromagnetic
(FM) layers.14–23

There are several ”classical” mechanisms of ME cou-
pling. In a single crystal multiferroics the intrin-
sic ME coupling appears due to spin-orbit interaction
which couples magnetic moments with orbital motions of
electrons.12,13 Another mechanism involves the electro-
striction effect combined with dependence of exchange
interaction on the interatomic distance, the so-called ”ex-
change striction”.24,25 A different type of ME effect ap-
pears in crystals with magnetic spiral structures. In com-
posite multiferroics consisting of two different materials:
magnetic and ferroelectric, the ME coupling appears at
the interface of the FE and FM phases.1 Usually, the
coupling is due to a combination of electro-striction and
magneto-striction effects. The ME coupling also appears
at the metal ferromagnet and insulator interface. In this
system the electric field can induce a charge accumulation
at the FM interface modifying the magnetic anisotropy
at the surface.20,21 This effect also involves the spin-orbit
interaction. Another type of combined multiferroics in-
cludes layer of multiferroic with antiferromagnetic order-
ing and ferromagnetic layer.7,8 In these materials the ex-
change bias is controlled by electric field.

FIG. 1. (Color online) Composite multiferroic - material con-
sisting of granular ferromagnetic film placed at distance d

above the FE layer (FE) of thickness h. Ferromagnetic film
consists of ferromagnetic metallic particles (blue spheres) with
finite magnetic moments (red arrows) embedded into an in-
sulating matrix (I). FE layer has a polarization P along the
z-axis.

Typical example of two component multiferroics is the
granular multiferroics - materials consisting of magnetic
particles embedded into FE matrix.26–31 Recently, novel
mechanism of ME coupling involving the interplay of the
Coulomb blockade effects, intergrain exchange interac-
tion and ferroelectric dielectric response was proposed
for these materials32,33. In contrast to the above ”classi-
cal” ME coupling mechanisms this mechanism does not
involve the spin-orbit interaction. Similar to the ”ex-
change+striction” mechanism the influence of electric
subsystem on the magnetic subsystem occurs through the
control of the exchange interaction. However, the control
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of the exchange interaction has nothing to do with stric-
tion and occurs due to Coulomb blockade which governs
the overlap of electron wave functions.

This mechanism was studied using the microscopic the-
ory. In particular, it was shown that the magnetiza-
tion of granular multiferroics strongly depends on the FE
state leading to the appearance of an additional magnetic
phase transition in the vicinity of the FE Curie point and
to the possibility of controlling the magnetic state of the
system by an electric field.

In this paper we study the ME coupling mechanism in
combined granular multiferroic - material consisting of
granular ferromagnetic film (GFM) placed above the FE
layer at distance d, see Fig. 1. In contrast to the previous
works, here we use a phenomenological approach. This
approach allows to account for i) the spatial dispersion
of the FE layer and ii) the influence of magnetic subsys-
tem on the FE polarization. Both these effects were not
discussed before.

According to Ref. 32 the coupling between the GFM
film and the FE layer occurs due to screening of Coulomb
interaction in the GFM film by the FE layer. The screen-
ing was discussed assuming that the FE layer is a dielec-
tric with a local response. In this case the ME effect
has a peak in the vicinity of the FE Curie temperature.
However, real FEs have domain walls of finite thickness
increasing with approaching the paraelectric-ferroelectric
phase transition. The FE layer can not effectively screen
the electric field with characteristic spatial length being
smaller than the thickness of the FE domain wall. The
characteristic scale for the electric field produced by the
GFM film is defined by the intergrain distance. For FE
domain wall thickness exceeding this scale the coupling
between the FE and the GFM layers is suppressed. This
leads to the decrease of the ME effect in the vicinity of
the paraelectric-ferroelectric phase transition, contrary
to the local response case. Such a behavior was not dis-
cussed before since the ME effect in the GMF film was
studied assuming the local response of the FE layer. In
this paper we study the influence of the FE spatial dis-
persion on coupling between the FE layer and the GFM
film.

We use a phenomenological approach to study the sys-
tem with spatial dispersion. Usually the ME coupling
effects are treated using terms proportional to the prod-
uct of polarization and magnetization, ∼ αmeP

nMn.24

We describe our system using three phenomenological pa-
rameters: 1) the FE polarization, 2) the GFM film mag-
netization, and 3) the spatial oscillations of charge in the
GFM. The later parameter is crucial for granular mate-
rials since these materials have complicated morphology
leading to the inevitable formation of charge oscillations.
We use the local quadrupole moment to describe the sys-
tem since the average polarization and the average charge
in the granular film is zero. The microscopic theory of
ME coupling in GMF shows that the charge oscillations
are responsible for this coupling, thus supporting the use
of these three parameters.

Phenomenologically the influence of the FE subsystem
on the magnetic subsystem is described by the term in-
volving both polarization and magnetization in the total
energy of the system.24 This contribution leads to the
inverse effect - the influence of magnetic subsystem on
the FE subsystem. This effect will be discussed in the
present paper.
The paper is organized as follows. In Sec. II we discuss

the model for combined granular multiferroic system. Us-
ing this model we consider two cases of weak and strong
spatial dispersion of the FE layer in Secs. III and IV,
respectively. In Sec. V we discuss the phenomenologi-
cal and microscopic approaches. Finally, we consider the
validity of our approach in Sec. VI

II. THE MODEL

A. Discussion of ferroelectric substrate state

A uniformly polarized FE layer without domains can
be observed between the metallic electrodes with applied
bias. These electrodes screen the electric field — this is a
well known paradigm verified in numerous experiments.
In our consideration the FE substrate is placed be-

tween the metallic electrode (below the FE substrate)
and the granular film (above the FE layer). We assume
that the granular film has small but finite conductivity
leading to the equilibration of potential in the film. A
certain potential U is maintained between the bottom
electrode and the granular film. Therefore charges can
flow from the bottom electrode to the granular film. The
metal electrode and the granular film create an exter-
nal electric field Eext. In addition, the bound charges
appear at the FE surface. These charges create a depo-
larizing field Edep. The total field acting on the FE due
to all these charges is E0 = Eext + Edep. The charges
on the bottom electrode and the granular film allow to
screen the depolarizing field of the FE substrate surface
charges. Thus, ferroelectricity with uniform polarization
P0 locally perpendicular to the film surface exists in the
system. We will discuss the domain formation below.
In Ref. 34 it was shown that a granular film effectively

screens the depolarizing field of the FE surface charges
preventing the suppression of ferroelectricity. As demon-
strated in Ref. 34 the Curie temperature of the FE layer
decreases slightly in comparison with bulk FE. This may
be related to the imperfect screening by the granular film.
In Refs. 35 and 36 it was shown that even one layer of
metallic grains effectively screens the electric field.
Here we note that besides the uniform charge distribu-

tion due to potential applied to the granular film there
exist a random distribution of charges among the grains.
These charges appear due to impurities and defects in-
evitably existing in granular system. Such charges pro-
duce random electric field acting on the FE substrate.
This field, however can hardly be strong enough to in-
duce the formation of FE domains. In equilibrium the
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excess charge of the grain related to impurities or de-
fects can hardly be larger than one elementary charge.
The field produced by these charges is not strong enough
to produce domains in the FE. Often, even ten elemen-
tary charges on a typical grain is hardly enough to over-
come the typical FE switching field except the very spe-
cial cases when, for example, the FE is somehow “di-
luted”.37,38

Here we mostly consider the case with all grains hav-
ing the same charge leading to uniformly polarized FE.
In this case the average FE polarization is defined by the
applied voltage and there are no domains in the FE sub-
strate. However, our results can be also obtained under
more general conditions, when in addition to the exter-
nal field there is a random field of granular film acting
on the FE. In this case our results remain qualitatively
the same until the characteristic length of the random
field exceeds the intergrain distance. We will discuss the
influence of domains in the next subsection.
The electric charges in the granular film also appear

in the vicinity of the grain boundaries. These charges
appear due to extension of conduction electron wave
functions beyond the grain boundaries. We consider
these charges as a “regular” charges. On one hand,
these charges provide the exchange interaction between
grains, and on the another, they interact with FE sub-
strate via Coulomb interaction. Namely, these charges
are responsible for ME coupling in our consideration,
see Figs. 2 and 3(b). Since the field of these ”regu-
lar” charges plays the key role in coupling between the
FE layer and the granular film we use letters E (field in-
tensity) and D (field induction) to describe it. The total
field in FE layer Etot and Dtot can be written as follows
Etot = E0 + E and Dtot = D0 + D. The field of ”reg-
ular” charges is not strong enough to produce domains
in the FE, but it leads to a weak variation of polariza-
tion in the substrate which can be considered as a linear
perturbation on the uniform (polarization) background.
This polarization correction is defined as P (1), therefore
the local polarization at each point can be written as
P = P0 + P (1).

B. Importance of spatial dispersion

In contrast to previous consideration of the ME cou-
pling in composite FE we take into account the spatial
dispersion, when P(r) =

∫

χ(r, r′)E(r′)dr′. It plays a
crucial role for the ME coupling in the system. The in-
teraction between the granular film and the FE layer is
due to Coulomb interaction. An inhomogeneous spatial
distribution of “regular” charges in the granular film pro-
duces an inhomogeneous electric field inside the FE layer.
This field has a zero average.
Figure 2 shows metallic grains producing an electric

field E(z) inside the FE layer. This field is not strong
enough to create domains in the FE (the field amplitude
is essentially less than the FE switching field) and can

be considered as perturbation. The characteristic length
scale of this field is the intergrain distance L. When the
spatial dispersion is weak and the characteristic scale of
the spatial dispersion lSD (which is related to the FE
domain wall thickness as lDW ∼ lSD

√
χ) is less than the

intergrain distance, the polarization locally follows the
electric field. Thus, the susceptibility of the FE substrate
χ(k) ≈ χ(k = 0) = χ0 and for polarization one has

Pk ∼ χ0Ek, (1)

see the second stripe (”No SP”). Here Pk and Ek are
the spatial Fourier harmonics of the polarization and the
electric field, respectively. Thus, in the absence of ran-
dom electric field due to random impurities and defects
the susceptibility depends only on the average polariza-
tion defined by the bias voltage. In this case χ is the
same over the FE substrate. To summarize: In the ab-
sence of spatial dispersion the FE response is large and
the interaction between the GFM and the substrate is
strong.

A strong spatial dispersion, lSD ≫ L (|k|lSD ≫ 1),
leads to the suppression of the FE response on the small
scale variation of the electric field produced by grains.
In this case one can not neglect the k-dependence of the
susceptibility, χ(k). For large k, k → ∞, the susceptibil-
ity χ(k) → 0. The leading contribution is quadratic in k
due to symmetry reasons

Pk ∼ χ(k)Ek, χ(k) ∼ χ0

k2l2DW

. (2)

(third stripe in Fig. 2, “average SD”) This contribution
leads to the suppression of interaction between the grains
and the FE layer and thus to the suppression of the ME
coupling. Finally, the response disappears for very strong
dispersion (forth stripe in Fig. 2, “strong SD”).

The degree of spatial dispersion in the FE can be differ-
ent. It depends on the ferroelectric material, temperature
and other parameters. Below we investigate how the spa-
tial dispersion influences the magneto-electric coupling
in general case considering the limits of weak and strong
spatial dispersions and justify the validity of Eq. (2).

We mention that above estimates are valid for random
electric field, produced by the random charges and de-
fects, being zero. For finite random field the dielectric
susceptibility χ(r, r′) of the FE film depends slowly on
the coordinate R = (r+r

′)/2. Thus, in Fourier space we
have χ = χ(k,R). This dependence appears since the lo-
cal susceptibility depends on the local electric field acting
on the FE. In this case we use an effective dielectric sus-
ceptibility averaged over the random field distribution.
This effect changes the ME coupling dependence on the
bias voltage, however it does not suppress it until the
characteristic spatial scale of the random electric field
exceeds the intergrain distance.
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FIG. 2. (Color online) Metallic grains above the FE layer.
Due to complicated morphology the inhomogeneous spatial
charge distribution occurs in the array of grains. This charge
distribution produces an electric field in the FE layer (E(z)).
The FE response to this field strongly depends on the spatial
dispersion strength in the FE. In the case of weak dispersion,
when domain wall is less than the characteristic field scale,
the response is strong (second stripe marked as “No SP”).
In the opposite case, the response is suppressed (third stripe
marked as ”SP”).

C. System parameters

In this section we discuss the model of composite mul-
tiferroics — materials consisting of two thin layers: i) fer-
roelectric (FE) layer and ii) granular ferromagnetic film
(GFM) made of ferromagnetic grains embedded into an
insulating matrix, see Fig. 1. The grains have average ra-
dius a of few nm with the distance between grains being
1 − 2 nm. The distance between the neighbouring grain
centres is Lg. Each grain is characterized by large Curie
temperature, much larger than all other characteristic
energy scales in the problem. Therefore, each particle is
in the FM state. Due to the interaction between particles
the macroscopic FM state may occur in the GFM film for
temperatures T < T

FM

C
, where T

FM

C
is the ferromagnetic

ordering temperature.

There are three phenomenological parameters charac-
terizing the system: 1) the coordinate dependent electric
polarization of the FE layer, P; 2) the average magneti-
zation of the GFM layer, M; 3) the spatial oscillations of
electric charge in the GFM film appearing due to inhomo-
geneous distribution of metallic inclusions in the granular
film, see Fig. 3.

A spatial charge distribution in the granular film has
two components: 1) a uniform component. We assume
that a voltage difference is maintained between a metal
electrode at the bottom of the FE substrate and the gran-
ular film. The film has low but finite conductance, lead-
ing to the equilibration of potential in the film. A surface
charge of the FE substrate is screened by the charges uni-
formly distributed among grains.

2) The second component of the spatial charge distri-
bution is the inhomogeneous component. Below we will
concentrate on this component since it is responsible for

(a)

(b)

FIG. 3. (Color online) (a) Lattice of metallic grains. The in-
terparticle spacing has a small negative and grains have small
positive charges due to electron tunneling between grains
leading to the formation of quadrupole moments in the re-
gions between grains. There are two types of quadrupoles,
Q̂1 and Q̂2. (b) Two magnetic grains. Electron wave func-
tions (Ψ1 and Ψ2) extend beyond the grains and overlap in
the region between the grains. ξ is the decay length of the
electron wave functions. Quadrupole moment appears due to
presence of electrons outside the grains. Exchange interaction
between grains appears due to the overlap of electron wave
functions.

coupling between magnetic moment of granular film and
the FE layer. The electron wave functions extend be-
yond the metallic grains leading to the appearance of a
non-zero local electric dipole moment. Opposite dipole
moments of two neighbouring grains form a quadrupole
moment between each pair of grains. Therefore the sys-
tem is described by the ensemble of quadrupoles with
moments Q̂i, see Fig. 3.

We mention that the importance of electron wave func-
tion extension beyond the metallic grains was understood
in optics early. This is so-called “spill-out” effect. For ex-
ample, due to this effect the plasmon frequency of the
nanograin becomes sensitive to the spilled fraction of

electrons: ωpl = ω
(0)
pl (1 − δNe/2Ne), where δNe is the

spilled electron fraction, Ne is the number of electrons

in the nanograin and ω
(0)
pl is the bulk material plasma

frequency, see, e.g., Ref. 39.

Our system is characterized by several length scales.
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The domain wall thickness Lp in the FE away from the
transition point can be comparable with interatomic dis-
tance. In this case Lp is smaller than the intergrain dis-
tance Lg. Close to the transition point the situation is the
opposite, Lp > Lg. The magnetic domain wall thickness
Lm in the GFM film is much larger than the intergrain
distance, Lm > Lg.

D. Free energy

The total free energy of the system consists of three
contributions: 1) the energy of the FE layer, WFE, 2) the
energy of the GFM film, WGFM, and 3) the interaction
energy between two subsystems, W I. Below we discuss
each energy contribution in details.

1. Energy of granular ferromagnetic film, WGFM

The free energy of GFM film, WGFM has two contri-
butions

WGFM = WGFM
m +WGFM

c , (3)

where WGFM
m is the energy of magnetic subsystem40

WGFM
m = αMM2 + βMM4 − (M ·B) + δM(∇M)2. (4)

Here αM, βM, δM are some phenomenological constants
and B is the external magnetic field.
The second contribution, WGFM

c in Eq. (3) is due to
spatial charge oscillations. The simplest model of regu-
lar rectangular array of identical grains with the lattice
parameter Lg is characterized by the regular array of

quadrupoles Q̂i which can be characterized by magni-
tude Qi = Qi

xx +Qi
yy. Below we consider a uniform spa-

tial distribution of quadrupole moments and introduce a
single parameter describing the system of quadrupoles,
Q (Qi = Q). There are two types of quadrupoles, Q̂1

and Q̂2, see Fig. 3. These quadrupoles are transformable
one into another using the rotation π/2 (Q1

xx = Q2
yy,

Q1
yy = Q2

xx). Both quadrupoles have the same mag-
nitude Q, however the electric field produced by these
quadrupoles is different.
We define the electrical induction of electric field pro-

duced by quadrupole with unit moment (Q = 1) as
D

q
i (r, ri), where index i stands for quadrupole i, ri de-

notes the quadrupole position, and r defines the observer
position. Below we will omit vectors ri for simplicity
keeping the index i only. There are two different spatial
distributions of electric field D

q
i corresponding to two

types of quadrupoles. The total electric field produced
by quadrupoles is D = Q

∑

i D
q
i .

The phenomenological parameter Q̂i is different
from the polarization P and magnetization M since
quadrupoles appear due to complex morphology and not
due to a phase transition. In the absence of magnetiza-
tion and ferroelectricity the quadrupoles are described by

the following free energy W 0
c = αQ(Q −Q0)

2, where Q0

is the equilibrium magnitude of quadrupoles at a given
temperature T and parameter αQ depends on tempera-
ture.
Quadrupoles interact with each other via electric field.

The energy density of this field is

WE =
Q2

8πΩGFM

∑

i,j

∫

d3rDq
i (r)D

q
j (r), (5)

where ΩGFM is the volume of the GFM film. Without
loss of generality we assume that beside the FE layer di-
electric permittivity of all over space is approximately
1. The average electric field produced by the ensem-
ble of quadrupoles is zero. Therefore the interference
of the field E0 and the quadrupole field is negligible,
∫

d3rE0 ·
∑

iD
q
i = 0.

The spatial charge oscillations produce an additional
contribution to the system Coulomb energyWGFM. This
contribution defines the coupling between quadrupoles
and magnetic subsystem. The exchange interaction is the
short range interaction. Thus we use the local coupling
between parameter Q and magnetization M . Since Q is
invariant with respect to the spatial inversion it enters
linearly into the coupling term. Finally, we obtain the
following result for the energy of quadrupoles

WGFM
c = W 0

c +WE + γ(Q−Q0)M
2, (6)

where γ is a phenomenological parameter. The higher or-
der terms, σ4M2, σ2M4, and σ4M4 can be taken into ac-
count as well. For simplicity we consider only the lowest
order coupling term between Q and M . The microscopic
origin of this coupling is discussed in Sec. V.

2. Energy of ferroelectric layer, WFE

We consider the case of isotropic FE. The typical ex-
ample of isotropic FEs are organic ferroelectrics. Our
theory can be easily generalized for anisotropic FE. We
discuss this point in the Sec. VI. The free energy of the
FE layer has the form,41–44

WFE = αPP
2 + βPP

4 + δP(∇P)2 − (P ·E0). (7)

Here αP, δP and βP are phenomenological constants and
E0 is the homogeneous electric field produced by the
bound FE charges, granular film and the bottom elec-
trode. It is directed perpendicular to the FE layer (z-
axis).
We notice that the charges inside the granular film re-

sponsible for the field E0 and quadrupoles in the GFM
film have a different origin: the charges outside the GFM
film are created by the voltage source leading to the fixed
electric field E0 but not to the fixed electric induction D0

while the quadrupoles appear due to complex morphol-
ogy producing a finite electric field induction D rather
than the electric field E.
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3. Interaction energy between two subsystems, W I

The coupling between the FE layer and the GFM film
occurs due to the interaction of electric field produced by
quadrupoles in the GFM film with the FE layer

W I = − Q

2ΩGFM

∑

i

∫

d3rDq
i (r)P(r), (8)

where the FE polarization has the form

P = P0 +P
(1)(r) +P

(2)(r). (9)

Here P0 is the spontaneous (or external field induced)
uniform polarization of the FE layer. It depends on the
external field below and above the transition tempera-
ture T

FE

C
. We assume that the electric field created by

quadrupoles in the FE layer is weak. The terms P(1,2)(r)
in Eq. (9) are the linear and quadratic responses of the
FE to the quadrupoles field D

P
(1)(r) = Q

∑

i

∫

ΩFE

d3r′χ̂(r, r′)Dq
i (r

′), (10)

where χ̂(r, r′) is the linear response function of the FE
layer to the electric induction. In general, χ̂(r, r′) is a ten-
sor depending on the polarization P0, temperature, and
electric field E0. Inside the FE layer χ̂(r, r′) depends on
both coordinates r and r

′ due to boundary conditions.
In the bulk the susceptibility depends only on the coor-
dinate difference (r− r

′).
The quadratic response in Eq. (9) has the form

P
(2)(r) = Q2

∑

i,j

∫

ΩFE

d3r′d3r′′χ̂(2)(r, r′, r′′)Dq
i (r

′)Dq
j (r

′′),

(11)
where χ̂(2)(r, r′, r′′) is the contribution to the suscepti-
bility quadratic in the electric induction. Introducing
Eq. (10) into Eq. (8) we find for the interaction energy

W I = − Q2

2ΩGFM

∑

i,j

∫

d3rd3r′Dq
i (r)χ̂(r, r

′)Dq
j (r

′).

(12)
The quadratic polarization P

(2)(r) does not contribute
to the interaction energy W I since it produces an odd-
degree oscillating electric field D.

4. Total energy of electric field

The total energy of electric field is given by the follow-
ing expression

WE +W I = Q2R, (13)

where we introduce the notation

R =
∑

i,j

∫

d3rd3r′Dq
i (r)

(

δ(r− r
′)

8πΩGFM
− χ̂(r, r′)

2ΩGFM

)

D
q
j (r

′).

(14)

The coefficient R depends on temperature T and the
electric field E0 through the susceptibility χ̂(r, r′). In
addition, the coefficient R also depends on the distance
between the GFM film and the FE layer and on the FE
thickness.

E. Variational procedure

Minimizing the total energy of the system in parameter
Q we obtain the equation describing the magnitude of
quadrupole

2αQ(Q−Q0) + 2RQ+ γM2 = 0. (15)

This equation has the solution

Q =
αQQ0 − γM2/2

αQ +R
. (16)

We notice that Q depends on both subsystems - the GFM
film magnetization and the FE layer polarization through
coefficient R leading to the coupling between the FE po-
larization P and the GFM magnetization M .

The equation describing the magnetization behaviour
(up to linear in parameter γ terms) has the form

2α̃MM+ 4βMM2
M = B,

α̃M = αM − γ
RQ0

αQ +R
.

(17)

The magnetizationM is parallel to the plane of the GFM
film. The magnetic field existing at the film edges is
negligible due to large area of the film. We assume that
the magnetization M in Eq. (17) is uniform because the
domain wall thickness in the GFM film is much larger
than the intergrain distance and the film thickness.

The coefficient α̃M depends on the FE state through
coefficient R and have some peculiarities in the vicinity
of the FE Curie point due to singularities in the suscep-
tibility χ̂(r, r′). Since the coefficient R depends on the
field E0 one can control the magnetic state of the GFM
film by the electric field. The influence of the GFM film
on the FE layer is finite due to electric field created by
quadrupoles.

III. FE WITHOUT SPATIAL DISPERSION

In the absence of spatial dispersion the FE susceptibil-
ity has the form

χ̂(r, r′) = χ̂δ(r − r
′). (18)
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Substituting this result into Eq. (14) we find the following
result for coefficient R

R = R0 − χ||R|| − χ⊥R⊥,

R0 =
1

8πΩGFM

∑

i,j

∫

d3rDq
i (r)D

q
j (r),

R|| =
1

2ΩGFM

∑

i,j

∫

ΩFE

d3rDq
i(||)(r)D

q
j(||)(r),

R⊥ =
1

2ΩGFM

∑

i,j

∫

ΩFE

d3rDq
i(⊥)(r)D

q
j(⊥)(r).

(19)

We assume that the FE layer has the anisotropy axis per-
pendicular to the layer surface. The quantities χ|| and
χ⊥ describe the longitudinal and perpendicular suscep-
tibility, respectively. The subscripts || and ⊥ define the
longitudinal and perpendicular components of electric in-
duction.
To find the susceptibility in the absence of spatial dis-

persion we need to solve the following equation

2αPP+ 4βPP
2
P = E0 +E, (20)

which has the solution

P
(1) = χ̂D, (21)

where

χ|| = (2(αP + 2π) + 12βPP
2
0 )

−1,

χ⊥ = (2(αP + 2π) + 4βPP
2
0 )

−1.
(22)

It follows from Eq. (22) that for zero field E0 the suscep-
tibility χ̂ < 1/(4π).

A. Influence of FE layer on the GFM film

In this subsection we investigate the influence of FE
layer on the magnetic subsystem. In the absence of spa-
tial dispersion of the FE, Eq. (17) has the form

2(α∗
M + γ⊥χ⊥ + γ||χ||)M+ 4βMM2

M = B, (23)

with the following coefficients

α∗
M = αM − γR0Q0/αQ,

γ⊥ = γR⊥Q0/αQ,

γ|| = γR||Q0/αQ.

(24)

Equation (24) is valid for R ≪ αQ meaning that the
interaction of the GFM with the FE layer leads to the
renormalization of the constant αM. Changing the FE
susceptibility χ̂(r, r′) by the electric field one can change
the FM ordering temperature. Since the susceptibility of
FE has some peculiarity in the vicinity of the FE Curie
point, the magnetic properties of the GFM film should
also exhibit some peculiarities in the vicinity of the FE
Curie point.
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FIG. 4. (Color online) Magnetization M and magnetic sus-
ceptibility χM vs. temperature at zero magnetic and electric
fields. Solid (blue) line corresponds to the absence of the FE
layer. Dashed (red) line corresponds to negative parameter γ.
Dash dotted (green) line corresponds to positive γ. TFE

C and
TFM

C are the ordering temperatures of the FE layer and the
GFM film in the absence of mutual interaction, respectively.
(a) Limit of TFE

C < TFM
C . This limit corresponds to coleman-

ite FE substrate and 45% of Ni granular film. (b) Limit of
TFE

C > TFM
C . This limit corresponds to TTF-CA ferroelectric

substrate and 48% of Ni granular film. The interaction of
FE and GFM layers leads to the appearance of peculiarities
of magnetization M (panel (a)) and susceptibility χM in the
vicinity of the FE phase transition.

We assume that the coefficient α∗
M = α̃FM(T − T

FM

C
)

in Eq. (24) defines the position of superparamagnetic-
ferromagnetic (SPM - FM) phase transition in the GFM
film in the absence of the FE layer.

The temperature dependence of magnetization and
magnetic susceptibility of GFM film at zero external
magnetic field is shown in Fig. 4. Both limits of TFE

C
>

T
FM

C
and T

FM

C
> T

FE

C
are relevant since the ordering tem-

perature of GFM can be rather large reaching the room
temperature,45,46 and because the FE’s with the Curie
point below and above the room temperature exist,47–51.

Figure 4(a) shows the case T
FM

C
< T

FE

C
, for substrate

we choose a colemanite film50,51. In contrast to BaTiO2

ferroelectric, the colemanite has a rather small dielectric
permittivity which is important for granular system since
it prevents the total suppression of the Coulomb gap in
the granular film. The behavior of colemanite thin films
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is well described using Landau-Ginzburg-Devonshire the-
ory. The FE Curie temperature is about T

FE

C
= 267 K.

We use experimental data of Ref. 51 on the temperature
dependence of dielectric permittivity to estimate param-
eters α̃P = 0.031 K−1 (αP = α̃P(T −T

FE

C
)). To calculate

α̃P we estimate the slope of the FE inverse susceptibility.
For magnetic film we use Ni granular film.45 At cer-

tain concentration of Ni (about 45%) the ordering tem-
perature of this film is about T

FM

C
= 100 K. Using the

data of Ref. 45 we can estimate parameter α∗
M = 0.02 ·

(T −T
FM

C
) erg/(Oe−2cm3). The parameter βM = 4 ·10−6

erg/(Oe−4cm3) is not given in Ref. 45. We take this pa-
rameter assuming that the magnetization of granular film
is several times smaller than magnetization of the bulk
Ni; the parameter βM does not influence the bahavior of
magnetization and susceptibility qualitatively.
Similarly Co-SiO2 film can be used. It has similar

magnetic parameters but at different metallic concentra-
tion.46 In case of 23% Co-SiO2 film α∗

M = 0.03·(T−T
FM

C
)

with T
FM

C
= 93 K. The parameter can be estimated using

the data on magnetic susceptibility of Co-SiO2 film.
To estimate the parameter γ we use an approach dis-

cuss in Sec. V. Figure 4(a) shows the case γ|| = −24 and
γ⊥ = −1.6. We note that the large values of γ lead to
small perturbation of magnetic properties since the func-
tion χ||,⊥ depends on the small parameter 1/(16π2χFE

0 ),

where χFE
0 is the dielectric permittivity of the FE with

respect to the electric field. It is related to the suscep-
tibility χ with respect to the electric induction in the
following way, χ = 1/(4π)(1− 1/(4πχFE

0 )). An estimate
of parameter γ for particular FE and GFM gives nega-
tive coupling constant. We also show the case of positive
γ||,⊥ in Fig. 4(a) (dashed line). According to Sec. V, the
constant γ may have values larger than it was used here.
In this section we decrease parameter γ increasing the
distance between the FE and GFM film.
Figure 4(b) shows the case T

FM

C
> T

FE

C
. This limit

can be realized with TTF-CA ferroelectric, with a phase
transition temperature T

FE

C
= 81 K.52 This FE has a

broader peak of dielectric permittivity in the vicinity of
the FE phase transition leading to low parameter α̃P =
0.001. The parameter is estimated using the slope of the
inverse susceptibility curve provided in Ref. 52. A large
Curie constant leads to the disappearance of peculiarity
in the magnetization versus temperature in the vicinity
of TFE

C
, however it still leads to an essential shift of the

magnetic ordering temperature. In this case we use Ni
granular film with Ni concentration of 49%, leading to
T

FM

C
= 200 K. The parameters γ||,⊥ are equal to −4 and

−0.8, respectively.
The interaction of FE and GFM layers leads to two ef-

fects: 1) The shift of the GFM film ordering temperature
which can be estimated as follows

∆T = −γ||χ|| + γ⊥χ⊥

α̃FM
, (25)

where χ||,⊥ is taken in the vicinity of the transition tem-
perature TFM

C
. The shift direction depends on the sign of

interaction.
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FIG. 5. (Color online) Magnetization M (solid blue line)
and magnetic susceptibility χM (dashed red line) vs temper-
ature at zero magnetic and electric fields and strong cou-
pling between charge fluctuations and magnetization. Here
TFE

C < TFM
C , this limit corresponds to colemanite FE sub-

strate and 45% of Ni granular film. Two additional phase
transitions occur in the vicinity of the FE phase transition.

2) The peculiarity of magnetization and magnetic sus-
ceptibility in the vicinity of the FE phase transition. The
maximum deviation of magnetic susceptibility occurs at
the FE phase transition point. For TFE

C
> T

FM

C
it has the

form

∆χM = − γ||χ|| + γ⊥χ⊥

2(α̃FM(TFE
C

−TFM
C

))2
. (26)

For temperatures T
FM

C
< T

FE

C
the correction is twice

smaller. The change of magnetization at the FE Curie
point is

∆(M2) =− γ||χ|| + γ⊥χ⊥

2β∗
M

. (27)

We notice that even at the point of the FE-paraelectric
phase transition the susceptibility χ̂ is finite supporting
the assumption of weak spatial dispersion.
For large values of parameters γ and R||,⊥ the addi-

tional phase transitions may occur in the vicinity of the
FE phase transition, see Fig. 5. The curves in Fig. 5
show the ME effect discussed in Ref. 32 and 33 using
the microscopic theory. These curves are plotted for the
same parameters as in Fig. 4(a), except γ|| = −41 and
γ⊥ = −2.
The dielectric susceptibility χ̂ depends on the electric

field E0. Therefore magnetic properties of the GFM film
also depend on the electric field. Figure 6 shows the GFM
magnetization vs. electric field E0 at zero applied mag-
netic field. Figures 6(a) and (b) correspond to the differ-
ent strength of magneto-electric coupling. Both figures
are plotted for 47% Ni GFM placed above the colemanite
FE substrate. The upper panel shows the case of weak in-
teraction with parameters γ|| = −24 and γ⊥ = −1.6 and
temperature T = 80 K. At this temperature the GFM
film is in the ferromagnetic state. Applying electric field
we change the dielectric permittivity of the FE substrate
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FIG. 6. (Color online)(a) Magnetization M vs electric field E0

at zero magnetic field for colemanite FE and 47% of Ni GFM
(TFE

C > TFM
C ). Solid (blue) and dashed (blue) lines show mag-

netization at finite interaction between the FE layer and the
GFM film. Dotted (red) line describes the non-interacting
case. Figure (a) corresponds to the case of weak magneto-
electric coupling with parameters γ||,⊥ being -24 and -1.6, re-
spectively. Temperature T = 80 K. Inset: dependence of χ⊥

and χ|| on electric field E0. Es is the FE polarization switch-
ing field. (b) The case of strong coupling with γ|| = −41,
γ⊥ = −1, T = 150 K. Right inset: dependence of χ⊥ and χ||

on electric field E0. Es is the FE polarization switching field,
Em is the electric field at which the magnetic phase transition
occurs in the system. Left inset: magnetic susceptibility vs.
electrical field.

leading to the strong dependence of magnetization on the
electric field. The dependence shows a hysteresis behav-
ior similar to the dielectric permittivity field dependence.
Figures 6(b) shows the case of strong interaction, here

parameters γ|| = −41, γ⊥ = −1 and temperature T =
150 K. In this case the magnetic phase transition is in-
duced when a strong electric field E0 = ±Em is applied.

B. Influence of GFM film on the FE layer

In this subsection we investigate the influence of mag-
netic subsystem on the FE layer. The correction to the
polarization P quadratic in the electric induction D has
the form

P
(2) = −4βP((χ̂D)2χ̂P0 + 2(P0χ̂D)χ̂χ̂D). (28)

The correction P
(2) averaged over the FE volume is par-

allel to the polarization P0

〈P(2)〉 = 4Q2βPP0χ⊥(3(χ⊥)
2R∗

⊥ + (χ||)
2R∗

||), (29)

where R∗
⊥,|| = ΩGFMR⊥,||/ΩFE. Using Eq. (16) for pa-

rameter Q we find

〈P(2)〉 = 4

h

(

Q2
0 −

γM2

αQ

)

βPP0χ⊥(3χ
2
⊥R

∗
⊥ + χ2

||R
∗
||).

(30)
For temperatures T > T

FM

C
the correction P

(2) in the
presence of external magnetic field behaves as P

(2) ∼
χ2
MB2

ext, while for temperatures T < T
FM

C
it has a hys-

teresis dependence on the magnetic field, Bext. As it is
shown in Sec. V the correction to the polarization due to
the influence of magnetic subsytem can be of the order
of 10−3 − 10−2.

C. Dependence of Magneto-Electric coupling on

the system parameters

We use the Ewald approach to calculate the electric
field of two dimensional periodic lattice of quadrupoles.53

The field produce by this lattice is periodic in the (x,y)-
plane and decays along the z direction. The spatial
Fourier harmonics of the field are given by

Ex,y(k⊥, z) = i

√

4π

5

π

L2
g

(kx,y)k⊥E
−k⊥z×

×
(

2 cos(2φ⊥)√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

,

Ez(k⊥, z) = −
√

4π

5

π

L2
g

k2⊥E
−k⊥z×

×
(

2 cos(2φ⊥)√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

,

(31)

where k⊥ = (kx, ky, 0), φ⊥ = arctan(kx/ky). The
wave vector k⊥ has the discrete values k

n,m
⊥ =

(2πn/Lg, 2πm/Lg, 0). There are two quadrupoles, Q̂1

and Q̂2, in a unit cell. The vector s defines the shift
of these dipoles, s = (π/Lg, π/Lg, 0). The parameters

Q
(2)
i and Q̃

(2)
i are related to Q as follows Q

(2)
0 = −Q,

Q̃
(2)
0 = −Q, Q

(2)
2 = −3Q/(2

√
6), Q̃

(2)
2 = 3Q/(2

√
6).

The magnitude of spatial Fourier harmonic in Eq. (31)
decreases exponentially with increasing the vector k⊥.
Therefore even for z = Lg we can neglect all harmonics
except the four harmonics nearest to zero, (±2π/Lg, 0, 0)
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and (0,±2π/Lg, 0). Using Eq. (31) we obtain

Ex(±2π/Lg, 0, z) = ±i

√

4π

5

4π3

L4
g

e−2πz/Lg×

×
(

2√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

,

Ey(±2π/Lg, 0, z) = 0,

Ez(±2π/Lg, 0, z) = −
√

4π

5

4π3

L4
g

e−2πz/Lg×

×
(

2√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

,

Ex(0,±2π/Lg, z) = 0,

Ey(0,±2π/Lg, z) = ±i

√

4π

5

4π3

L4
g

e−2πz/Lg×

×
(

− 2√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

,

Ez(0,±2π/Lg, z) = −
√

4π

5

4π3

L4
g

e−2πz/Lg×

×
(

− 2√
6

[

Q
(2)
2 + Q̃

(2)
2 eik⊥s

]

+Q
(2)
0 + Q̃

(2)
0 eik⊥s

)

.

(32)

The amplitude of electric field oscillations decays with
distance as e−2πz/Lg . The parameter R is averaged over
the volume of the FE (d < z < h + d). Using Eq. (32)
we find

R||,⊥ ∼ e−4πd/Lg

(

1− e−4πh/Lg

)

. (33)

The magneto-electric coupling exponentially decays with
increasing the distance between the GFM film and the
FE layer with the characteristic decay length being the
intergrain distance, Lg.

The coefficients R saturates with increasing the FE
thickness h due to the exponential decay of the electric
field with distance d. The saturation occurs for thick-
ness’s h larger than the intergrain distance Lg leading to
the weak influence of the GFM film on the FE layer.

IV. FE WITH STRONG SPATIAL DISPERSION

A. Influence of FE layer on the GFM film

The coupling between the FE layer and the GFM film
depends on the parameter R, see Eq. (14). Above we dis-
cussed the case of FE without spatial dispersion mean-
ing that the FE response χ̂(r, r′) is local. In the op-
posite case, of strong spatial dispersion we can consider
χ̂(r, r′) = const being independent of coordinates. In

this case Eq. (14) has the form

R = R0−
(

∑

i

∫

D
q
i (r)d

3r

)

χ̂

2ΩGFM





∑

j

∫

D
q
j (r)d

3r



 .

(34)
The average field created by the ensemble of quadrupoles
is zero. Therefore, for strong spatial dispersion the FE
layer and the GFM film are decoupled since the param-
eter R → R0. Thus, below we consider the quantity R
with large but finite spatial dispersion.
The linear response of the FE layer is described by the

following equation

−δP∆P
(1) + χ̂−1

P
(1) = D. (35)

This equation differs from Eq. (20) by the term with spa-
tial derivatives responsible for dispersion. We use the
following boundary condition for polarization, (P (1))′z =
0|z=h,h+d, with h and h+ d being the boundary position
of the FE layer,43,54,55.
It was shown in Sec. III C that the electric field D

produced by the lattice of quadrupoles is periodic in the
(x,y) plane and decays in the z-direction. For distances
|z| > Lg away from the GFM film the field has (x,y) spa-
tial Fourier harmonics with only |k⊥| = 2π/Lg and the
decay length kd = 2π/Lg. Such a field can be considered
as a wave with zero wavevector |k|2 = |k⊥|2 − k2d = 0.
Therefore the partial solution of Eq. (35) has the form

P
(1)
p = χ̂D. (36)

And the uniform solution has the form

P
(1)
u = C1e

−κ̂z +C2e
κ̂z , (37)

where the vectors C1 and C2 depend on the x and y
coordinates similar to the electric field D.

κ̂ =
√

k2
⊥ + χ̂−1/δP. (38)

κ̂ is the tensor. The appropriate components of tensor
χ̂−1 should be used for each vector component C1,2. Us-
ing the boundary conditions we find the coefficients C1,2

C1 =
k⊥χ̂D̃

κ̂(eκ̂h − e−κ̂h)
e−k⊥d−κ̂d(e−k⊥h − e−κ̂h),

C2 =
k⊥χ̂D̃

κ̂(eκ̂h − e−κ̂h)
e−k⊥d+κ̂d(e−k⊥h − eκ̂h).

(39)

Here D̃ is the part of vector D which depends on the
coordinates x and y only, D̃ = ek⊥z

D. For strong spatial
dispersion and thick FE layer the linear polarization has
the form

P
(1) = P

(1)
p +P

(1)
u =

D

2δPk2⊥
×

×
(

(z − d)k⊥ + 1− 3 + 3(z − d)k⊥ + (z − d)2k2⊥
4χδPk2⊥

)

.

(40)



11

The characteristic length scale for coefficients R||,⊥ is the
distance between two centres of neighbouring grains Lg

since the electric induction D in the FE layer decays
exponentially. For estimates we use z − d ≈ Lg and
(z − d)k⊥ ≈ 1. Thus, we find for polarization

P
(1) ≈ D

δPk2⊥

(

1− 7

8χ̂δPk2⊥

)

. (41)

Using Eq. (41) we calculate the coefficient R

R = R̃0 −
R̃||

χ||
− R̃⊥

χ⊥
,

R̃0 = R0

(

1 +
L2
g

δP4π2

)

,

R̃|| = −
7L4

gR||

8δ2P(4π
2)2

,

R̃⊥ = −
7L4

gR⊥

8δ2P(4π
2)2

.

(42)

The coefficient R||,⊥ is calculated using Eq. (19) with
electric field given by Eq. (32). It follows that the influ-
ence of the FE layer on the GFM film is suppressed for
strong spatial dispersion by the factor 1/(δP(2π/Lg)

2).

The coefficient R̃||,⊥ have the opposite sign to the coeffi-
cient R||,⊥.
The equation for magnetization has the form

2

(

α̃∗
M +

γ̃⊥
χ⊥

+
γ̃||

χ||

)

M+ 4β̃MM2
M = B, (43)

with the following coefficients

α̃∗
M = αM − γR̃0Q0/αQ,

γ̃⊥ = γR̃⊥Q0/αQ,

γ̃|| = γR̃||Q0/αQ.

(44)

In contrast to the weak dispersion case, here the suscep-
tibility χ is present in the denominator leading to a dif-
ferent dependence of magnetization on temperature and
electric field.
Figure 7 shows the magnetization M behavior in the

vicinity of the critical temperature T
FE

C
for strong spa-

tial dispersion. All parameters for GFM film are the
same as before and we used the colemanite FE. Accord-
ing to Eq. 42 the magneto-electric coupling coefficient γ̃
is the same as in the case of weak dispersion, however it is
multiplied by the small (in the case of strong spatial dis-
persion) parameter (L2/δP∗4π2). Figure 7 demonstrates
two different cases with δP = 2 nm2 and δP = 10 nm2.
The first value of δP corresponds to the case when the
domain wall thickness in the FE lDW ∼

√
χδP is slightly

larger than the intergrain distance Lg. The second case
corresponds to lDW ≫ Lg, where the intergrain distance
is Lg = 7 nm.
In general, increasing the difference |T − T

FE

C
| one

can study the crossover from strong to weak dispersion.
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FIG. 7. (Color online) Magnetization M (solid lines) and
magnetic susceptibility χM (dash-dotted lines) vs temperature
T for strong spatial dispersion and zero external magnetic and
electric fields. Blue lines show the non-interacting case while
the red and green lines correspond to the finite interaction of
the FE layer with the GFM film. Red line is for δP = 10 nm2.
Green line is for δP = 2 nm2.

-0.005 0.000 0.005
0

100

200

-0.005 0.000 0.005
0

2

4

6

8

10

E  [a.u.]

 

 

M
 [O

e]

E  [a.u.]
EsEm

Es

0

M

0  

 

 

 

FIG. 8. (Color online) Magnetization M vs electric field E0

for strong spatial dispersion and zero external magnetic field.
Blue lines show two branches of magnetization for the case of
finite interaction of the FE (colemanite) layer with GFM film.
Dashed red line corresponds to the non-interacting case. The
plots are shown for the following sets of parameters: T = 245
K, δP = 2 nm2. Inset: Magnetic susceptibility χM vs electric
field E0.

Thus, the dependence of magnetization on temperature
can be considered as a combination of Fig. 4 and Fig. 7.
The crossover temperature between two regimes depends
on the system parameters.

The magnetization M vs. electric field E0 is shown in
Fig. 8 for TFM

C
< T

FE

C
and fixed temperature T = 245 K.

For FE substrate we used the colemanite. The behavior
is shown for small constant δP = 2 nm2. In this limit
the domain wall thickness lDW ∼

√
χδP is not too big in

comparison with the intergrain distance, Lg. Similar to
the case of weak dispersion the FE substrate essentially
influences the GFMmagnetic state. Applying the electric
field Em one can induce the magnetic phase transition.
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For thin FE layer the polarization is given by

P
(1) = P

(1)
p +P

(1)
u =

D

δPk2⊥

(

1− 1

χ̂δPk2⊥

)

. (45)

This polarization produces similar behavior of magneti-
zation as a function of temperature and electric field with
slightly modified coefficients. For thin FE film the coef-
ficients R̃⊥,|| are linearly depend on the FE thickness,
h.

B. Influence of GFM film on the FE layer

In this subsection we investigate the influence of GFM
film on the FE layer in the case of strong dispersion. The
equation describing the part of polarization quadratic in
the electric induction has the form

−δP∆P
(2) + (χ̂)−1

P
(2) = −4βP(2(P0P

(1))P(1)+

+(P(1))2P0).
(46)

To solve Eq. (46) we use the same boundary conditions
as we used before for P(1). We are interested in average
polarization P

(2) appearing due to nonlinear response.

Only the average z-component of P(2) is non-zero. P
(2)
z

has a contribution with k⊥ = 0. For this component we
have

δP
∂2

∂z2
P (2)
z − (χ̂)−1P (2)

z =

=
4βPP0

(δPk2⊥)
2
(3〈D2

z〉x,y + 〈D2
⊥〉x,y).

(47)

Here the notation 〈〉x,y stands for averaging over the (x,y)
plane. The field D

2 decays with distance as e−2k⊥z,
where k⊥ = 2π/Lg. Therefore the partial solution of
Eq. (47) has the form

P
(2)
z(p) =

βPP0

(δPk2⊥)
3
(3〈D2

z〉x,y + 〈D2
⊥〉x,y). (48)

We neglect the term with the susceptibility (χ̂)−1 in
Eq. (47). The uniform solution for k⊥ = 0 has the form

P
(2)
z(u) = Cz

1e
κ∗z + Cz

2e
−κ∗z, (49)

where κ∗ =
√

1/(χ||δP).
Using the boundary condition we find that Cz

i ∼
1/(δPk

2
⊥)

5/2 with k⊥ = 2π/Lg. Therefore the average

polarization P
(2)
z decays with increasing the spatial dis-

persion as (δPk
2
⊥)

−5/2. For strong dispersion the correc-

tion P
(2)
z is also quadratic in parameter Q leading to the

same behavior of average polarization on the magnetic
field as in the case of weak dispersion. However, the in-
fluence of the GFM film on the FE layer is suppressed
due to spatial dispersion.

V. MICROSCOPIC MODEL OF

MAGNETO-ELECTRIC COUPLING IN

COMBINED GFM SYSTEM

A. Direct effect: Influence of FE substrate on the

GFM film

In Ref. 32 we developed the model describing the cou-
pling between electric and magnetic degrees of freedom in
the GMF. The coupling mechanism is based on the inter-
play of intergrain exchange coupling, Coulomb blockade
and screening of electric field by the FE polarization. In
this model the exchange interaction of two neighbour-
ing grains appears due to the overlap of electron wave
functions in the space between the grains, see Fig. 3(b)

J ∝
∑

∫

Ψ∗
1(r2)Ψ

∗
2(r1)Uc(r1 − r2)Ψ1(r1)Ψ2(r2)dr1dr2.

(50)
Here Ψ1,2 is the spatial part of the electron wave func-
tion located in the first (second) grain; Uc is the Coulomb
interaction of electrons located in different grains. Sum-
mation is over the different electron pairs in the grains.

Ψ1,2(r) = A

{

e−
a
λ , |r± Lg/2| < a,

e−
|r±Lg/2|

λ , |r± Lg/2| > a.
(51)

Here A is the normalization constant and Lg is the dis-
tance between two grain centres. λ is the electron local-
ization length. It depends on the dielectric permittivity
of the FE leading to the strong influence of the FE state
on the intergrain exchange interaction and consequently
on the magnetic state of granular film,32.
In the simplest case, with small localization length,

λ < min(a, Lg), the exchange interaction has the form

J ∼ λ2e−κLg/λ, where κ is a positive number of order
one. At equilibrium, without FE, this expression can be
linearized in ξ around ξ0, J = J0+(λ−λ0)γ̃, where ξ0 is
the localization length in the absence of FE layer. Chang-
ing the localization length ξ one can control the exchange
interaction and thus the magnetic state of granular film.
For small localization length, λ ≪ a, one can calcu-

late the quadrupole moment of two electrons between
the grains, Qxx ∼ λae, Qyy = Qzz = −1/2Qxx, Q =
Qxx +Qyy = 1/2Qxx. Calculating Qxx we assumed that
positively charged ions are located inside the grains and
we averaged over the region between the centres of two
grains, −Lg/2 < z < Lg/2, see Fig. 3(b). Thus, the
quadrupole moment Q is a linear function of localization
length ξ and therefore the exchange interaction can be
written as J = J0 + (Q−Q0)γ.

B. Estimate of parameter γ

The coupling between electrical and magnetic subsys-
tems appears due to the influence of FE response on the
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intergrain exchange constant J and therefore on the or-
dering temperature of magnetic subsystem T

FM

C
= zcJ/3,

where zc is the coordination number. We use zc = 4. To
estimate the constant γ we use a microscopic theory of
Ref. 33, in particular Eq. (5) of Ref. 33. We assume
the following parameters: grain radius is 3 nm, the in-
tergrain distance (the distance between grains centres)
is 7 nm, the distance between grain centres and the FE
substrate surface is 4 nm. We assume that ǫFE ≫ ǫeff ,
where ǫeff is the effective dielectric permittivity of the
medium outside the FE substrate. The effective dielec-
tric constant can be estimated as ǫeff = 5. For large ǫFE

one can expand Eq. (5) of Ref. 33 in small parameter
ǫeff/χ

FE
0 . Using above parameters we find for exchange

constant J ≈ J0(1 + ǫeff/ ǫ
FE). Matching this expression

with Eq. (23) one can find γ ≈ α̃FM
T

FM

C
16π2ǫeff . This

estimate is done for rather small distance between the FE
substrate and the magnetic film. Increasing the distance
exponentially reduces the coupling constant γ.

C. Inverse effect: Influence of GFM film on the FE

substrate

In this subsection we discuss the influence of GFM film
on the FE substrate and estimate phenomenological con-
stants αQ and R. We assume that formation of inho-
mogeneous charge distribution is related to the fact that
conduction electrons penetrate beyond the grain bound-
aries. Three factors influence the penetration depth: 1)
the kinetic energy of electrons inside a grain Ekin, 2)
the potential energy of electrons outside the grain Upot,
3) and electron Coulomb interaction. The penetration
of electrons outside a grain decreases the kinetic energy,
but increases the potential Upot and the Coulomb ECoul

energies. First, we neglect the influence of intergrain ex-
change interaction, the last term in Eq. (15).
The kinetic energy has the form

Ekin =
~
2(6π2N)5/3

20me(a′)2
, (52)

where N is the number of electrons in the grain, me is
the electron mass, a′ = a + λe is the effective grain ra-
dius. The effective grain radius accounts for the fact that
electrons penetrate outside the grain by the distance λe

which is the electron localization length.
The potential energy has the form

Epot =
U(6π2N)5/3λ3

e

10π2(a′)3
, (53)

where U is the height of the potential barrier produced by
the insulator between the grains. It accounts for: small
penetration length λe and small penetration probability
which is proportional to λ2.
The Coulomb interaction contribute to the total energy

since the charge distribution is non-uniform.

ECoul =
9e2λ2

eN
2

5(a′)3
. (54)

This expression has a transparent meaning: each electron
produces the charge eλe/a outside the grain. The charge
of the same magnitude but of the opposite sign appears
inside the grain. The characteristic size of the system is
a.
Minimizing the total energy, WQt = Ekin + Epot +

ECoul, we estimate the equilibrium penetration depth
(λ0) and ”stiffness” of quadrupole system, 2(αQ +R).

λ0 =

18
5 (eN)2 +

√

(

18e2N2

5

)2
+ 3~26π2N10/3U

25π2me

(3/5π2)U(6π2N)5/3
. (55)

For potential barrier larger than the Coulomb interac-
tion this expression can be simplified leading to λ0 →
√

π2~2/(3meU). For estimate we use EF = 5 eV with
kF = 12 nm−1, particle diameter 2a = 5 nm. For such a
grain the number of electrons isN = 4·103. We use U = 6
eV for potential energy of an insulator. For above param-
eters the equilibrium penetration length is λ0 = 0.05 nm.
We note that the Coulomb and potential energies are of
the same order for such particles. For bigger particles the
contribution of Coulomb energy will be stronger leading
to stronger suppression of the penetration length. Thus,
the non-uniformity of electric charges increases with de-
creasing the grain size.
We estimate the equilibrium quadrupole moment Q0

for cubic grains with size 2a with positively charged cen-
tre (−a < x, y, z < a) and negatively charge region
around the grain. This region has the size λ0. We cal-
culate the quadrupole moment over the cubic region be-
tween two centres of neighbouring grains. For small λ0

we find

Q0 = −2eaλ0

(

(L − a)2

2a2
+

L3 − (L− a)3

12a3
− 11

18

)

. (56)

The estimate gives Q0 = 2 · 10−38 C·m2. Such a
quadrupole produces a rather strong electric field inside
the FE substrate. Using Eq. (31) for 6nm distance be-
tween the granular film and the FE substrate we find
|E| ≈ 3 · 104 V/m.
The stiffness constant is defined by the second deriva-

tive of the total energy, ∂2WQt/∂λ
2 ≈ 105 J/m2. The

stiffness constant is rather large in the current model. If
exchange interaction is about 100 K it can not essentially
influence the quadrupole system. A relative correction to
λ due to magnetic subsystem can be of the order of 10−3-
10−2. Thus, the relative change of polarization from dis-
ordered to ordered state by applying external magnetic
field is less than 10−3-10−2.
It is important to mention here that above estimate of

λ0 is the lowest estimate. Since we did not take into ac-
count the fact that λ depends on the electron energy. In
particular, λ > 0.1 nm at the Fermi level. Electron trans-
port measurements show that the penetration length at
the Fermi level is about 0.5-1 nm meaning that electrons
near the Fermi surface are responsible for exchange cou-
pling between the grains.
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To summarize, the ”direct” and ”inverse” effects are
strongly asymmetric. The direct effect can be rather
strong while the inverse effect is very weak. This is the
consequence of the fact that the exchange interaction
is weaker than the direct Coulomb interaction between
quadrupoles in the GFM film with FE layer.

VI. DISCUSSION

In this section we discuss the validity of our model.
The real granular films can not be described by the regu-
lar lattice since materials have always some degree of dis-
order. The quadrupole moments fluctuate in space, mag-
nitude, and orientation due to this randomness. How-
ever, the presence of disorder does not change qualita-
tively our main results. In particular, the electric field
produced by the GFM film decays exponentially with dis-
tance leading to the same results. The coupling between
the GFM film and the FE layer decreases with increas-
ing the spatial dispersion of the FE layer. This effect is
suppressed for FEs with domain wall thickness exceed-
ing the average intergrain distance. For strongly disor-
dered films one can use a continuous spatial distribution
of quadrupole moments.
For multilayer system of grains only the nearest layer

to the FE substrate will interact with the FE due to the
exponential decay of coupling with distance.
In our consideration we used a certain type of bound-

ary conditions for FE polarization, with polarization
derivatives being zero at the interface. In general, one
can use the following combination for boundary condi-
tions, ζ1P + ζ2(P )′z = 0. It does not change qualitatively
our results.
In this work we discussed the case of intrinsically

isotropic dielectric which is typical for some organic
components (such as TTF-CA). The only source of
anisotropy in our consideration was the external elec-
tric field applied to the FE layer producing different sus-
ceptibilities - parallel χ|| and perpendicular χ⊥ to the
layer surface. However, our consideration can be general-
ized for intrinsically anisotropic FE. In this case the final
equations for magnetization (see, for example Eq. (23))
will be modified in the following way: Instead of sus-
ceptibilities χ|| and χ⊥ defined in Eq. (22) one has to
introduce the dielectric susceptibilities χ̃|| and χ̃⊥ which
account for intrinsic anisotropy.

VII. CONCLUSION

We described the coupling between the FE polarization
and magnetization of GFM film using a phenomenologi-

cal model of combined multiferroic system consisting of
granular ferromagnet film placed above the FE layer. We
showed that the coupling is due to the presence of oscil-
lating in space electric charges in the GFM film. On
one hand these charges interact with the FE layer via
Coulomb interaction. On the other hand they are cou-
pled with the magnetization leading to the mutual influ-
ence of the FE polarization and the GFM film magneti-
zation even for space separated FE layer and the GFM
film. This model allows to study the importance of spa-
tial dispersion of FE polarization and to understand the
influence of GFM film on the FE polarization.

We studied the temperature and electric field depen-
dence of magnetization and magnetic susceptibility of
GFM film for weak and strong spatial dispersion of the
FE layer. We calculated the electric polarization as a
function of temperature and magnetic field and investi-
gated the influence of the FE state on the magnetization
and magnetic susceptibility and vice versa. The effect
of mutual influence decreases with increasing the spa-
tial dispersion of the FE layer. For weak dispersion the
strongest coupling occurs in the vicinity of the FE-PE
phase transition. For strong dispersion the situation is
the opposite. We showed that for temperatures T < T

FE

C

the magnetization has hysteresis as a function of elec-
tric field. For strong coupling the interaction of the FE
layer and the GFM film leads to the appearance of an
additional magnetic phase transition. Below the order-
ing temperature of GFM film the FE polarization has
hysteresis as a function of magnetic field.

We studied the behavior of magneto-electric coupling
as a function of distance between the FE layer and the
GFM film. We showed that for large distances the cou-
pling decays exponentially due to the exponential de-
crease of electric field produced by the oscillating charges
in the GFM film.

We showed that magneto-electric coupling depends on
the thickness of the FE layer. For thin layers it grows lin-
early and saturates for thickness’s exceeding some critical
value.
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