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Spin pumping from a ferromagnet into a hopping insulator: the role of resonant
absorption of magnons

Z. Yue, D. A. Pesin, and M. E. Raikh
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in
which the charge transport is due to hopping, we study theoretically the generation and propagation
of spin current in a hopping insulator. Unlike metals, the spin polarization at the boundary with
ferromagnet is created as a result of magnon absorption within pairs of localized states and it spreads
following the current-currying resistor network (although the charge current is absent). We consider
a classic resonant mechanism of the ac absorption in insulators and adapt it to the absorption of
magnons. A strong enhancement of pumping efficiency is predicted when the Zeeman splitting of
the localized states in external magnetic field is equal to the frequency of ferromagnetic resonance.
Under this condition the absorption of a magnon takes place within individual sites.

PACS numbers: 85.75.-d,72.25.Rb, 78.47.-p

I. INTRODUCTION

The phenomenon of spin pumping from a ferromagnet
(F) into a normal (N) layer is one of the most promi-
nent approaches to the generation of pure spin currents.
A prime manifestation that pumping indeed takes place
in realistic F-N structures is the additional broadening1

of the ferromagnetic resonance (FMR) in F, caused by
a contact with N-layer. This additional broadening
was first observed experimentally in Ref. [2]. Another,
more delicate, manifestation of pumping was reported
shortly after. Namely, the injected spin current, entering
the nonmagnetic material with spin-orbit coupling (like
Pt) causes a voltage drop across the current direction.
This voltage drop is due to the inverse spin-Hall effect3

(ISHE), and has a maximum when the frequency of the
microwave radiation driving the ferromagnet, ω, is equal
to the FMR frequency, ωFMR. Pioneering observations of
pumping via ISHE in Refs. [4–6] utilized Pt as the nor-
mal layer.7–9 They were followed by reports on similar
observations of pumping into different materials10–13, in-
cluding prominent semiconductors GaAs14, Si15,16, Ge17,
and, most recently, graphene.18 Experimental results on
the electric field generated due to ISHE , EISHE, are an-
alyzed using the relation EISHE ∝ J (s) × σ, where J (s)

determines the spatial direction of the spin current flow
and its magnitude, while σ is its polarization. The mag-
nitude of the spin current is given by

J (s) = g↑↓C
[
m(t)× dm(t)

dt

]
z
, (1)

where z axis is taken along the static part of the mag-
netization. In Eq. (1) the constant C characterizes the
properties of the normal layer (like ratio of thickness to
the spin-diffusion length) as well as the properties metal-
ferromagnet interface, while m(t) describes the magneti-
zation dynamics in the ferromagnet. The expression for
J (s) has the same form as the damping term in the equa-
tion that governsm(t). It was a remarkable experimental
finding5 that ISHE voltage exhibits essentially the same

behavior as a function of microwave power and the devi-
ation of ω from ωFMR as the additional FMR damping.

Microscopic physics of pumping is encoded in the mix-
ing constant1,19,20 g↑↓ in Eq. (1). A fundamental process
underlying the pumping is the inelastic electron-magnon
scattering at the F-N interface. Microscopic treatment
of this scattering21,22 assumes that electrons of the nor-
mal layer impinging on the interface with ferromagnet are
plane waves. On the other hand, in a number of recent
papers23–26 spin pumping into organic materials sand-
wiched between ferromagnet and Pt has been reported.
Strong temperature dependence of the resistance in these
materials27 suggests that the charge transport is due to
hopping of polarons24,26, so that the description of pump-
ing based on plane waves does not apply. This raises the
question about the microscopics of spin pumping in the
localized regime.

In the present paper we consider theoretically the spin
pumping into a hopping insulator using the minimal
model of coupling of localized states to a ferromagnet.
Within this minimal model the ferromagnet is treated as
a wide-gap insulator. We demonstrate that, unlike met-
als, the underlying process responsible for pumping is the
resonant magnon absorption accompanied by transitions
between localized states, see Fig. 1. A distinctive feature
of pumping into an insulator is that that the pumping
efficiency, commonly described by a constant, g↑↓, de-
pends strongly on the external dc magnetic field. This
is because, in addition to causing the spin precession in
ferromagnet, this field modifies the spin structure of the
localized states between which the magnon is absorbed,
see Fig. 1. The effect of external field is most pronounced
when the waiting time for a hop is longer than the period
of the ac field which drives the FMR. Since the resonance
frequency, ωFMR, depends on the orientation of the exter-
nal field28, for certain orientations29 this frequency coin-
cides with the Zeeman splitting of the localized states,
Fig. 2. Spin pumping is most efficient for such orienta-
tions, since the absorption of magnon takes place within
individual sites. We also show that, with no charge cur-
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FIG. 1. (Color online) Elementary processes underlying the
spin pumping into a metal (a), and into an insulator (b). In
the metal, an ↑ electron, impinging on the N-F boundary,
is primarily reflected elastically with amplitude r↑ (vertical
separation of left and right arrows is a guide to an eye). Spin
precession in F gives rise to inelastic reflection with amplitude
r̃↑↓ associated with the emission of a magnon. A ↓ electron is
either reflected elastically with amplitude r↓, or inelastically,
after absorbing of a magnon, with amplitude r̃↓↑. The injected
spin current is proportional to |r̃↑↓|2ω ∂f∂ε . In the insulator,
only inelastic processes are at work. Emission and absorption
of magnons take place within pairs of localized states.

rent, the spin polarization generated at the F-N bound-
ary, spreads in the insulator along the same percolation
network30,31 that determines the electrical resistance.

II. ABSORPTION OF MAGNONS AT F-N
BOUNDARY

A. General considerations

Figure 2 illustrates the difference between pumping
into a metal, and into an insulator in an applied magnetic
field, H. While H is responsible for the magnetization
precession in the ferromagnet, it also causes a spin split-
ting, ∆z, of the spectrum in the metallic normal layer,
Fig. 2a. This splitting, however, does not affect the ab-
sorption of magnons. The reason is that the absorption
at a boundary does not require momentum conservation,
i.e. the matrix element is constant, and thus there is no
dependence of the spin current, I(s), on the dc field in
the normal layer.

FIG. 2. (Color online) Illustration of pumping in metal (a)
and in insulator (b) in the presence of a Zeeman splitting,
∆z. In metal, the absorption (emission) of a magnon, ~ω,
near the F-N boundary does not conserve momentum, and
thus is insensitive to the ratio ∆z/~ω. By contrast, in and
insulator, and near the condition ~ω = ∆z, the absorption
(emission) of a magnon is resonant.

The situation is different for an insulator, where the
magnon absorption takes place between the discrete lev-
els, Fig. 2(b). In this case, and for a general orien-
tation of H, the Zeeman levels are the linear combina-
tions of ↑ and ↓ spin states. As a result, transitions from
each of the initial states on site i to both final states on
site j are allowed. This fact distinguishes absorption of
magnons from the conventional absorption of an ac elec-
tric field32–34, and, as we will see below, gives rise to
H-dependence of the spin current. Another origin of H-
dependence is the possibility of intrasite absorption of
magnons at the boundary. We will see that the intrasite
transitions dominate the absorption near the resonant
condition ~ω = ∆z. Away from this condition, the inter-
site transitions dominate.

B. The model

Consider a pair of localized states, i and j, Fig. 2(b).
Assume for simplicity that the ferromagnet is an insu-
lator, i.e. it is a barrier for electrons in N. Precession,
m(t), of magnetization in ferromagnet can be modeled
as a time-dependent correction ∝ m(t)σ̂ to the barrier
potential. The pumping takes place since the wave func-
tion, Ψi, can penetrate under the barrier. As a result,
the Hamiltonian of site i has a correction

δĤi = J
[
σ̂xmx sinωt+ σ̂ymy cosωt

]
, (2)

where J accounts for tunneling. Projections mx(t) and
my(t) are proportional to the magnitude of the mi-
crowave field and depend in a resonant way on the prox-
imity of ω to ωFMR. Analytical expressions for these pro-
jections can be found e.g. in Ref. [9].

The Hamiltonian δĤi of Eq. (2) causes transitions of
electrons between the sites i and j. Absorption of energy
in course of these transitions is quite similar to the ab-
sorption of the ac electric field by pairs of the localized
states. However, the transitions caused by δĤi are ac-
companied by spin flips, both from ↑ to ↓, and from ↓ to
↑. With regard to absorption of energy, one should add
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up the contributions of the both types of transitions, i.e.

I(e) = I↓→↑ + I↑→↓ (3)

However, the spin current results from the fact that these
contributions are not equal to each other, so that

I(s) = I↓→↑ − I↑→↓. (4)

Thus, for calculation of the spin current into hopping
insulator, one can use the standard “resonant” phonon-
less absorption theory32 and substitute the corresponding
rates into Eq. (4).

C. Resonant absorption at H = 0

We first neglect the Zeeman splitting in the normal
layer. In this case resonant transitions happen within
pairs of localized states, Fig. 1b. The correction δĤi

causes such transitions between the sites i and j because
the corresponding wave functions |i〉 and |j〉 have a finite
overlap integral, tij .

33 Due to this overlap, the eigenfunc-
tions of the pair get modified as

|i〉 =

√
Γ + δε

2Γ
|i〉+

√
Γ− δε

2Γ
|j〉,

|j〉 = −
√

Γ− δε
2Γ

|i〉+

√
Γ + δε

2Γ
|j〉, (5)

for δε = εj − εi > 0. The corresponding energies are

ε̃i,j =
εi + εj

2
∓ Γ

2
, Γ =

[
δε2 + 4t2ij

]1/2
. (6)

Since both modified eigenfunctions contain |i〉, the ma-

trix element of δĤi between them is finite, and the
Golden-rule expression for the spin-flip part of the i→ j
transition rate for εj > εi reads

I
(s)
i→j = −mxmyJ

2F(ε̃i, ε̃j , ω), (7)

where the function F is defined as

F(ε̃i, ε̃j , ω) =
2t2ij

(ε̃j − ε̃i)2

1
τ [f(ε̃i)− f(ε̃j)]

(ε̃j − ε̃i − ~ω)2 +
(~
τ

)2
=

2t2ij
Γ2

1
τ [f(ε̃i)− f(ε̃j)]

(Γ− ~ω)2 +
(~
τ

)2 . (8)

Here we have introduced the phonon broadening of the
levels, τ−1.

It is easy to see that the transition rate to states with
εj < εi is given by Eq. (7) with function F from Eq. (8),
but with f(ε̃i) ↔ f(ε̃j), and thus the rate has the same
sign as Eq. (7). Physically, this can be seen from the fol-
lowing argument: Consider the simple case of mx = my.
The Hamiltonian of Eq. (2) implies that for a given site

at the interface, spins ↑ are transferred to states of higher
energy (and there is a backflow of spins ↑ converted from
↓ from those states), while spins ↓ are pushed to states
with lower energy (and there is a backflow of spins ↓ con-
verted from ↑). Since the occupation of the state at the
interface is larger than of those at higher energy, there is
a negative ↓→↑ conversion rate because of transitions up
the energy. This is exactly what Eq. (7) suggests. Fur-
ther, since the occupation of the state at the interface
is lower than of those at lower energy, there is a positive
↑→↓ conversion rate, or, again, negative ↓→↑ one. Hence
a simple permutation f(ε̃i) ↔ f(ε̃j) suffices to describe
transitions to states with εj < εi.

The productmxmy in Eq. (7) is specific for spin pump-
ing, see Eq. (1). The expression for the net absorption
rate contains 1

2 (m2
x + m2

y) instead. Another difference

from the conventional resonance absorption31,32 is the
structure of the matrix element in Eq. (7). This, how-
ever, modifies the result of averaging over the sites, j,
only by a numerical factor. A crucial observation in the
averaging procedure32 is that the relevant sites, j, are
located within a narrow spherical layer with a radius rω
which is found from the condition 2|tij(rω)| = ~ω. As-
suming the exponential decay of the overlap integral with
distance, |tij(r)| = t0 exp(−rij/a), we have

rω = a ln
2t0
~ω

. (9)

The result of averaging and summing over sites far away
from the boundary reads

I(s)(ω) = 2π2mxmyJ
2
(
gωar2

ω

) ∂f
∂ε
, (10)

where g is the density of states. The transition rate of
Eq. (10) should be interpreted as the spin current gener-
ated per a localized state coupled to the ferromagnet.

D. Resonant absorption at finite H

To generalize Eq. (7) to a finite magnetic field in the
normal layer, one must take into account the modification
of the spin eigenstates, as well as the Zeeman splitting in
energies of the latter. The spin structure of the spin-split
levels depends on the orientation of H as follows

|χH+〉 = cos
(θH − θM

2

)
|χM+〉+ i sin

(θH − θM
2

)
|χM−〉,

(11)

|χH−〉 = cos
(θH − θM

2

)
|χM−〉+ i sin

(θH − θM
2

)
|χM+〉.

(12)

Here the quantization axes for |χM±〉 and |χH±〉 spinors
are chosen along the static part of the magnetization, and
the external magnetic field, respectively, see Fig. 3(a).
The states |χM±〉 at sites i and j are split by ∆z.
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All four transitions between states with |χM±〉 spin
wave functions, Fig. 2(b), are allowed for a general ori-
entation of the magnetic field. For spin-conserving tran-
sitions (+ → + and − → −), the frequency dependence
of I(s) remains ωr2

ω, i.e. the same as in Eq. (10). Ori-
entation of H enters into the prefactor: The product
mxmy should be replaced with 1

4 sin2(θH − θM )m2
x for

both transitions.
While the spin-conserving transitions do affect the spin

current density distribution in the sample, they are non-
resonant, and it is the spin-flipping ones (+ ↔ −) that
are responsible for the spin current generation at the in-
terface. In other words, no spin current is possible in a
stationary state without the latter processes. Therefore,
in what follows we concentrate on the frequency and mag-
netic field dependence of the corresponding rates.

As far as + → − and − → + transitions are con-
cerned, only the + → − with absorption of a magnon,
and− → + with emission of a magnon become important
in the vicinity of the resonance ~ω = ∆z. The other two
transitions are non-resonant, and therefore disregarded
here. For the + ↔ − transitions, the prefactor ω in the
spin current remains intact, since it comes from the dif-
ference in the populations of levels involved. However,
despite the upper and lower Zeeman levels being sepa-
rated in energy, the overlap of the spatial wave functions
is determined by εi, εj in zero magnetic field. Thus,
the + → − transitions take place between pairs with
(εj − εi) ∼ |~ω −∆z|. These pairs have the “shoulder”

r~ω−∆z = a ln
2t0

|~ω −∆z|
. (13)

Logarithmic divergence of Eq. (13), which is cut off at
|~ω −∆z| ∼ ~/τ , ensures the resonant character of spin-
flipping transitions that we took into account.

In addition to the replacement of rω by rω−∆z
in the

spin current, the prefactor mxmy should be modified as
mxmy → G(mx,my), where the function G is defined as

G(mx,my) = 1
4 (mx +my cos(θH − θM ))2, (14)

so that the absorption, and thus the FMR damping, do
not have the usual form ∝ mxmy.

The most spectacular manifestation of the resonance
~ω = ∆z is that the intrasite transitions become pos-
sible, as illustrated in Fig. 2(b). For these transitions
the overlap of the spatial parts of the on-site wave func-
tions is equal to 1, and the magnetic-field dependence of
absorption is a pure Lorentzian. Orientation-dependent
prefactor, which is the matrix element of δĤi between
the spinors |χH+〉 and |χH−〉 is the same as in Eq. (14).
Summarizing, we present the expression for spin current
close to the resonance ~ω = ∆z in the form

I(s)(ω) = 2G(mx,my)J2ω
∂f

∂ε

×
[ ~

τ

(∆z − ~ω)2 +
(~
τ

)2 + π2ga3 ln2 2t0
|~ω −∆z|

]
, (15)
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FIG. 3. (Color online) (a) The geometry of FMR; For a fixed
dimensionless frequency, ω̃ = ωFMR/4πMs, the dimensionless

magnitude, H̃ = H/4πMs, and orientation, θH , of dc mag-
netic field are related via Eq. (17). This dependencies are
shown for the values of ω̃/γ: (b) 0.5, (c) 1.2, and (d) 2.
Red dots indicate the values of H, for which the condition
γH = ωFMR is satisfied.

(a)

FIG. 4. (Color online) (a) the resonant condition γH = ωFMR

is satisfied along the solid lines on the
(

H
4πMs

)
−θH plane. The

cutoff values of θH are cos−1
(

1√
3

)
≈ 55◦ and π−cos−1

(
1√
3

)
.

(b) the behavior of the spin current calculated from Eq. (15)
for ga3~/τ = 4 · 10−3 and t0τ/~ = 15.

where the first term comes from intrasite and the second
term from intersite transitions. Directly at the resonance,
the first term dominates. This is ensured by the condition
ga3~/τ � 1. Since the combination 1/ga3 is the minimal
energy spacing between two sites in the insulator located
within ∼ a from each other, the above condition implies
that this spacing is much bigger than the phonon broad-
ening of individual levels, which is the definition of the
Anderson insulator. As the deviation from the resonance
increases, the behavior of I(s)(ω) is dominated by the sec-
ond term. Neglecting the logarithm, the crossover takes

place at |∆z − ~ω|τ/~ &
(
τ/~ga3

)1/2 � 1. The behavior
of spin current near the resonance is shown in Fig. 4(b),
where the logarithm was cut off at |~ω −∆z| = t0/15.
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III. RESONANT ORIENTATIONS OF
EXTERNAL FIELD

Equation (15) is our main result. To make connec-
tion to the experimental papers Refs. [23–26], below we
calculate the magnitude and orientation of the dc field
where the anomalous behavior of ISHE voltage takes
place. Such behavior takes place when two conditions
are met: The Zeeman splitting of the localized states is
equal to ~ω, and ω = ωFMR.

We specify the orientation of H and magnetization,
M , using the notations common in the literature, see
e.g. Refs. [9, 15, and 24], and Fig. 3. We will also intro-

duce dimensionless variables H̃, M̃ and ω̃, which stand
for H, M and ωFMR in the units of 4πMs, where Ms is
the saturation magnetization. Then the angle θM , corre-
sponding the equilibrium orientation ofM , is found from
the condition that M is parallel to the effective magnetic
field, with the demagnetizing term taken into account9

2H̃ sin(θH − θM ) + sin 2θM = 0, (16)

while the expression for the resonant frequency, ω̃,
reads28

( ω̃
γ

)2

=
[
H̃ cos(θH − θM )− cos 2θM

]
×
[
H̃ cos(θH − θM )− cos2 θM

]
. (17)

From these two equations we exclude θM and plot the di-
mensionless field H̃ versus θH , for a given FMR frequency
ω̃. Examples of these curves are shown in Fig. 3. Res-
onant orientation is obtained by crossing a curve H̃(θH)

by the line ω̃ = γH̃. Two intersections determine the ori-
entations for which ωFMR is equal to the Zeeman splitting
of the localized states. Upon changing ωFMR, we get two
lines of resonances, Fig. 4(a). They occupy two domains:
0 < θH < cos−1 1√

3
and (π − cos−1 1√

3
) < θH < π. At

the boundaries of the domains H̃ goes to infinity. Then
it follows from Eqs. (16) and (17) that at these bound-
aries sin(θM − θH) = 0, and θH satisfies the equation

cos(2θH)+cos2 θH = 0, yielding θH = cos−1
(

1√
3

)
≈ 55◦.

In Refs. [23 and 24] on pumping into organics the mi-
crowave frequency driving the resonance was 9.45 Ghz,
while the values of 4πMs were very different, namely,
4πMs = 0.175 T in Ref. [23] and 4πMs = 0.805 T in
Ref. [24]. Then from Fig. 4(a) we find that the resonant
angle θH should be close to 45◦ for Ref. [23] and 23◦ for
Ref. [24].

IV. SPIN-RESISTOR NETWORK

After the spin polarization is generated at the bound-
ary, it should spread into the bulk of the insulator to

FIG. 5. (Color online) “Spin-resistor” network. Polarizations
Pi and Pj on the sites i, j determine the spin current be-
tween these sites. The coefficients, Rij , are proportional to
the electric hopping resistances.

avoid the backflow.35 In a metal, where P is a contin-
uous function of coordinates, this spreading is by spin
diffusion accompanied by the Larmor precession. In a
hopping insulator P takes discrete values, Pi, which are
the polarizations on the sites, i. The Larmor precession
is accounted for by the on-site Zeeman splitting, ∆z, of
the levels, see Fig. 2. The frequencies of electron hops
between two sites, i and j, depend strongly on their en-
ergies, εi, εj , and their spatial separation, rij . Then the
issue of spreading of the spin polarization reduces to the

question: what is the spin current I
(s)
i→j between the sites

with polarizations Pi and Pj , provided that, on average,
there is no charge current between these sites?

If bias were applied between the two sites, then the
average charge current, proportional to this bias, could
be found by ascribing an effective resistance, Rij , to the
pair of sites30,31. It is easy to see that the same Rij

determines the proportionality coefficient between I
(s)
i→j

and Pi − Pj , namely

I
(s)
i→j = 2

Pi − Pj
Rij

∂f
∂ε

. (18)

In Eq. (18) we have assumed that the difference (εi−εj)
is much smaller than the temperature, so that ∂f

∂ε is the
same for both sites. Equation (18) follows from the fact
that the on-site chemical potentials of the local majority
and minority electrons are shifted by ∓|Pi|/∂f∂ε , respec-
tively. The spinors that correspond to these local spin
eigenstates are defined by the directions of Pi, Pj . Im-
portantly, the fact that the chemical potential splitting is
symmetric around the chemical potential of the unpolar-
ized system ensures the absence of the charge current, i.e.
the net current flow i→ j is compensated by the net cur-
rent flow j → i. With different spin polarizations of the
sites, the compensation of the charge flows leads to the
imbalance of the spin flows, and thus to Eq. (18). Note
that Eq. (18) remains valid in external magnetic field,
which enters only via the magnitudes of polarizations.
Overall, Eq. (18) suggests that polarization built up at
the F-N boundary spreads along the current-carrying re-
sistor network, as illustrated in Fig. 5.
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V. CONCLUDING REMARKS

(i) Our result Eq. (15) applies when the phonon-induces
broadening of the levels is smaller than ω. In the oppo-
site case, ωτ � 1, the mechanism of absorption is the
Pollak-Geballe relaxation mechanism, Ref. [36]; no sharp
dependence of pumping near the resonance is expected
in this regime. Unlike pumping into metals, the pumping
rate Eq. (15) is not simply proportional to m× dm

dt . The
prefactor in Eq. (14) depends on the relative orientation
of m and the external magnetic field, H.
(ii) Suppose that we are at resonance ~ω = ∆z. The
microwave field acts both by driving the FMR but also
directly, by causing transitions between the Zeeman lev-
els. If the amplitude of the field in frequency units (Rabi
frequency) exceeds the inverse spin relaxation time, these
transitions will be saturated in the bulk. Then the pump-
ing becomes inefficient.
(iii) In conventional theory of hopping transport the
applied voltage drops not on all the resistors consti-

tuting the network, but on the highest, critical, resis-
tors representing the “hardest” hops.31 The spin relax-
ation rate will be dominated by hyperfine or spin-orbit
environment37,38 of this hop.

(iv) We did not consider effects of electron-electron in-
teraction, and did not describe in detail how finite resis-
tance of the spin-current network, Section IV, affects the
measured value of the spin current. In brief, Coulomb
correlations enhance the absorption of magnons by in-
creasing the number of singly occupied pairs33, while the
measured spin current is given by Eq. (15) only in the
limit of vanishingly small bulk resistance. These consid-
erations are, however, completely standard, and do not
change the qualitative picture of spin current generation
by resonant magnon absorption in hopping insulators,
developed in this paper.
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