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We propose an optimized set of quantum gates for a singlet-triplet qubit in a double quantum dot
with two electrons utilizing the S-T− subspace. Qubit rotations are driven by the applied magnetic
field and a field gradient provided by a micromagnet. We optimize the fidelity of this qubit as a
function of the magnetic fields, taking advantage of “sweet spots” where the rotation frequencies are
independent of the energy level detuning, providing protection against charge noise. We simulate
gate operations and qubit rotations in the presence of quasistatic noise from charge and nuclear
spins as well as leakage to nonqubit states. Our results show that, for silicon quantum dots, gate
fidelities greater than 99% should be realizable, for rotations about two nearly orthogonal axes.

I. INTRODUCTION

Electron spins in semiconductor quantum dots are
promising qubits because of the long coherence times
found in such devices and their potential for scalabil-
ity [1]. Single-electron spins have been manipulated by
applied AC magnetic fields in both III-V and group-IV
devices [2–4]. By incorporating micromagnets [5] near
the quantum dot, AC electric fields can be used for co-
herent manipulation of single spins [6, 7]. Magnetic field
differences can also be generated by pumping the nu-
clear spin bath [8, 9], and effective fields can be created
by electric-field motion in high spin-orbit materials [10].

By working with two electrons in a double quan-
tum dot, qubits can also be formed from the singlet
(S) and triplet (T ) states [9, 11–14]. A magnetic field
difference between the quantum dots enables full con-
trol of the S-T0 subspace by controlling the detuning
energy ε between the dots, with the eigenstates vary-
ing from {|↓↑〉, |↑↓〉} to {|S〉, |T0〉} in different working
regimes. Recently, an alternative two-electron qubit has
been studied, consisting of the singlet |S〉 and polarized
triplet |T+〉 states for GaAs [15–21] or the |S〉 and |T−〉
states for Si [14]. Coherent oscillations have been ob-
served in experiments [18, 22], and theory predicts that
such oscillations can be high speed [19, 23]. However,
the previous work does not resolve whether this qubit
can achieve fidelities high enough to meet the threshold
for quantum error correction.

In this work, we determine the optimal working points
for pulsed-gating manipulation of the S-T− (or, equiv-
alently, S-T+) qubit in a Si double quantum dot. The
points occur in a regime of magnetic fields and field gra-
dients that has not been elucidated previously. The re-
quired field gradients are easily achieved with micromag-
nets [7]. Using realistic assumptions about experimental
noise derived from recent experiments, we demonstrate
that control fidelities in excess of 99% can be realized
in natural abundance Si. The calculated fidelities are
high enough to achieve fault-tolerant operation using sur-
face code error correction [24]. Interestingly, only one of
the optimal operating points is at a charge-noise sweet
spot. The other optimal point is detuned from the second

charge-noise sweet spot, in order to avoid leakage driven
by the magnetic field difference between the quantum
dots. Using realistic parameters, we find gate speeds of
43 MHz for X rotations and 124 MHz for Z rotations.
These gate speeds can be increased by simultaneously
increasing the applied magnetic fields and the interdot
tunnel coupling.

This paper is organized as follows. In Sec. II A, we
review the experimental setup for the S-T− qubit, par-
ticularly the required magnetic field configuration. In
Sec. II B, we develop a two-electron double dot Hamil-
tonian including five different spin and charge states.
In Sec. II C, we obtain a reduced two-dimensional (2D)
Hamiltonian, which spans the qubit subspace. In Sec. III,
we describe one and two-qubit gate operations for the
S-T− qubit, and we discuss the range of device parame-
ters that should yield high gate fidelities. In Sec. IV, we
describe our simulation techniques and the optimized re-
sults for both X and Z rotations, in the presence of both
environmental noise and leakage. In Sec. V we conclude
our general discussion. In Appendix A, we describe the
two tunnel coupling models used in our simulations. In
Appendix B, we provide details about the derivation of
the effective 2D Hamiltonian used in several analytical
calculations. In Appendix C, we describe the analyti-
cal solutions for leakage at early times in the dynamical
evolution. In Appendix D, we provide details about our
process fidelity calculations. In Appendix E, we describe
our analytical calculations of various dephasing rates, by
averaging over quasistatic fluctuating variables, includ-
ing magnetic and charge noise, and we compare these
results with dephasing estimates for a S-T0 qubit. In
Appendix F, we explain why the optimal working point
for Z rotations does not occur in the far-detuned limit.

II. S-T− QUBIT

In this section, we first provide an overview of the S-T−
qubit. We then give a detailed description of the Hamil-
tonian for the 5-level singlet-triplet basis set, as well as
an effective 2-level Hamiltonian for the qubit subspace.
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FIG. 1. (Color online) (a) Illustration of a nonuniform magnetic field Bm provided by a micromagnet (dark purple rectangle)
fabricated above a double quantum dot, and a uniform external field Bext (blue arrow). Random, quasistatic Overhauser
fields are also present, due to nuclear spins. (b) Singlet-triplet energy diagram, showing the dominant couplings between levels
(arrows). A Bloch sphere representation of the S-T− qubit indicates the rotation axes associated with the different coupling
terms. (c) Top: singlet-triplet energy diagram as a function of detuning ε. X rotations are performed at a detuning sweet
spot (black circle at εX) where the qubit energy levels are parallel and the splitting is set by ∆Bx. Z′ rotations occur in the
far-detuned regime (εZ′ � 0), with a rotation axis Z′ tilted slightly away from Z on the Bloch sphere. Bottom: illustration of
typical pulse sequences for implementing X and Z-rotations. Measurement of the singlet probability is done at the detuning
value εm > 0 in the (0, 2) charge state. The Z protocol shows a Ramsey pulse sequence where the Z rotation is implemented
using a three-step sequence [25] to correct for the tilt of the Z′ axis, as illustrated on the Bloch sphere.

A. Experimental overview

We consider a double dot geometry with a magnetic
field gradient generated by a micromagnet, as shown in
Fig. 1(a). There are three contributions to the total field:
the uniform external field Bext, whose magnitude and
direction are assumed to be tunable, the field from the
micromagnet Bm [5, 14], and the slowly varying Over-
hauser fields h, arising from the nuclear spins [26]. The
static fields, Bext and Bm, induce different local fields on
the left and right dots, labeled BL and BR, respectively.
The average field is defined as Bavg = (BL+BR)/2, while
the the field difference is defined as ∆B = BL−BR. We
define the spin quantization axis ẑ such that Bavg = Bz ẑ.
The Hamiltonian described in Sec. II B also includes the
local Overhauser fields hL, hR, with h = (hL + hR)/2
and ∆h = hL − hR.

The main control parameter for the Hamiltonian is the
energy detuning ε between the (0, 2) and (1, 1) charge
states, as sketched in the upper inset of Fig. 1(c). Here,
ε = 0 corresponds to the charging transition. The rele-
vant energy levels of the two-electron double dot, includ-
ing energy splittings due to ∆B, are plotted as a function

of the detuning in Fig. 1(c). The energy eigenstates |0〉
and |1〉 correspond to the two lowest energy levels in the
figure, which are adiabatically (with respect to tc) con-
nected to the qubit logical states |S〉 and |T−〉, the energy
eigenstates at the large positive detuning εm, where the
coupling between |S〉 and |T−〉 due to ∆B vanishes. For
ε < 0, the |S〉 and |T−〉 states hybridize, and diabatic,
pulsed gates can drive rotations between them.

Three main mechanisms work to reduce the fidelity
of S-T− gate operations: charge noise, magnetic noise,
and leakage to non-qubit sectors of the Hilbert space.
Leakage occurs most readily to states that are closest in
energy to the qubit states. The greatest threat, accord-
ing to Fig. 1(c), is therefore |T0〉. As is well known from
the study of S-T0 qubits [11], this state can become oc-
cupied in the presence of a field gradient ∆B‖ẑ. This
leakage is minimized when ∆B and Bavg are perpendic-
ular. (For convenience, we define ∆B‖x̂.) We assume
this alignment, so that the main S-T− leakage channel is
avoided, except for unavoidable longitudinal fluctuations
of the Overhauser field, ∆hz.

It has long been known that charge noise can be sup-
pressed in superconducting [27] or quantum dot [28]
qubits by operating at a “sweet spot,” where the energy
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splitting between the qubit states, E01, is insensitive to
small fluctuations of a control parameter. For fluctua-
tions of the detuning parameter caused by charge noise,
sweet spots are values of ε for which ∂E01/∂ε = 0. The
S-T− qubit has two charge-noise sweet spots: the first oc-
curs at the detuning value εX , as indicated in Fig. 1(c);
the second occurs in the limit ε → −∞. Both locations
are candidates for performing gate operations.

We can represent quantum gate operations on a Bloch
sphere with |S〉 at the north pole and |T−〉 at the south
pole, as indicated in the inset of Fig. 1(b). In Sec. II B,
we show that Bz generates rotations around the ẑ axis,
while ∆Bx generates rotations around the x̂ axis. A third
rotation axis −ẑ is provided by the exchange coupling J ,
defined as the energy splitting between the |S〉 and |T0〉
states, which is also indicated in the inset of Fig. 1(b).
While the magnetic fields Bz and ∆Bx remain constant
throughout an experiment, the exchange coupling can be
tuned electrostatically, through the detuning parameter.
X rotations are achieved by tuning ε to the sweet spot
εX , where J = gµBBz, causing the Z component of the
rotation to vanish. Here, g ' 2 is the Landé g factor in
silicon and µB is the Bohr magneton. We show below
that the second sweet spot at ε→ −∞ is not an optimal
working point, and that higher fidelity operations can be
achieved at the finite detuning value εZ′ . This point is
not perfectly aligned with ẑ, since ∆Bx cannot be turned
off. However, short pulse sequences can be used to cor-
rect for this misalignment [25, 29]. The pulse sequences
considered in this work are shown in the lower portion of
Fig. 1(c).

The detuning sweet spot at εX may be enhanced by ar-
ranging for ∂E01/∂ε ' 0 over as broad a detuning range
as possible. We study this problem in Sec. IV by maxi-
mizing the X-rotation fidelity in our simulations, finding
that the optimal sweet spot occurs at specific values of
Bz and ∆Bx. In practice, ∆Bx is the most difficult pa-
rameter to control experimentally, since it typically de-
pends on the placement of a micromagnet. Once the
desired ∆Bx has been engineered, the direction of ∆B
determines the x̂ axis. The magnitude and the direction
of the external field Bext must then be chosen to attain
the optimal value of Bz, while satisfying the requirement
∆B ⊥ Bavg. Practically, such directional control prob-
ably requires some trial and error to achieve high accu-
racy. However, the process can be facilitated by using a
vector magnet. Indeed, our simulations indicate that op-
timal operating fields are in the range of 1-10 mT, which
could even be achieved via current-carrying wires. For
a given device, the orientation of Bext only needs to be
performed once. In Appendix C, we show that the pro-
posed S-T− qubit can tolerate misalignments of the field
orientation as large as ∆Bz/∆Bx=10%, at the optimal
working point.

B. Full double-dot Hamiltonian

Here, we describe the full 5D Hamiltonian for two-
electron states in a double quantum dot, which yields
the energy levels shown in Fig. 1(c). We begin with a
Hubbard Hamiltonian [15, 17],

H =
tc√
2

(~c†L~cR + ~c†R~cL) +HZ(Bi,hi)

−
∑
i=L,R

µi(ni↑ + ni↓) + Uni↑ni↓

where ~ci is the two-component spinor annihilation op-

erator for electrons on dot i=L or R, niσ = c†iσciσ is
the electron number operator for spin σ=↑ or ↓, as de-
fined along the spin quantization axis, µi are electro-
chemical potentials for the dots, and U is the intradot
Coulomb interaction energy [30]. The detuning is de-
fined by ε=µL − µR −U , so that ε=0 corresponds to the
(1, 1)→(0, 2) charge transition. The Zeeman Hamiltonian
HZ is defined as HZ(Bi,hi) = gµB

∑
i=L,R(Bi+hi) ·Si ,

where Si = ~c†iσ~ci/2 are the spin density operators on the
left and right dots and σ are the Pauli matrices.

In the parameter regime of our proposed qubit, the
tunnel coupling tc/

√
2 represents the largest energy scale,

so it is appropriate to begin our calculation by hybridiz-
ing the {(1, 1), (0, 2)} charge basis. Spin flips due to the
Overhauser fields occur only between the (1, 1) charge
states, and are included explicitly, below. Moreover,
spin-orbit coupling is very weak in silicon [31], so mix-
ing of the spin states induced by it is negligible. There-
fore, charge state hybridization occurs only within the
singlet subspace {|S(1, 1)〉, |S(0, 2)〉}, whose Hamiltonian
is given by

HS = tc(|S(1, 1)〉〈S(0, 2)|+ h.c.)− ε|S(0, 2)〉〈S(0, 2)| .

Diagonalizing this system yields the hybridized singlet
states (

|S〉
|S′〉

)
=

(
cos η sin η
− sin η cos η

)(
|S(1, 1)〉
|S(0, 2)〉

)
, (1)

whose energy eigenvalues are given by(
ES
ES′

)
= tc

(
tan η
− cot η

)
=

1

2

(
−ε−

√
4t2c + ε2

−ε+
√

4t2c + ε2

)
. (2)

Here, we have parameterized the admixture of charge
states by the mixing angle η, where cos η and sin η corre-
spond to the amplitudes of the projections of |S〉 onto the
(1, 1) and (0, 2) charge states, respectively. (The magni-
tudes of cos η and sin η are plotted as a function of de-
tuning in the inset of Fig. 4, in Appendix A.) We see that
|S〉 → |S(1, 1)〉 when ε→ −∞ and |S〉 → |S(0, 2)〉 when
ε → +∞, while |S′〉 exhibits the opposite asymptotic
behaviors.
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To evaluate the Hamiltonian in the singlet and triplet
basis of spin states defined by

|S〉 =
| ↑↓ 〉 − | ↓↑ 〉√

2
, |T0〉 =

| ↑↓ 〉+ | ↓↑ 〉√
2

,

|T+〉 = | ↑↑ 〉 , |T−〉 = | ↓↓ 〉 ,

it is useful to express the Zeeman Hamiltonian in terms
of the total spin SL +SR and spin difference SL−SR on

the two dots. For the static fields, this yields

HZ(Bi) = gµB

[
Bavg · (SL + SR) +

∆B

2
· (SL − SR)

]
,

where the Zeeman Hamiltonian for the Overhauser fields,
HZ(hi), is expressed analogously in terms of h and ∆h.

Defining the quantization axis ẑ such that Bavg =
Bz ẑ finally yields a Hamiltonian, which is projected
onto the subspace spanned by the 5D basis set
{|T+(1, 1)〉, |T0(1, 1)〉, |T−(1, 1)〉, |S〉, |S′〉} [15, 32]:

H = gµB


Bz + hz h+/2 0 cos η∆B++∆h+

2
√

2
− sin η∆B++∆h+

2
√

2

h−/2 0 h+/2 cos η∆Bz+∆hz
2 − sin η∆Bz+∆hz

2

0 h−/2 −Bz − hz − cos η∆B−+∆h−
2
√

2
sin η∆B−+∆h−

2
√

2

cos η∆B−+∆h−
2
√

2
cos η∆Bz+∆hz

2 − cos η∆B++∆h+

2
√

2
−J/gµB 0

− sin η∆B−+∆h−
2
√

2
− sin η∆Bz+∆hz

2 sin η∆B++∆h+

2
√

2
0 ES′/gµB

 . (3)

Here, we define h± = hx ± ihy, ∆B± = ∆Bx ± i∆By,

and J = −ES = (ε/2) +
√

(ε/2)2 + t2c , noting that the
factors cos η and sin η associated with the singlet mixing
angle η appear in the singlet-triplet coupling terms be-
cause the triplets only couple to the singlets through the
(1, 1) charge state. Figure 1(b) shows typical singlet-
triplet energy splittings near the S-T− crossing, with
transitions due to the static field difference ∆B, as in-
dicated. The logical S-T− qubit consists of the nearly
degenerate subspace of |S〉 and |T−〉 states. S-T0 oscilla-
tions, driven by ∆Bz, correspond to leakage outside the
qubit subspace.

Finally we note that two prescriptions for the tun-
nel coupling are employed in the numerical simulations
described below: (i) a constant tunnel coupling, with
tc=20 µeV, and (ii) a detuning-dependent tunnel cou-
pling [33] with exponential dependence tc=t0 exp(ε/ε0),
and parameters t0 ∼ 20 µeV and ε0 ∼ 1 meV. The sim-
ulation results reported in the main text correspond to
case (i), while results for case (ii) are reported in Ap-
pendix A and Table I; similar results are obtained in both
cases. Tunnel couplings of order t0 = 20µeV = 5 GHz
have been observed in several recent quantum dot exper-
iments [33, 34], while values as large as tc = 60 µeV have
also been reported [22].

C. Reduced Hamiltonian

The simulation results reported in this work use the
full 5D Hamiltonian of Eq. (3). However, it is instruc-
tive to also consider Hamiltonians of reduced dimension,
since they provide intuition and allow us to make an-
alytical progress in some cases. First, the 5D Hamil-
tonian can be effectively reduced to 4D by noting that

the qubit we propose operates deep in the (1, 1) charge
regime, where J/tc�1 and (cos η, sin η)'(1,−J/tc). In
this limit, the mixing term sin η is very small, and the
corresponding probability of leaking into the |S′〉 singlet
is proportional to sin η2(|∆B|/ES′)2≈J4∆B2/t6c , which
is extremely small. The physically relevant Hamiltonian
is therefore effectively reduced to the upper 4×4 block of
Eq. (3). As a further simplification, we can also neglect
the Rabi flopping terms that couple the different triplet
states. For the parameter regime of interest, these terms
lead to effects of order (h±/Bz)2 ' 10−6, which are very
small because the triplet states are split energetically by
a large magnetic field [22]. On the other hand, the qubit
states |S〉 and |T−〉 are nearly degenerate, so terms in-
volving ∆h± should not be neglected.

The 4D Hamiltonian can be further reduced to describe
just the 2D subspace of the S-T− qubit. We first set
∆Bz = 0, as proposed in Sec. II A, to remove the pre-
dominant coupling between |S〉 and |T0〉. We also define
the x̂ axis such that ∆B = ∆Bxx̂. The canonical trans-
formation described in Appendix B then yields the de-
sired effective Hamiltonian, for which the leading order
term is given by [32]

H(ST−) = −gµB (4)

×
(

J(ε)/gµB
cos η(ε)

2
√

2
(∆Bx + ∆h+)

cos η(ε)

2
√

2
(∆Bx + ∆h−) Bz + hz

)
.

In the parameter regime of interest, higher order terms in
this expansion are negligibly small. Equation (4) there-
fore encompasses the full qubit dynamics, except for leak-
age effects that we show are small in the regime of inter-
est.
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III. DC PULSED-GATE OPERATIONS

The Hamiltonian (4) enables complete electrical con-
trol of the logical qubit by manipulating the energy de-
tuning ε between the (0, 2) and (1, 1) charge states, as
indicated in Fig. 1(c). X rotations are performed at the
detuning value εX defined by J(εX)=gµBBz, where the
S-T− energy levels anticross. Rotations about an axis
close to Z (denoted Z ′) are performed at a large nega-
tive detuning value εZ′ , where J � gµBBz. Initialization
into the ground state |S〉 can be performed deep in the
(0, 2) charge regime (ε�0), where the singlet-triplet cou-
pling is very small because cos η ' 0.

The simulations reported in Sec. IV suggest that it is
important to engineer the broadest possible sweet spot,
to suppress the effects of detuning noise. Here, we dis-
cuss the requirements for achieving a broad sweet spot.
The simplest method to flatten the gap, gµB∆Bx, is to
increase its size. However, according to Eq. (3), the leak-
age to state |T+〉 scales as (∆Bx/Bz)

2, so Bz should be
simultaneously increased. Based on such arguments, the
full set of requirements for a broad sweet spot is given by

σh � gµB∆Bx�gµBBz � tc , (5)

where σh is the variance of the Overhauser field fluc-
tuations. The first inequality in Eq. (5) ensures that
X rotations are much faster than dephasing. The sec-
ond inequality suppresses the leakage from |S〉 to |T+〉.
The final inequality ensures a wide sweet spot by caus-
ing the anticrossing, which occurs at εX ' −t2c/gµBBz
for the parameter range of interest, to occur at large
enough negative detunings that even the second deriva-
tive ∂2E01/∂ε

2 ∝ (∂J/∂ε)2 is very small. We stress that,
while the gradient field should be sufficiently large rel-
ative to the nuclear field to achieve high fidelity gate
operations, the upper bound set by the tunnel coupling
limits the optimal magnitude of ∆Bx, so that, perhaps
counterintuitively, too large a gradient can degrade qubit
fidelity.

The hierarchy of requirements suggested by Eq. (5) dif-
fers from previous S-T− qubit proposals. For example,
Ref. [16] proposes to use a single spin on one dot as the
qubit, and requires a large field gradient, BzR � tc . BzL.
Ref. [19] proposes to use small tunnel couplings and field
gradients, yielding a narrow sweet spot with εX > 0.
Ref. [23] proposes using ∆Bx � Bz, so that leakage ef-
fects are suppressed; however they focus on the parame-
ter regime tc . Bz, where the sweet spot is narrow and
εX > 0. The latter regime is most practical for GaAs
devices because large fields are required to combat the
effects of Overhauser field fluctuations. Ref. [23] goes on
to suggest that tc � gµBBz would yield a better work-
ing regime. In this paper, we clarify these statements
in the context of Si devices, where tc � gµBBz is not
impractical. We quantify the fidelity levels that can be
achieved in a S-T− qubit, for realistic device parameters
and realistic noise levels, under the constraints imposed
by Eq. (5). In Appendix E 2, we further contrast our

proposal with the S-T0 qubit, which is more sensitive to
charge noise.

While the present work mainly focuses on single qubit
gates, we note that capacitive two-qubit gates can be im-
plemented using the same techniques as S-T0 qubits [35,
36], because the required capacitive coupling depends
only on the orbital charge distribution, not the spin state.
For example, the entangling component of the dipole-
dipole coupling between two qubits, labeled A and B, is
given by [35]

HAB = JAB |S(0, 2)〉〈S(0, 2)|A ⊗ |S(0, 2)〉〈S(0, 2)|B (6)

where JAB ≡ ∆Ec(∂J/∂εA)(∂J/∂εB), ∆Ec is the
Coulomb energy difference between the states
|S(1, 1)〉A|S(1, 1)〉B and |S(0, 2)〉A|S(0, 2)〉B , and
∂J/∂ε = sin2 η is proportional to the dipole moment
of a given qubit, assuming a constant tunnel coupling.
The interaction can be turned on by pulsing both qubits
to large positive detuning values, where sin2 η ' 1.
The result is a CPHASE gate, which has recently been
demonstrated in a S-T0 qubit system [36].

IV. GATE FIDELITIES

A. Simulation procedure

We now perform simulations of S-T− qubit rotations,
to determine the optimal values for the applied mag-
netic fields and the tunnel coupling. Simulations are
performed by numerically integrating the time-dependent
Schrödinger equation

i~
dcn
dt

=

5∑
m=1

Hnm(ξα)cm ,

where cn are the expansion coefficients of the wave func-
tion in the {T+(1, 1), T0(1, 1), T−(1, 1), S, S′} basis, Hnm

are the matrix elements given in Eq. (3), and ξα are noise
variables.

The main sources of noise in a double dot are detuning
fluctuations [33, 37] and low-frequency Overhauser field
fluctuations [32, 38], which can both be treated quasistat-
ically on the time scales of the qubit dynamics [32]. For
our simulations, we assume Gaussian distributions over
five noise variables, ξα=(δε, hz,∆hx,y,z), where δε rep-
resents the fluctuation of the detuning from one of its
gating positions, εX or εZ′ , and the remaining variables
represent Overhauser field fluctuations away from their
average values of zero [39]. The simulations are repeated
for nine equally spaced values of a given fluctuation vari-
able in the range ξα = −4σα, . . . , 4σα. The Gaussian av-
erage for each component of the density matrix is given
by

ρnm =
∏
α

4∑
kα=−4

σα[cn(ξα)c∗m(ξα)p(ξα)]ξα=kασα , (7)
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FIG. 2. (Color online) Optimization of X rotations. (a) Semilog plot of the state infidelity of an Xπ rotation from |1〉 to |0〉,
1− Fs(Xπ), as a function of the applied longitudinal field Bz, for several values of the field gradient ∆Bx, as indicated in the
legend. Inset: a similar plot showing the contributions to the state infidelity due to leakage, Pleak, and the combined effect of
detuning and Overhauser field fluctuations, 1−P ′−, for the case gµB∆Bx=0.25 µeV. (b) A color density plot of 1−Fs(Xπ) for
an Xπ rotation, as a function of Bz and ∆Bx. The red star indicates the optimal working point gµB(∆Bx, Bz)=(0.25,0.75) µeV.

(c) Larmor oscillations (X rotations), and the corresponding Gaussian decay envelope, (1 ± e−(t/T2(X))2)/2, obtained at the
optimal working point, with T ∗2 (X) =

√
2~/σh.

where p(ξα)=exp(−ξ2
α/2σ

2
α)/
√

2πσα is the Gaussian dis-
tribution for variable ξα. The variances for the δε
and hz distributions are denoted by σε and σh respec-
tively, while the variance for the ∆hx,y,z variables is

given by
√

2σh, as appropriate for uncorrelated noise be-
tween the left and right dots. Here we adopt the values
σε=5 µeV [13, 14, 40] and σh=3 neV [13, 14, 26], as ap-
propriate for natural Si.

Simulations are performed for a range of control pa-
rameters to determine their optimal values for X and
Z rotations. For a given set of control parameters, a
Gaussian average is performed over the fluctuating vari-
ables, as described above. We then sweep the control
parameters to identify their optimal values, using as our
figures of merit the state fidelity of an X rotation from
|S〉 to |T−〉, and the state fidelity of a Z rotation from

(|S〉 + |T−〉)/
√

2 to (|S〉 − |T−〉)/
√

2. Finally, we obtain
the full process fidelities at the optimal working point
for each gate, corresponding to an average over all possi-
ble initial states. In practice, this is accomplished by
computing the density matrices for four different ini-
tial conditions [41]. The process fidelity is defined as
Fp(E) = Tr[χ(E)χ(E0)], where E is the final, Gaussian-
averaged density matrix from our simulations, and E0
denotes the ideal result, which does not include leakage
or noise. Here, χ is the process matrix defined by [41]

E(ρ̂) =
∑
mn

Êmρ̂Ênχmn, (8)

where we adopt the basis set Êm = {1, τ̂x,−iτ̂y, τ̂z}, and
τ̂i are Pauli matrices. An explicit formula for χ, along
with numerical results for the Xπ and Z ′π gates, described
in the following sections, is presented in Appendix D,

B. X rotations

We first investigate the fidelity of pulsed Xπ rotations,
using the pulse sequence shown in the lower portion of
Fig. 1(c). The qubit is initialized to state |S(0, 2)〉 at
the detuning value ε=εm, The qubit is then pulsed via
“rapid adiabatic passage” (RAP) [11], which is fast com-
pared to the S-T− rotation frequency but slow compared
to the tunneling frequency 2tc/h. When we use the opti-
mized magnetic fields, the RAP ramp from (0, 2) to (1, 1)
can be performed so that its contribution to the infidelity
due to leakage is negligible (<0.1%). We then follow the
simulation procedure described in Sec. IV A, and com-
pute the average probabilities PS , PS′ , P±, and P0 of
being in the states |S〉, |S′〉, |T±〉, and |T0〉. For an Xπ

gate, the state fidelity is defined as Fs(Xπ)=P−(τX), the
probability of reaching the desired target state |T−〉, af-

ter a gate evolution period of τX = h/
√

2gµB∆Bx. The
corresponding infidelity is defined as 1− Fs(Xπ).

Figure 2 shows the results for the state fidelity of
X rotations from |1〉 to |0〉, as a function of the
magnetic fields Bz and ∆Bx, corresponding to case
(i), the constant tunnel coupling model. We iden-
tify the optimal working point, marked by a star in
Fig. 2(b), as gµB∆Bx=0.25 µeV (∆Bx=1.5 mT) and
gµBBz=0.75 µeV (Bz=4.5 mT), corresponding to an Xπ

rotation speed of 43 MHz. At this optimal point, we cal-
culate a full process fidelity of Fp(Xπ) = 99.3%, which
is slightly higher than the optimized state fidelity, and
somewhat higher than fidelities observed in recent exper-
iments [21]. The long-lived Larmor oscillations shown in
Fig. 2(c) are also obtained at the same optimal point.

Figure 2(a) shows that the infidelity goes through a
minimum as a function of Bz, for a given value of ∆Bx,
which results from a competition between leakage and
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FIG. 3. (Color online) Optimization of Z′ rotations. (a)
Semilog plot of the state infidelity of a Z′π rotation, 1−Fs(Z′π),
as a function of the detuning, for nearly-optimal values of
gµB∆Bx and gµBBz. The red markers indicate the corre-
spondence with curves in Fig. 2(a), with the star indicating
the optimal working point. (b) Z′ rotations performed at the
starred point in (a), for εZ′=−1.5 meV.

noise. To the left of the minimum, the infidelity is dom-
inated by leakage. To see this, we plot the total leakage
probability Pleak=P+ + P0 + PS′ in the inset. Here, the
small oscillations are caused by leakage to the state |T+〉,
which arises from the ∆Bx coupling term [42]. To the
right of the minimum, the infidelity is dominated by the
exchange noise, δJ = (∂J/∂ε)δε. To see this, we obtain
an approximate analytic solution for the qubit dynamics
from the 2D Hamiltonian, Eq. (4), which includes detun-
ing fluctuations, but no leakage. Details of the calcula-
tion are given in Appendix E 4, yielding the final state
(T−) probability for an Xπ rotation

P ′−(τX) =
1

2

[
1 + e−(τX/T

∗
2 (X))2(1− σ2

⊥/b
2)
]
, (9)

where T ∗2 (X) =
√

2~/σh, σ2
⊥ = σ2

J + σ2
h, and b =

gµB |∆Bx|/
√

2. The only dependence on Bz in Eq. (9)
comes from the exchange noise, whose variance is given
by σJ = σε(∂J/∂ε)ε=εX . This contribution to the infi-
delity, 1− P ′−, which is dominated by exchange noise, is
also plotted in the inset of Fig. 2(a). The sum of the
curves in the inset matches the numerical simulations in
the main panel and explains the crossover between leak-
age and noise-dominated behavior.

The competition between leakage and noise suggests a
strategy for improving the fidelity of Xπ rotations: sup-
press the charge noise while keeping the leakage con-
stant. In Sec. III, we noted that leakage into state

|T+〉 is proportional to (∆Bx/Bz)
2, which we want to

keep constant. We can also obtain a scaling relation for
the exchange noise (1 − P ′−) by noting that the main
dependence of Eq. (9) on Bz arises from the (σJ/b)

2

term. From the definition of σJ , and the relation J '
−t2c/ε, which is valid in the vicinity of the working point
εX , defined by J = gµB∆Bx, we can estimate that
σJ'(gµBBz/tc)

2σε'7 neV, and the exchange noise con-
tribution to infidelity as

(1− P ′−)δJ ∼ σ2
εB

4
z/t

4
c∆B

2
x . (10)

If (∆Bx/Bz)
2 is held fixed, the exchange noise can there-

fore be suppressed by reducing Bz/tc, as consistent with
Eq. (5).

The optimal value of gµB∆Bx = 0.25 µeV suggested
by our simulations is slightly larger than typical Over-
hauser fields observed in GaAs dots with random nu-
clear polarization [26] (∼0.1 µeV), and much larger than
the Overhauser fields in Si dots [26] (∼3 neV). Exper-
imentally, values of ∆Bx as large as 30 mT (3.5 µeV)
have been achieved using micromagnets [5]. By increas-
ing ∆Bx to this range, while satisfying the requirements
of Eq. (5), we can expect to achieve optimal fidelities sim-
ilar to those in our simulations, with a ten-fold increase
in gate speed.

Finally, we have studied the important role that tun-
nel coupling plays in determining the optimal Xπ gate fi-
delity by repeating our simulations with a smaller tunnel
coupling, tc=10 µeV, instead of the tc=20 µeV coupling
that was used for all the other results described above.
In this case, we obtain a maximum process fidelity of
Fp(Xπ) = 98.4% (instead of 99.3%), corresponding to the
optimal working point gµB(∆Bx, Bz)=(0.15, 0.3) µeV.

C. Z′ rotations

In the laboratory, it is not feasible to tune the mag-
netic fields differently for X and Z ′ rotations. How-
ever, once the ∆Bx and Bz that optimize the X ro-
tations are fixed, we are still free to adjust the value
of εZ′ to optimize Z ′ rotations. As noted in Sec. II A,
the rotation axis ẑ′ is tilted away from ẑ by the an-
gle θ=tan−1[∆Bx/

√
2(Bz − J(εZ′))] in the x-z plane.

If desired, a true Z rotation could be implemented via
a three-step pulse sequence, provided that θ<45◦ [25].
In turn, this sequence can be incorporated into longer
sequences, like the Ramsey sequence, Xπ/2-Zπ-Xπ/2,
shown in Fig. 1(c). Here, we simulate just the Z ′(π)
portion of the sequence. Beginning with the initial state
|X〉=(|S〉+ |T−〉)/

√
2, on the equator of the S-T− Bloch

sphere, we suddenly pulse the detuning to εZ′ and evolve
the system for a π-rotation period. We then compute
the state fidelity Fs(Z

′
π)=P (−X)/V , where P (−X) is

the probability of reaching the final state |−X〉 and
V = cos2 θ is the visibility, defined as the maximum am-
plitude for an ideal Z ′ rotation [43].
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The results of our simulations of the Z ′ gate
are shown in Fig. 3(a). Here, we have used the
same (∆Bx, Bz) combinations indicated by markers in
Fig. 2(a), which yield nearly optimized fidelities for Xπ

rotations, and we perform our optimizations over the de-
tuning parameter εZ′ . For the particular combination
gµB(∆Bx, Bz)=(0.25,0.75) µeV, we obtain an optimal
state fidelity of about 99.5% at εZ′'−1.5 meV, corre-
sponding to a gate frequency of 124 MHz. Other combi-
nations of ∆Bx and Bz can achieve results with higher Z ′

fidelities, but lower X fidelities. The full process fidelity
at the optimal working point marked by a star in Fig. 3(a)
is computed to be F (Z ′π) = 99.9%. We can compute T ∗2
at this same working point using Eq. (E8) in the Ap-
pendix, based on quasistatic fluctuations of the detuning
and Overhauser fields, obtaining T ∗2 (Z ′) ' 300 ns. This
is consistent with the long-lived Z ′ oscillations shown in
Fig. 3(b), while the observed visibility of 89% is consis-
tent with the rotation tilt angle of θ=19.5◦ obtained at
the optimal working point.

Similar to Xπ rotations, the optimal value of εZ′ is de-
termined by a competition between detuning noise and
leakage, and occurs exclusively in the regime −∞ <
εZ′ < εX . Denoting the optimal gate location by ε∗Z′ ,
we find that detuning noise quickly suppresses the fidelity
when εZ′ > ε∗Z′ , while leakage dominates when εZ′ < ε∗Z′ .
Leakage is particularly evident in the asymptotic limit
εZ′ → −∞, where exact analytic solutions are available,
as described in Appendix F. Here, the coherent oscilla-
tions arising from leakage into the state |T+〉 are far more
prominent than at the optimal working point εZ′ = ε∗Z′ .

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated in detail a singlet-
triplet qubit in the S-T− subspace, for which all rota-
tion frequencies are set by the applied magnetic fields.
By simulating a quasistatic noise model, we have shown
that in the regime ∆Bx . Bz � tc, the qubit is well pro-
tected from detuning noise, due to presence of a broad
sweet spot at the S-T− anticrossing. The magnetic field
gradients needed to achieve such a sweet spot are smaller
than those considered in previous proposals [19, 23], due
in part to using Si as a substrate, so that the effects of
Overhauser fields are reduced. The required fields are
relatively easy to produce in the laboratory by means of
micromagnets and a tunable external field, yielding fi-
delities that should exceed 99% for rotations around two
nearly orthogonal axes.

The fidelities predicted here depend on the input pa-
rameters used in the simulations, and they can poten-
tially be enhanced in several ways. First, charge noise
can be reduced by special sample fabrication and prepa-
ration [37]. Further improvements in materials could also
reduce the charge noise. Second, the leakage and de-
phasing mechanisms considered here can both be sup-
pressed by increasing the tunnel coupling and then re-

optimizing the magnetic fields. Third, the nuclear noise
can be reduced by using isotopically purified 28Si. We
estimate that the dominant dephasing mechanism would
switch from Overhauser to detuning noise at the level
of 99.5% isotopic purification, corresponding to σh<0.2
neV. (See Appendix E 3.) Under these conditions, as-
suming tc = 60 µeV and the optimal working point
gµB(∆Bx, Bz) = (0.1, 0.9) µeV, our model predicts an
Xπ gate fidelity of Fp(Xπ) = 99.9%. For materials like
GaAs or InGaAs, where spin-0 isotopic purification is
not an option, the fluctuation spectrum can be narrowed
by nuclear polarization [8, 9, 44, 45]. In such materials,
∆Bx can also be controlled via nuclear polarization, or
by making use of a large spin-orbit coupling [46].

While the analysis here has focused on DC pulsed
gates, AC resonant gates have some advantages [47]. In
particular, they allow all qubit operations to be per-
formed at the sweet spot εX . Recent experiments per-
formed at the sweet spot of a charge qubit show signifi-
cant improvements in fidelity for AC gates [48] compared
to DC gates [40, 49]. Similar improvements are observed
in the quantum dot hybrid qubit [50], where theory in-
dicates that better fidelity should be obtained for AC
gates [51]; this is confirmed in experiments by comparing
AC gates [52] and DC gates [53].

This work was supported in part by NSF (PHY-
1104660), NSF (DMR-1206915), ARO (W911NF-12-
0607), UW-Madison Bridge Funding (150 486700 4), and
by the Intelligence Community Postdoctoral Research
Fellowship Program. The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the U.S. Government.

Appendix A: Detuning dependent tunnel coupling

In the main text, we considered two models for the
tunnel coupling. Case (i) corresponds to the constant
tunnel coupling model, which has been used by many
workers [11, 35]. The results shown in Fig. 2 use the con-
stant value tc = 20 µeV. In this Appendix, we consider
case (ii), for which the tunnel coupling takes the exponen-
tial form tc(ε)=t0 exp(ε/ε0). Recent experiments suggest
that such dependence may occur in both GaAs [33] and
Si systems [13, 14]. Fitting the exchange energy data
from Fig. 5 of Ref. [13] to the form J=tc(ε)

2/|ε|, which
is valid in the weak tunneling limit (tc�|ε|), we obtain
the estimate ε0 ' 10 meV. Similarly, a fit to the data in
Ref. [14] suggests that ε0 = 1-10 meV. Here, we consider
a range of ε0 values, as indicated in Table I, to explore
their effect on our main results. To facilitate a compari-
son with case (i), we adopt t0 = 20 µeV.

Energy level diagrams for cases (i) and (ii) are shown
in Fig. 4, with solid and dashed lines, respectively. In
each case, the results were obtained using magnetic fields
that optimize the given model. Note that the highest en-
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FIG. 4. (Color online) Singlet-triplet energy diagrams, in-
cluding the qubit states |0〉 and |1〉 and leakage states |T0〉
and |T+〉, as a function of the detuning, for two different
tunnel coupling models. Here, state |S′〉 lies outside the
range of the plot. Solid lines: case (i), the constant tun-
nel coupling model, with tc=20 µeV and magnetic field val-
ues gµB(∆Bx, Bz)=(0.25, 0.75) µeV, which were optimized
as described in the main text. On the right-hand side of
the anticrossing, the qubit states correspond to |0〉'|S〉 and
|1〉'|T−〉. Dashed lines: case (ii), the detuning-dependent
tunnel coupling model, tc(ε)=t0 exp(ε/ε0), with t0 = 20 µeV
and ε0 = 1 meV. Here too, the magnetic field parame-
ters gµB(∆Bx, Bz)=(0.3, 0.7) µeV were optimized to achieve
a high Xπ gate fidelity. Inset: the singlet mixing terms
(| cos η|, | sin η|), from Eq. (1). Note that | sin η| ' J(ε)/tc,
the effective exchange energy, to a very good approximation.

ε0 (meV) gµB∆Bx (µeV) gµBBz (µeV) Fp(Xπ) (%)
1 0.3 0.7 98.5
10 0.25 0.75 99.2
100 0.25 0.75 99.3

TABLE I. Process fidelities of the Xπ gate, Fp(Xπ), ob-
tained at the indicated optimal magnetic fields, for the
detuning-dependent tunnel coupling model tc(ε)=t0e

ε/ε0 ,
with t0=20 µeV and three different values of ε0.

ergy level |S′〉 lies outside the range of the plot. For the
relatively small value of ε0 = 1 meV assumed in this fig-
ure, the qubit levels for case (ii) quickly approach their
asymptotic values, and deviate from case (i). As a re-
sult, the working points εX and εZ′ for case (ii) are both
shifted to the right, compared to case (i). In contrast,

for large values of ε0, the two models are nearly identical
over the entire parameter range of interest.

Table I shows the optimal Xπ process fidelities Fp(Xπ)
obtained for case (ii), using magnetic fields optimized
separately for each value of ε0. At ε0 = 1 meV, we obtain
a fidelity that is slightly lower than for case (i), which was
reported in the main text. However for ε0 = 10 meV, the
optimized fidelity exceeds 99%, and for ε0'100 meV, we
recover the fidelity Fp(Xπ) = 99.3% of case (i).

Appendix B: Effective S-T− Hamiltonian

The 2D Hamiltonian H(ST−), presented in Eq. (4),
is obtained by isolating the S-T− subsector of the full
5D Hamiltonian. In this Appendix, we formally derive
the effective 2D Hamiltonian for the S-T− qubit using
nearly degenerate perturbation theory [54]. The resulting
Hamiltonian Heff includes corrections to H(ST−), defined
by

Heff = H(ST−) + δH(ST−) . (B1)

The correction term δH(ST−) arises at second order in
the perturbation [15], and accounts for virtual transitions
into the leakage states |T0〉 and |T+〉

We begin with the full 5D Hamiltonian given in Eq. (3).
As discussed in the main text, the excited (0, 2) charge
state |S′〉 is well split off from the (1, 1) charge manifold
in the regime of interest, so we only need to consider the
upper 4×4 block of Eq. (3). We now block diagonalize the
S-T− subspace, yielding a correction term given by [54]

δH(ST−) = HPQ
1

E −HQQ
HQP , (B2)

where HPP=PHP=H(ST−), HQQ=QHQ, HQP=QHP ,
and HPQ=PHQ. Here, P=

∑
i |pi〉〈pi| is the projection

operator onto the S-T− subspace with state labels pi,
and Q=

∑
i |qi〉〈qi| is the projection operator onto the

T0-T+ subspace with state labels qi. To leading order
in the correction, E corresponds to the average energy
eigenvalue of H(ST−). At the S-T− anticrossing, we have
E=ES=ET−=−Bz. Thus, neglecting corrections of order
h±/Bz, the energy denominator is given by

1

E −HQQ
=

(
1/(ES − ET+) 0

0 1/(ES − ET0)

)
=

(
−1/(2gµBBz) 0

0 −1/(2gµBBz)

)
.

From Eq. (3), we have

HPQ =

(
〈S|H|T+〉 〈S|H|T0〉
〈T−|H|T+〉 〈T−|H|T0〉

)
=

(
cos η∆B+

2
√

2
cos η∆Bz

2

0 h+

2

)
,
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and HPQ=H†QP , where η was defined in Eq. (2). We then find that

δHST = −gµB
4Bz

(
cos2 η

[
(∆B+ + ∆h+)(∆B− + ∆h−)/4 + (∆Bz + ∆hz)

2
]

cos η h−(∆Bz + ∆hz)
cos η h+(∆Bz + ∆hz) h−h+

)
.
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FIG. 5. (Color online) Probability P+ of leaking into state
|T+〉 as a function of time t during X rotations, for the op-
timal field values gµB(∆Bx, Bz) = (0.25, 0.75) µeV. The en-
velope of the oscillations closely follows the probability PS of
occupying state |S〉, as indicated by the maroon, dashed line
(right-hand axis).

Since the micromagnet field gradients, ∆B, are much
larger than the Overhauser fields, h or ∆h, the leading
order correction to Heff is given by

δH
(0)
ST = −gµB cos2 η

(∆B+∆B−/4 + ∆B2
z )

4Bz

(1 + τ̂z)

2
.

(B3)
This term slightly shifts the location where X rotations
are performed, εX , which is defined by Tr[τ̂zHeff(εX)]=0.
However, in the optimal operating regime of the S-T−
qubit, we find that this correction is negligible.

Appendix C: Leakage

In this Appendix, we investigate transitions into the
leakage states |T+〉, |T0〉, and |S′〉. Our numerical sim-
ulations indicate that typical probabilities for occupying
the states |T0〉 and |S′〉 are of the order P0'10−5 and
PS′'10−10, respectively, which can be safely neglectd.
|T+〉 is therefore the predominant leakage state, since it
is driven by the same process as the desired rotations
between |S〉 and |T−〉.

The probability of occupying |T+〉 during X rota-
tions is plotted in Fig. 5 for the magnetic field combi-
nation gµB(∆Bx, Bz)=(0.25, 0.75) µeV, with the qubit
initialized to |S〉. The leakage exhibits a beating pat-
tern: the fast oscillations occur at the leakage frequency,
2gµBBz/h, while the low-frequency envelope is commen-
surate with the S-T− rotations, at the qubit frequency
gµB∆Bx/

√
2h. The latter modulation is specifically pro-

portional to the singlet probability because |T−〉 does not
couple directly to |T+〉. We verify this by plotting the

singlet probability PS in Fig. 5 with a dashed line that
clearly follows the main features of the |T+〉 envelope.
For short times, the full probability is well described by
the Rabi formula for off-resonant transitions from |S〉 to
|T+〉 [55]:

P+ ∝ PS
(

∆Bx/
√

2

2Bz

)2

sin2(gµBBzt/~) . (C1)

The factor PS takes into account the envelope of leak-
age oscillations, which go through a point of minimum
amplitude at the end of each Xπ rotation, when the |S〉
state is not occupied.

Fig. 5 shows a leakage probability of P+ ' 0.003 for the
Xπ gate. This is actually a local maximum of the min-
ima in the leakage oscillations. For another gate, such as
Xπ/2, Fig. 5 suggests that even lower leakage probability
can be found. Such an optimal point occurs for magnetic
fields values such that the rotation and leakage frequen-
cies are commensurate, so that the leakage probability is
at a minimum at the end of the gate period. Our op-
timization procedure already finds such optimal points,
corresponding to the local minima in infidelity shown in
Fig. 2 (a) and (b).

Finally, we address the question of whether mis-
alignment of the magnetic fields and field gradients
can degrade the estimated gate fidelities. Recall
that our proposed experimental geometry requires that
∆B ·Bavg = 0, as discussed in Sec. II A. Misalignment
of the external field, and therefore Bavg, causes leak-
age into the state |T0〉, which has a similar effect as
the Overhauser noise term ∆hz. Using Eq. (C1) as
a guide, we can estimate the leakage probability P0

from Rabi’s formula by replacing the matrix element
∆Bx/

√
2→ ∆Bz, and the energy splitting 2Bz → Bz.

We then obtain an estimate for the ratio of the leak-
age envelopes: P0/P+'8(∆Bz/∆Bx)2. Considering a
maximum 10% misalignment of the magnetic fields (i.e.,
∆Bx/∆Bz < 0.1), we see that P0 < 0.08P+. Moreover,
from Fig. 4, we see that P+ < 0.013 at the optimal work-
ing, yielding an estimate of P0 < 10−3, which is negligible
to the accuracy of results reported in the main text.

Appendix D: Single-qubit process tomography

Here, we outline our calculation of the single-qubit
process matrix in Eq. (8), following Ref. [41]. We sim-
ulate the evolution starting from each of four initial
states, which are expressed in conventional notation as
|Z〉 = |S〉, |−Z〉 = |T−〉, |X〉 = (|S〉 + |T−〉)/

√
2, and
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Re �(X⇡)

Re �(Z 0
⇡)

Im �(X⇡)

Im �(Z 0
⇡)

FIG. 6. (Color online) The real and imaginary parts of the χ matrix elements for the fully optimized Xπ and Z′π gates, obtained
from Eq. (D2). Triangles indicate nonzero target values of the χ matrix elements.

|Y 〉 = (|S〉+ i|T−〉)/
√

2, with reference to the qubit basis
states |S〉 and |T−〉. Each initial state evolved in time
using the full 5D Hamiltonian machinery described in
Sec. IV, yielding results that include both noise and leak-
age. We then perform a Gaussian average over the qua-
sistatic noise variables, also described in Sec. IV, yielding
the final state density matrices

ρ′1 = E(|−Z〉〈−Z|), (D1)

ρ′4 = E(|Z〉〈Z|),
ρ′2 = E(|X〉〈X|)− iE(|Y 〉〈Y |)− (1− i)(ρ′1 + ρ′4)/2,

ρ′3 = E(|X〉〈X|) + iE(|Y 〉〈Y |)− (1 + i)(ρ′1 + ρ′4)/2.

The matrices ρ′1, .., ρ
′
4 have dimension 5 × 5, yielding χ

matrices that also have a high dimension. However, when
we compute gate fidelities as described in Sec. IV, the
product χ(E)χ(E0) effectively collapses onto the 2D qubit
subspace. To make use of the conventional formulation
of process tomography [41], we therefore project the den-
sity matrices ρ′1, .., ρ

′
4 onto the 2D qubit subspace from

the outset. We then proceed to construct the process
matrices in the usual way [41], as

χ = Λ

(
ρ′1 ρ′2
ρ′3 ρ′4

)
Λ , Λ =

1

2

(
I τ̂x
τ̂x −I

)
. (D2)

The real and imaginary parts of the χ matrix elements
formed in this way are plotted in Fig. 6 for Xπ and Z ′π
gates.

Appendix E: Qubit dephasing in the S-T− subspace

In this Appendix, we derive explicit formulas for de-
phasing due to quasistatic fluctuations of the Overhauser
fields and the detuning parameter, focusing on the X ro-
tations [56]. For simplicity, we limit our discussion to
the 2D qubit subspace, where, up to an overall shift
in the energy, the qubit Hamiltonian is then given by
H(ST−)=(b + δb) · τ̂/2, where

b(ε) = −gµB
[

∆Bx√
2

x̂ +

(
Bz −

J(ε)

gµB

)
ẑ

]
(E1)

is the constant effective field, and

δb = −gµB
[

∆hx√
2
x̂ +

∆hy√
2
ŷ +

(
hz −

δJ

gµB

)
ẑ

]
(E2)

is the fluctuating component due to the noise terms.
Here, we keep only the leading order terms in the ef-
fective Hamiltonian, and we take cos η ' 1, which
is a very good approximation near the qubit working
points, εX and εZ′ . In Eq. (E2), we have defined
δJ=J(ε + δε)−J(ε) ' (∂J/∂ε)δε as the fluctuation of
the exchange energy, which arises from fluctuations of
the detuning parameter, δε. The characteristic variance
of the exchange fluctuations is related to the detuning
variance as σJ = (∂J/∂ε)σε. Here, τ̂ denotes the Pauli
matrices spanning the S-T− subspace. (For example,
τ̂z ≡ |S〉〈S| − |T−〉〈T−|.)



12

1. Pure dephasing rates

We now obtain an expression for inhomogeneous
broadening (T ∗2 ) in the S-T− subspace. The energy split-
ting between the energy eigenstates |0〉 and |1〉 of the
qubit Hamiltonian, Eq. (4), is given by E01=|b|, and its
fluctuation, up to quadratic order in the noise terms, is
given by

δE01 ' δb‖ +
|δb⊥|2
2E01

, (E3)

where δb‖=δb·b̂ and δb⊥=δb−δb‖b̂ are the components

of the noise field longitudinal and transverse to b̂=b/|b|,
respectively.

The expansion in Eq. (E3) requires that δE01/E01�1,
which could potentially be violated in some cases, partic-
ularly at the working point εX , where the energy split-
ting, E01 = gµB∆Bx/

√
2, is relatively small. To check

this, we first identify the individual fluctuation contri-
butions to δE01 in Eqs. (E1) and (E2). [For example,
(∂E01/∂ε)δε is the contribution from detuning noise.] For
the detuning fluctuations, we note that ∂E01/∂J = 0
when ε = εX , while ∂J/∂ε ' 0 when ε = εZ′ . More-
over, we have previously noted that σε, σh ' 3 neV, while
σJ ' 7 neV, and gµB(∆Bx, Bz) ' (0.25, 0.75) µeV at the
optimal working point. With this information, it is easy
to show that Eq. (E3) is satisfied.

The pure dephasing times are computed by averaging

the dynamical phase difference between states |0〉 and |1〉
over the different noise variables [38]:

ei(δE01t)/~ = eiδb‖t/~eiδb
2
⊥/2E01 , (E4)

where the overbar denotes the noise average. If we as-
sume Gaussian distributions for the noise variables δbi,
with variances σi, the average of a generic function g(δb)
is given by

g(δb) =
∏
i

∫
d(δbi)√

2πσi
g(δb)e−δb

2
i /2σ

2
i ,

where δbi=0, δbiδbj=δijσ
2
i , and i=x, y, z. We first note

that the longitudinal and transverse noise integrals in
Eq. (E4) are separable because noises in orthogonal di-
rections are uncorrelated, so that

ei(δE01t)/~ = e−(t/T∗2 (ε))2W⊥(t), (E5)

where

e−(t/T∗2 (ε))2 ≡ eiδb‖t/~, (E6)

W⊥(t) ≡ eiδb2
⊥/2E01 , (E7)

We then consider the leading, longitudinal contribu-
tions to the noise, which gives rise to T ∗2 (ε). Evaluating
the noise integral in Eq. (E6), we obtain

√
2~

T ∗2 (ε)
=

√√√√(σJ(ε)
∂E01

∂J

)2

+ σ2
h

[(
∂E01

∂∆Bx

)2

+

(
∂E01

∂Bz

)2
]

=

√
(σ2
h + σJ(ε)2)(J(ε)/gµB −Bz)2 + σ2

h∆B2
x/2

(J(ε)/gµB −Bz)2 + ∆B2
x/2

. (E8)

At the sweet spot εX , where J = gµBBz, Eq. (E8) re-

duces to the simple form T ∗2 (εX) =
√

2~/σh. Here, we
note that εX is also a sweet spot for the transverse fluc-
tuations of the Overhauser fields, hz and ∆hy, because
∂E01/∂Bz=0 and ∂E01/∂(∆By)=0. For Z ′ rotations,
which occur in the far-detuned region where J ' 0 and
σJ ' 0, Eq. (E8) also predicts that T ∗2 (εZ′) '

√
2~/σh.

It is to be expected that the Overhauser field fluctuations
determine the dephasing times for both rotation axes be-
cause they are both driven by magnetic fields. When op-
timal tuning parameters are used, the secondary, trans-
verse contributions to the inhomogeneous broadening,
which yield the correction term W⊥(t), play a prominent
role only when the longitudinal Overhauser field fluctu-
ations are suppressed. We analyze the latter situation in
Appendix E 3.

Finally, we note that pure dephasing also occurs due
the electron-phonon coupling, which causes energy fluc-
tuations between singlet and triplet states not included
in Eq. (E2). The associated dephasing rate was previ-

ously estimated for a double quantum dot to be ∼ 10
kHz [57], negligible compared to dephasing rate from
Overhauser fluctuations, which is of order MHz. Be-
cause the dominate contribution to this dephasing pro-
cess comes from the dipole charge distribution of the
|S(0, 2)〉 state, the associated dephasing rate goes as
sin2 η, the probability for occupation of |S(0, 2)〉. There-
fore, at the working point εX , this dephasing rate is sup-
pressed by sin η2 ' (J/tc)

2 = (gµBBz/tc)
2 = 10−3 as re-

ported in Sec. II B, and even further suppressed at the
working point εZ′ , where J ' 0.

2. Comparison with the S-T0 qubit

A key advantage of the S-T− qubit is the presence of
a detuning sweet spot at ε = εX , which protects the X
rotations from detuning noise. The S-T0 qubit has a
very similar energy level diagram, with similar operating
points in the far-detuned regime (the ∆Bz gate), and the
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intermediate tuning regime (the J gate). However, the J
gate does not operate at a sweet spot. In this Appendix,
we investigate some consequences of this distinction.

A common figure of merit for qubit rotations is the Q-
factor, defined by Q = T ∗2 /τ2π, which describes the num-
ber of coherent oscillations that can be observed in the
presence of an uncorrelated noise source. For the S-T−
qubit, we have already shown that T ∗2 '

√
2~/σh at the

two operating points, εX and εZ′ , while the correspond-
ing π-gate times are given by τXπ = h/

√
2gµB∆BX and

τZ′π = h/2gµBBz. The resulting Q-factors for the S-T−
qubit are given by gµB∆Bx/2πσh and gµBBz/

√
2πσh for

X and Z ′ rotations, respectively.
For S-T0 qubits, the effective field acting on the Bloch

sphere is b = J ẑ + gµB∆Bzx̂, yielding the dephasing
rate [33]

√
2~

T
∗(ST0)
2

=

√
(σJ(ε)J)2 + 2(σhgµB∆Bz)2

J2 + (gµB∆Bz)2
,

and the rotation frequency ~ω =
√
J2 + (gµB∆Bz)2.

In the asymptotic regimes dominated by magnetic field
or exchange couplings, the Q-factors are given by
gµB∆Bz/2πσh for the ∆Bz gate, and J/

√
2πσJ for the

J gate. We see that the J gate has a different scaling
behavior than the other gates we have considered so far.
Specifically, it differs from the corresponding gate in the
S-T− qubit (the X gate) because εX occurs at a sweet
spot. In practice, it is found the J gate limits the qubit
fidelity and that the ratio J/σJ cannot be improved by
optimizing the detuning, due to the physical constraints
on the device [33]. On the other hand, the ratio ∆B/σh
can be improved through device design: ∆B can be en-
hanced by engineering the micromagnet, while σh can be
suppressed by using a spin-0 material such as 28Si, or by
narrowing the magnetic noise distribution [58]. Hence,
there are opportunities for improving the limiting gate
fidelities in S-T− qubits that are not available for S-T0

qubits.

3. Crossover to dephasing dominated by charge
noise

In Appendix E 1, we showed that the dephasing rate
for X rotations is usually determined by the linear-
order, longitudinal noise term in Eq. (E3), correspond-
ing to Overhauser fluctuations. However, if the Over-
hauser fluctuations are removed by isotopic purification
or by dynamic polarization, then detuning fluctuations
will predominate. In this Appendix, we estimate when
this crossover should occur.

As noted previously, the contribution to T ∗2 in Eq. (E8)
from detuning noise vanishes at the operating point ε =
εX . However, it does not vanish for the quadratic noise
term in Eq. (E3), and it appears in the decay envelope
W⊥(t) in Eq. (E7). The Gaussian integral in Eq. (E7)

0 250 500 750 1000
0

0.5

1

t HnsL

P -

FIG. 7. (Color online) The numerically computed probabil-
ity P− of occupying the state |T−〉 as a function of time t
during X rotations in the absence of Overhauser field fluctu-
ations, assuming the initial state |S〉. The dephasing enve-
lope (dashed lines) is the Gaussian decay given by Eq. (E12),
(E11), and (E13), setting σh = 0, with T ∗2⊥(X) = 4.7 µs.

can be solved exactly, yielding

W⊥(t) =
∏
α

1√
1− iσ2

αt/~b
, (E9)

where the product is over the two transverse noise sources
σJ and σh, and b=|b| is the energy splitting between
the two qubit states. At the working point εX , we take
b = gµB |∆Bx|/

√
2. The short time limit σ2

ατX/~b� 1 is
easily satisfied for an Xπ gate, whose gate time is given
by τXπ = h/

√
2gµB∆Bx. In this same limit, we can

rewrite Eq. (E9) as

W⊥(t) ' eiφe−(t/T∗2⊥(X))2 (σ2
αt/2~b� 1), (E10)

where φ is an irrelevant phase, and the transverse de-
phasing time is given by

T ∗2⊥(X) =
2~b

σ2
J + σ2

h

. (E11)

If we denote the longitudinal dephasing time obtained in
Appendix E 1 as T ∗2‖(X)=

√
2~/σh, then the combined,

short-time decay function at εX takes the form

exp(−t2/[T̃ ∗2 (X)]2), (E12)

where

[T̃ ∗2 (X)]−2 = [T̃ ∗2⊥(X)]−2 + [T̃ ∗2‖(X)]−2 . (E13)

Here, the shortest dephasing time naturally dominates
the decay.

We now determine the crossover from nuclear to detun-
ing noise-dominated decay, which can be implemented by
isotopically purifying the sample with 28Si. The ratio of
the longitudinal and transverse dephasing times is given
by

T ∗2‖(X)

T ∗2⊥(X)
=

σ2
J√

2bσh

[
1 +

(
σh
σJ

)2
]
.
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Solving for the crossover point which occurs when the
ratio is equal to 1, we find σh ' σ2

J/
√

2b = 0.2 neV.
This happens when the abundance of 29Si is reduced
from ∼5% (natural abundance) to ∼0.5%. At this level
of purification, the total dephasing time is given by
T̃ ∗2 (X) = 3.3 µs. In the limit of pure 28Si, we find a de-
phasing time of T ∗2⊥(X) = 4.7 µs, which is due entirely
to detuning noise. We confirm this limiting behavior in
Fig. 7, which shows the numerically computed P− prob-
ability for X rotations. The short-time dephasing en-
velope, shown as a dashed line, is given by Eq. (E10),
where we set σh=0. Note that we have not re-optimized
with respect to magnetic fields in this figure, which would
yield further improvements in the coherence time.

4. Analytic solution in the S-T− qubit subspace

In this Appendix, we obtain approximate solutions for
the equations of motion of the S-T− qubit. We closely
follow Ref. [38], which examines the relaxation dynamics
of a spin in an external magnetic field, in the presence of
quasistatic Overhauser field fluctuations. We use these
results to obtain Eq. (9) of the main text.

We consider the expectation value of the logical qubit
pseudospin s=〈ψ|τ̂ |ψ〉/2, where |ψ〉 = cS |S〉 + c−|T−〉
is the state vector in the qubit subspace. The dynam-
ics of |ψ〉 are governed by the 2D Hamiltonian, Eq. (4).
As noted above, near the sweet spot εX , the relevant
noise sources all have variances σα of order neV, so that
σα/∆Bx∼1%. Following Ref. [38], we can therefore ob-
tain solutions for s to leading order in σα/∆Bx. For an
initial state |S〉=|Z〉, we find that

s(t) =
e−(t/T∗2 (X))2

2
(E14)

×
[(

cos(ωXt) + 2δ2
⊥ sin2(ωXt/2)

)
ẑ− sin(ωXt)ŷ

]
,

where, as usual, ωX = b/~, b=gµB |∆Bx|/
√

2, T ∗2 (X) =√
2~/σh, and

δ2
⊥ =

σ2
J + σ2

h

b2
. (E15)

Here, σJ = σε(∂J/∂ε) is evaluated at ε = εX . Equa-
tion (9) in the main text is obtained by evaluating
Eq. (E14) at the gate time τXπ = π/ωX , using the defi-
nition P ′−(τX)=1/2− sz(τX).

Appendix F: Limiting behavior when ε→ −∞

In this Appendix, we explain why the second sweet
spot for the S-T− qubit, which occurs in the limit ε →
−∞, is not an optimal working point. Our investigation
is simplified by the fact that J → 0, making exact analyt-
ical solutions possible. We find that although dephasing
effects due to charge noise are suppressed, leakage is en-
hanced.

The full 5D Hamiltonian in Eq. (3) simplifies in the
limit J → 0. Moreover, the (0, 2) charge state is split off
by a large energy, and only the four (1, 1) charge states
are accessible. Equation (3) can then be rewritten as a
pure spin Hamiltonian:

H =
1

2
gµB

∑
i=L,R

(Bi + hi) · σi , (F1)

where σL and σR denote the Pauli spin operators on
the left and right dots, respectively. (Note that these
operators differ from the τ̂ operators previously defined
for the logical qubit states.) The resulting time evolution
operator is given by

U(t) = exp(iωLtn̂L · σL)⊗ exp(iωRtn̂R · σL) (F2)

= cos(ωLt) cos(ωRt) + i cos(ωLt) sin(ωRt)
∑
i=L,R

n̂i · σi − sin(ωLt) sin(ωRt)(n̂L · σL)⊗ (n̂R · σR) ,

where we define

ωi =
gµB |Bi + hi|

2~
and n̂i =

Bi + hi
|Bi + hi|

, (i = L,R) .

Equations (F1) and (F2) describe the precession of individual spins about their local magnetic fields. The system
dynamics is similar to that of the Z ′ rotation, which occurs at finite ε, and we can estimate the rotation fidelity
in a similar way. We consider the time evolution of U(t) on the initial state |X〉 = (|S〉+ |T−〉)/

√
2. The relevant

transition amplitude is readily computed from

〈−X|U(t)|X〉 =
1

2
(〈S|U |S〉 − 〈T−|U |T−〉+ 2i Im[〈S|U |T−〉]) , (F3)
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where

〈S|U(t)|S〉 = cosωLt cosωRt+ sinωLt sinωRt(n̂L · n̂R) ,

〈S|U(t)|T−〉 =
1√
2

[
sinωLt sinωRt(n

z
Ln

+
R − n+

Ln
z
R)− i cosωLt sinωRt(n

+
L − n+

R)
]
,

〈T−|U(t)|T−〉 = cosωLt cosωRt− i cosωLt sinωRt(n
z
R + nzL)− sinωLt sinωRt(n

z
Ln

z
R) ,
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FIG. 8. (Color online) Z′ rotations in the asymptotic regime
ε → −∞, obtained from analytic solutions for the qubit
dynamics arising from Eq. (F1). Here, we plot the proba-
bility P (−X) of being in final state |−X〉 as a function of
time t, for initial state |X〉 and the optimal magnetic fields
(∆Bx, Bz)=(0.25, 0.75) µeV. The analytic solutions are nu-
merically averaged over the Overhauser field fluctuations.

and n±i = nxi ± inyi (i = L,R). We compute the probabil-

ity P (−X)=|〈−X|U(t)|X〉|2 of occupying the state |−X〉
as a function of time. Here, the overbar indicates an
average of the Overhauser field fluctuations, taken over
all six directional field components of hL and hR. The
Overhauser averages are obtained numerically, assuming

Gaussian distributions for the fluctuating variables.

The resulting probability P (−X) is plotted in Fig. 8

in time units of T ∗2 =
√

2~/σh. Here, we assume optimal
magnetic field values and ∆Bz=0 as in the main text, so
that leakage to T0 vanishes, though we note that our so-
lution is valid for ∆Bz 6= 0. It is instructive to compare
these results with the analogous Z ′ oscillations obtained
when J > 0, which are plotted in Fig. 3(b) of the main
text. The most striking feature of the J = 0 oscillations
is the modulation of the envelope, caused by leakage to
|T+〉. Fig 1 (b) shows why leakage is enhanced in the
ε → −∞ limit: the energy gap between |S〉 and |T+〉
that suppresses leakage is at the minimum gµBBz, com-
pared to gµBBz+J(ε) at finite detuning. The additional
suppression with J > 0 makes ε = εZ′ a preferable work-
ing point.

Finally, we note that Eqs. (F1) and (F2) represent ex-
act solutions in the limit ε→ −∞. These expressions do
not contain any reference to ε, and the resulting dynam-
ics is unaffected by detuning noise. By performing an
average over quasistatic Overhauser field fluctuations in
the dynamics, we can directly probe the magnetic vari-
ance σh by comparing to experimental data, as was done
for the S-T0 qubit in Refs. [11] and [35].
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