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Abstract 

We propose a systematic approach that can empirically correct three major errors typically found 

in the density functional theory (DFT) calculation within a local density approximation (LDA) 

simultaneously for a set of common cation binary semiconductors, such as III-V compounds – 

(Ga or In)X with  X=N, P, As, Sb, and II-VI compounds (Zn or Cd)X, with X= O, S, Se, Te. By 

correcting (1) the binary bandgaps at high symmetry points Γ, L, X, (2) the separation of p and d 

orbital derived valence bands, and (3) conduction band effective masses to experimental values 

and doing so simultaneously for common cation binaries, the resulting DFT-LDA based quasi 

first-principles method can be used to predict the electronic structure of complex materials 

involving multiple binaries with comparable accuracy but much less computational cost than a 

GW level theory. This approach provides an efficient way to evaluate the electronic structures 

and other material properties of complex systems much needed for material discovery and design.  
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I. Introduction 

1. The band gap errors in DFT-LDA and their corrections 

Various density functional theory (DFT) based modeling methods have become powerful 

tools to explore the properties of materials.[1,2] DFT methods implemented within a local 

density approximation (LDA) or generalize gradient approximation (GGA) have been broadly 

used in ground state calculations for explaining a wide range of ground state phenomena in 

condensed matter physics, despite its enduring deficiency in describing exchange and correlation 

energies and the lack of derivative discontinuity in their exchange-correlation functional.[1] The 

best known consequence of this  deficiency is perhaps that LDA tends to underestimate the band 

gap in semiconductors and insulators, compared with experimental results.[3] It also affects 

valence band properties, such as the energy separation of the valence bands derived from p 

orbitals and highly localized d orbitals.[4] Many different alternative methods have been 

developed to address this problem,[3,5-21] mostly famously a many-body perturbation GW 

method which is capable of reproducing the experimental bandgaps of common semiconductors 

to within 0.1 – 0.3 eV.[18-21] However, GW is computationally very expensive, and sometime 

suffers from the conduction band cutoff convergence problem.[22] Although it is now possible to 

use a GW method to calculate systems up to one hundreds atoms,[23] it is still difficult to 

calculate systems much larger than that, e.g., a thousand atom nanostructure. It is thus beneficial 

to have DFT methods which only require the LDA level computational effort, but can predict the 

electronic structure accurately. For many practical problems, we encounter new systems that are 

heterostructures built upon two or more well-studied binaries, for instance, in the form of an 

alloy or a superlattice that involves a structural unit much larger than a GW method can calculate. 

Examples may include quarternary alloys GaAsSbN for applications in multi-junction solar cell, 
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IR detection and emission,[24,25] highly lattice mismatched ZnO-ZnSe core-shell nanowires for 

PV application.[26] For somewhat structurally simpler but large structures, for instance, binary 

quantum dots and wires or ternary alloys, some DFT-LDA based techniques incorporating 

atomistic level empirical corrections to the atomic pseudopotentials have been shown able to 

yield rather satisfactory results to selected properties ranging from structural properties (in the 

DFT-LDA level) to electronic and optical properties (after applying the empirical correction, 

DFT-LDA-C).[27-34] In certain cases, a DFT-LDA-C method can often offer very good results 

for the electronic structure, with accuracy comparable to that of optical spectroscopy (typically in 

the order of 10 meV).[35-38] Besides the electronic structure, this type approach has also been 

shown to yield significantly better results in calculating the ground state properties (e.g., binary 

formation energy).[39] However, it remains impractical to calculate more complex structures 

that involve more than two binaries and correct LDA errors in more than just bandgap (see more 

discussions later). Thus, a systematic correction to the DFT method can provide a powerful tool 

for accurate material simulations and material discovery.  

2. Empirical methods and comparison with DFT 

The empirical methods, especially a k·p method,[40] often show some advantages over the 

first-principles methods in accuracy when using them to describe the bulk electronic structure, 

when the necessary input parameters are available experimentally. Based on the k·p perturbation 

theory, a limited set of parameters (for example, Luttinger parameters γ1, γ2, γ3 and electronic 

effective mass m*) are used to fit the experimentally determined dispersions of the conduction 

bands and valence bands. Such fitting usually can give very accurate descriptions of the 

experimentally derived bulk band structures near high symmetry points of Brillouin zoon (BZ). 

More significantly, the fitting parameters can often be used for predicting heterostructures 
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consisting of the relevant bulk materials, for instance, a superlattice. The success of the k·p 

theory lies in that the symmetry of the band structure is correctly described by a set of symmetry 

operators, where the relevant coefficients can be determined empirically. These coefficients are 

otherwise difficult to obtain with high accuracy through direct first-principles calculations. Of 

course, a k·p based theory has its major limitation in dealing with the situation where the 

atomistic scale structure modification becomes important. The success of various non-self-

consistent atomistic methods is in fact in the same spirit, although implicitly, in particular in a 

tight-binding approach.[41] An empirical pseudopotential method (EPM) can actually predict the 

electronic structure of a semiconductor alloy with an accuracy in the order of 10 meV, when the 

atomic pseudopotentials for binaries are accurately obtained.[42] However, such a non-self-

consistent method is incapable of predicting the structure of the material and dealing with inter-

atomic charge transfer. Therefore, it is highly desirable to have a DFT-LDA-C method that 

incorporates empirical corrections in the atomistic level to mitigate the LDA bandgap errors. As 

a matter of fact, there have been a number of approaches proposed in the literature along this line, 

including one that has been used by some of us in recent years,[27] that is, after performing the 

self-consistent calculation, empirical corrections to the s, p, and d components of atomistic 

pseudopotentials are introduced to fit the major bandgaps of the binaries to the experimental 

values. This approach has been shown to work very well, often with few meV accuracy in 

determining the impurity levels and alloy bandgaps.[35-37] However, in the past, the fitting was 

typically done case by case for two binaries with a common cation, for instance, GaP and GaN or 

GaAs and GaN, where the correction to Ga pseudopotentials were different for the two pairs. 

Thus, for each new heterostructure binary pair, a new fitting will be needed. Furthermore, to 

correct the LDA error in effective mass, a different set of the parameters, which might not 
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necessarily be able to also yield satisfactory bandgaps, would be required.[28] This situation 

limits the applicability of this method to more complex structures, not to mention non-common 

cation structures. In addition, the LDA error in the valence band p-d separation was not corrected, 

which could affect the accuracy in the description of the valence band and related impurity or 

defect states. 

In this work, we develop a systematic approach that allows us to generate a single set of s, p, 

and d atomistic pseudopotential corrections for a given cation, e.g., Zn, that works near equally 

well with different anions of the same group: O, S, Se, Te, that can simultaneously correct 

bandgaps of the most important critical points (Γ, L, and X) and the valence band p-d separation. 

This method is also applicable and usually sufficient to treat a non-common cation system, 

because the corrections for the anions can be realized by taking weighted average based on their 

coordination number with different cations, as done in the EPM.[42] With this approach, one 

may be able to predict the electronic structure with the GW level accuracy or even better for any 

superstructures involving, for instance, (Zn or Cd)X (X = O, S, Se, Te) with  only the 

computational effort of LDA. Note that simultaneous fitting multiple binaries not only allows us 

to deal with more complex structures but also applies more constrain to the parameters and 

reduces the ambiguity and potentially improves the transferability to other materials. 

Furthermore, once the energy levels of the critical points are correctly determined, we expect that 

the correct dispersion relations in the whole BZ should also follow naturally, for instance, the 

effective masses. The approach is also applicable to most commonly encountered III-V binaries: 

(Ga or In)X (X = N, P, As, Sb), with the possibility to include more elements. In a nutshell, our 

approach is in the same spirit of the k·p theory but at an atomistic level, because the electronic 

states of different high symmetry k points are related by the symmetry operations of the system 



6 
 

and can be determined by a small set of parameters that can be more conveniently derived 

experimentally. In the meantime, the conventional DFT-LDA or GGA can be used for 

computing the ground state properties of the system.     

II. Computational methods 

1. DFT-LDA calculations 

A plane wave pseudopotential code PEtot [43] is used for the binary band structure 

calculation in LDA with norm conservation pseudopoentials. The exchange-correlation 

contribution is accounted for by means of Perdew and Zunger’s parametrization of the 

calculations by Ceperley and Alder.[44] The d electrons are included as valence electrons for 

cation atoms. The special k points are generated using an 8×8×8 mesh, which generates 60 

special k points in the first BZ. The spin-orbit coupling is included using Escan code.[45] The 

experimental lattice constants are used.  The kinetic energy cut-off has been tested and chosen to 

be 60 Ry. The semiconductors considered here are all in the zinc blende (ZB) structure, even 

though some may prefer to crystallize in wurtzite phase in the normal growth condition.  

In our approach, a local correction term is added to each of the s, p, d nonlocal 

pseuduopentials to fit the band gaps at high symmetry points of the BZ (e.g., Γ, X and L points in 

ZB structure).[27] In the past, we only fit the band gaps involving these states: Γ8v, Γ1c, X1c, X3c 

and L1c of the ZB structure, while keeping the LDA valence band maximum (VBM) fixed (no 

net change). However, a major portion of the band gap error in LDA can be due to the p-d 

valence band separation Ep-d being too small, which causes too strong p-d repulsion that pushes 

up the VBM. This effect is well-known to be critically important for getting the correct band gap 

for some binary (e.g., ZnO), as well as in describing the band offset between two binaries. Thus, 
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in this work, we introduce a correction to the cation d orbital to adjust the p-d separation to 

match the experimentally measured values. 

2. Procedures for making band gap corrections 

The method described here is still a post-treatment in order to produce accurate band 

structure. A self-consistent calculation is performed first to generate the charge density and local 

potential. 

There are six s, p, d atomic orbitals available for a given binary in fitting. If we want to fit, 

for instance, ZnX (X = O, S, Se, Te) with the same set of Zn orbitals, there will be less adjustable 

parameters. It is important to have the general insight of how different orbitals affect energy 

levels at special k points. We first briefly review the impact of each orbital to the energy levels 

of interested high symmetry points. Figure 1 shows the calculated band structure of ZnTe in 

LDA, together with the projections of the s, p, d density of states (DOS). The d bands (one triplet 

d3/2 and one doublet state d1/2 without spin-orbit coupling, or two doublet and one singlet state 

with spin-orbit coupling) are located very close to each other and form a band, which is referred 

to as d band. The width of d band is usually in the range of several hundred of meV. The center 

of d band is used to calculate the p-d separation Ep-d where the p energy level is taken from the 

top of valence band.  

Compared the energy levels with the projected DOS, the d component of Zn in the DOS 

is far great than others at the center of the d band. This suggests that the d band mainly comes 

from the d orbital of Zn. There are some components coming from other orbitals near the center 

of the d band, for instance, the second major component is the p orbital of Te, which reflects the 

p-d coupling. This information suggests the first step of the action should be adjusting the d 

orbital of Zn atom to make calculated Ep-d matching the corresponding experimental value. 
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Figure 2 plots δEp-d vs. δV(Zn_d) for the four binaries, where δEp-d = Ep-d(Cal.) –Ep-d(Expt.) is the 

deviation of Ep-d relative to its experimental value, and  δV(Zn-d) is the amplitude of local 

potential added to  the d-component of the Zn pseudopotential. It can be seen from Fig. 2 that 

δEp-d can be tuned from -2.81 eV to 1.47 eV when δV(Zn_d) varies from 0.0 to -0.3. We note 

that the δV(Zn_d) value that yields the best correction (i.e., δEp-d= 0) only varies slightly from 

one binary to the other,  as shown in the inset of Fig. 2,  which are -0.194, -0.198, -0.188, and -

0.200, respectively, for ZnO, ZnS, ZnSe, and ZnTe.  Therefore, we can achieve very good fitting 

of Ep-d for all ZnX (X=O, S, Se and Te) by simply taking the average value of δV(Zn_d) = -0.195. 

The corresponding errors of Ep-d are merely 12 meV, 45 meV, 105 meV and 75 meV for ZnO, 

ZnS, ZnSe, and ZnTe, respectively. The largest error is 105 meV for ZnSe, which is negligible 

compared to Ep-d of 9.20 eV. It is interesting and important to find that a common value δV(Zn_d) 

= -0.195 can simultaneously correct Ep-d for all the binaries with deviations comparable to the 

uncertainty of the experimental data. This adjustment of p-d separation is very similar to the 

treatment of p-d coupling in LDA-1/2 method, [46] where a trimmed self-energy potential 

derived from cation d states is added to get an improved bandgap.  

After the δV(Zn_d) correction is applied, the VBM values of ZnX (X=O, S, Se, Te) are 

lowered by 550, 284, 227, 162 meV, respectively. Here the lowering is respect to the core levels 

(i.e., the VBM becomes closer to the core levels). On one hand, the Ep-d error contributes 

significantly to the LDA errors in the bandgaps; on the other hand, the dependence of the VBM 

error on anion type also significantly affects the band offsets among these common cation 

binaries. Once this step is done, no further adjustment will be made to this parameter in the 

future steps of correcting other bandgaps, and this adjusted VBM will be viewed as the correct 

and final one which should be kept with as little net change as possible after applying other 
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subsequent correction steps. This new VBM is used as the reference energy level for the targeted 

conduction band energy levels at special k points according to their experimental values or GW 

calculation results when reliable experimental data are not available. When the spin-orbit 

coupling is included, a one third of spin-orbit coupling ΔSO should be added to the above 

mentioned VBM. 

How the other energy levels are determined by the different orbitals is complicated 

because of the presence of different couplings, such as s-p and p-d coupling? We continue to use 

ZnTe as an example to examine the effects of each individual pseudopotential component. Figure 

3 shows the effects of changing all the six components on five energy levels: VBM and 

conduction Γ1c, X1c, L1c, and X3c. The VBM state mainly comes from the Te p orbital, but is also 

affected significantly by the Zn d and p orbital, and slightly by Te d orbital, which is confirmed 

by Fig. 3(e), 3(c), 3(b), and 3(f). The CBM at different k points exhibit different dependences on 

the atomic orbitals: Γ1c is affected by both δV(Te_s) and δV(Zn_s); X1c by δV(Zn_p), δV(Zn_d), 

δV(Te_s), and δV(Te_d), but not by δV(Zn_s) and δV(Te_p); L1c is affected by all six 

components, although only very weakly by δV(Zn_d) and δV(Te_p); and X3c depends on 

δV(Zn_s), δV(Zn_d), δV(Te_p), and δV(Te_d), but not by δV(Zn_p) and δV(Te_s). Note that 

the fitting of Ep-d has some minor effects on the conduction band, specifically, on X1c, L1c, and 

X3c, as shown in Fig. 3(c). 

Our general goal here is to adjust the four conduction band states Γ1c, X1c, L1c, and X3c to 

obtain correct bandgaps with respect to VBM without causing further net change in VBM, using 

the five remaining pseudo-potential components. One way to do it would be performing a least 

square fitting using the curves produced in Fig. 3. However, we have developed an interactive 

three-step procedure that usually works better. First, we note that the effects of δV(Te_d) on X1c 
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and X3c and δV(Zn_p) on X1c tend to saturate after certain values, but the corrections are still not 

enough. So we adopt a value close to the saturation point for each of these two variables. Second, 

since the previous step has changed VBM due to δV(Zn_p), we use δV(Te_p) to bring it back. 

Third, we use the two left over parameters δV(Zn_s) and δV(Te_s) to get Γ1c and X1c to the 

targeted values, and in the meantime the separation of X3c and X1c close to be the targeted value 

as well. Usually, the experimental value for the X3c is less well known and its value is also less 

critical to the properties of interest, we play more weights on Γ1c and X1c. L1c is not explicitly 

included in these steps, but typically turns out to be fairly close to the targeted value, which can 

be taken as an indicator for the success of this procedure. We note that the exact order of these 

steps is not critical. 

The procedure described above allows us to perform LDA corrections for the whole set 

of binaries with a common cation, in this case, ZnX(X = O, S, Se, Te). The same correction 

parameters for the three components of the Zn pseudopotential are shared by all the Zn based 

binaries. We also apply this approach to Cd based II-VI compounds, and Ga and In based III-V 

compounds. The corrected results are described in the following section, and all the fitting 

parameters are given in Appendix. The original (generated by the PEtot package [43]) and 

corrected pseudopotentials are available on our group website [47] or can be provided upon 

request. 

III.  Results and Discussion 

Listed in Table I are the LDA-corrected results of spin-orbit coupling, p-d separation, and 

energy levels of Γ1c, X1c, X3c and L1c for group II-VI semiconductors with Zn and Cd as cation. 

Table II contains the same results for group III-V semiconductors with Ga and In as cation. 

Overall, these corrected values are at least as good if not better than what have been achieved 
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before either by applying other empirical correction schemes or using GW, in particular, done 

simultaneously for multiple common-cation compounds.  

 The corrected Γ1c bandgaps are typically within a few meV of the targeted values for all 

binaries. For an indirect bandgap material like GaP with its CBM at the X point, the deviation is 

only 63 meV from its experimental value. The comparisons between the raw LDA, LDA-

corrected and experimental or targeted bandgaps for Γ1c, X1c and L1c are compiled in Figure 4. 

The electronic band structures are plotted in Figure 5 for selected compounds GaAs, InSb, ZnTe, 

and CdTe. 

Besides the bandgaps at the special k points, we further test the ability of the correction 

scheme for generating accurate dispersion curves, specifically effective mass. The electron 

effective masses along the [001] direction are calculated and compared with available 

experimental or calculation results, tabulated in Table III. The agreements are remarkably well. 

The ability to also yield accurate effective mass further affirms the success and reliability of this 

correction scheme, because it is resting on sound physics based on the internal symmetry 

connection among different special k points.   

Although the corrections were applied to the ZB structure, the modified pseudopotentials 

can be used in predicting other crystal structures. For instance, we have calculated ZnO with 

wurtzite structure, and found the band gap to be 3.52 eV which is consistent with the GW 

calculation and experimental results ~3.60 eV.[48] The same correction parameters can be used 

for more complex structures, such as superlattices and alloys. We have recently applied this 

method to the band structures of InAs/GaSb type II superlattices with small bandgaps of 10 – 

100 meV, where the LDA calculation typically yield negative bandgaps. Very good agreements 

with experimental results were achieved after applying the correction.[38] Based on the success 
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of applying this approach to the InAs/GaSb superlattice, this method should be able to give more 

accurate band offsets than the straight DFT. However, it is beyond the scope of this work to 

explicitly extracting the band offset values for these materials, which on its own would be a 

significant effort.[49] 

IV. Conclusions 

In conclusion, we have developed a systemic approach to correct the band gap errors in 

DFT-LDA calculations. A reliable and easy to follow procedure is prescribed and demonstrated 

with great success for producing correct band structures for III-V and II-VI compounds, 

including the bandgaps at most important critical points, p-d band separation in the valence band, 

and the conduction band effective mass. As a method offering atomistic level corrections to the 

LDA results for ZB structure, the transferability to other related structures have been tested 

yielding very good results. The ability to simultaneously correct multiple common cation 

binaries with the same correction parameters for the cation makes it very useful for studying 

complex structures with multiple anions and cations. In the future, more extensive testing will be 

performed for computing other band structure parameters, such as deformation potentials, and 

various material properties. This approach is expected to be as accurate as GW, sometimes even 

better, for many practical applications but without the demand for large computational resources. 
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TABLE I. LDA-corrected  spin-orbit coupling ΔSO, p-d separation Ep-d, and energy levels at special k points Γ1c, X1c, 
X3c, and L1c for ZnX (X= O, S, Se, and Te) and CdX ( X=S, Se, and Te). Numbers in parenthesis (), squiggly 
brackets {}, and square brackets [] denote the experimental values, quasiparticle (GW) calculation results, and 
original LDA calculation results without the corrections, respectively. 

 a (Å) ΔSO (eV) Ep-d (eV) Γ1c (eV) X1c (eV) X3c (eV) L1c (eV) 
 

ZnO 4.620a -0.005  
(-0.004c)†     
[-0.032] 

7.513 
(7.5e) 
[5.381] 
 

3.394 
{3.394g} 
[0.521] 

8.316 
{8.199g } 
[5.176] 

10.384 
{10.998g} 
[8.416] 

7.782 
{8.449g} 
[5.131] 

ZnS 5.409b 0.067 
(0.067c) 
[-0.054] 

8.985 
(9.03f) 
[6.560] 
 

3.800 
(3.80b) 
[1.751] 

5.182 
{5.14b} 
[3.183] 

5.460 
{6.03b} 
[3.868] 

5.156 
{5.28b} 
[3.006] 

ZnSe 5.668b 0.404 
(0.400c) 
[0.348] 

9.305 
(9.20f) 
[6.787] 
 

2.82 
(2.82b) 
[0.960] 

4.428 
{4.41b} 
[2.704] 

4.452 
{5.01b} 
[3.191] 

4.153 
{4.14b} 
[2.234] 

ZnTe 6.089b 0.986 
(0.970c) 
[0.902] 

9.765 
(9.84f) 
[7.323] 
 

2.398 
(2.39b) 
[0.609] 

3.364 
{3.47b} 
[1.877] 

3.670 
{3.53b} 
[1.943] 

3.188 
{3.07b} 
[1.273] 

CdS 5.818b 0.051 
(0.067d) 
[0.051] 

9.737 
(9.64f) 
[7.776] 
 

2.552 
(2.55b) 
[0.832] 

5.196 
{5.08b} 
[3.277] 

5.725 
{6.17b} 
[4.141] 

4.675 
{4.82b} 
[2.720] 

CdSe 6.052b 0.417 
(0.416d) 
[0.400] 

10.027 
(10.04f) 
[8.125] 
 

1.901 
(1.90b) 
[0.270] 

4.419 
{4.37b} 
[2.785] 

4.673 
{5.20b} 
[3.476] 

3.788 
{3.87b} 
[2.064] 

CdTe 6.480b 0.926 
(0.920d) 
[0.879] 

10.402 
(10.49f) 
[8.570]

1.603 
(1.60b) 
[0.140]

3.511 
{3.46b} 
[2.144]

3.658 
{3.64b} 
[2.280] 

2.993 
{2.84b} 
[1.299]

a Reference [50]                      b Reference [51]                      c Reference [52]                      d Reference [53]                      
e Reference [54]                      f Reference [4]                       g Reference [48]                      † ΔSO (wurtzite) 
 

 

 

 

 

TABLE II. LDA-corrected spin-orbit coupling ΔSO, p-d separation Ep-d, and energy levels at special k points Γ1c, X1c, 
X3c, and L1c for GaX (X= N, P, As and Sb) and InX ( X=P, As and Sb). Numbers in parenthesis (), squiggly brackets 
{}, and square brackets [] denote the experimental values, quasiparticle (GW) calculation results, and original LDA 
calculation results without the corrections, respectively. 

 a (Å) ΔSO (eV) Ep-d (eV) Γ1c (eV) X1c (eV) X3c (eV) L1c (eV)
GaN 4.50a 0.009 

0.015a 
[0.016] 

17.441 
(17.0h) 
[13.810] 
 

3.305 
(3.302j) 
[1.678] 
 

4.703 
{4.7l} 
[3.308] 
 

7.807 
{8.4l} 
[6.525] 
 

6.304 
{6.2l} 
[4.469] 
 

GaP 5.409b 0.075 
(0.080e) 
[0.102] 

18.446 
(18.55i) 
[14.711] 
 

2.871 
(2.869k) 
[1.456] 
 

2.413 
(2.350m) 
[1.474] 
 

2.425 
(2.75m,q) 
[1.644] 
 

2.706 
(2.64q) 
[1.404] 
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GaAs 5.6533c 0.345 
(0.340e) 
[0.336] 

18.657 
(18.9i) 
[14.976] 

1.520 
(1.519e) 
[0.346] 

1.989 
(1.98n,p) 
[1.352] 

2.099 
(2.30p) 
[1.480] 

1.869 
(1.81p) 
[0.828] 
 

GaSb 6.089d 0.765 
(0.752f) 
[0.663] 

18.890 
(19.0i) 
[15.284] 

0.814 
(0.8102f) 
[-0.348] 

1.778 
(1.66p) 
[0.624] 

1.259 
(1.43p) 
[0.943] 

1.092 
(1.09p) 
[0.068] 
 

InP 5.818d 0.060 
(0.108e) 
[0.121] 

16.902 
(16.80i) 
[14.372] 

1.439 
(1.4236e) 
[0.352] 

2.440 
{2.58q} 
[1.568] 

2.639 
{3.08q} 
[2.062] 

2.200 
{2.03q} 
[1.200] 

InAs 6.052c 0.387 
(0.380g) 
[0.418] 

17.015 
(17.09i) 
[14.097] 

0.419 
(0.418g) 
[-0.051] 

2.100 
{2.01q} 
[1.405] 

2.430 
{2.50q} 
[1.887] 

1.604 
(1.55q) 
[0.720] 
 

InSb 6.480e 0.839 
(0.810g) 
[0.803] 

17.262 
(17.29i) 
[14.908] 

0.237 
(0.2352e,g) 
[-0.728] 

1.378 
{1.50q} 
[0.996] 

2.005 
{1.57q} 
[1.001] 

1.018 
(0.89r) 
[0.102] 

a Reference [55]                     b Reference [56]                      c Reference [57]                        d Reference [58]                     
e Reference [59]                     f Reference [60]                                   g Reference [61]                    h Reference [62]                        

i Reference [63]                      j Reference [64]                      k Reference [65]                         l Reference [66] 

m Reference [67]                    n Reference [68]                      p Reference [69]                         q Reference [70] 

r Reference [71] 

 

TABLE III. Effective mass of electrons for III-V and II-VI semiconductors (in unit of the electron free mass m0) 
calculated by original LDA, LDA+C method, are compared with their available experimental values.  

 LDA LDA+C Expt. LDA LDA+C Expt.
GaN 0.171 0.167 0.20a ZnO 0.131 0.219
GaP 0.104 0.112 0.13a ZnS 0.074 0.161 0.184b

GaAs 0.053 0.066 0.067a ZnSe 0.090 0.113 0.130b

GaSb 0.015 0.045 0.039a ZnTe 0.068 0.102 0.130b

InP 0.059 0.081 0.0795a CdS 0.109 0.137
InAs 0.016 0.023 0.026a CdSe 0.065 0.099 0.12c

InSb 0.087 0.015 0.0135a CdTe 0.066 0.085 0.094c 
aReference [59]              bReference [52]             cReference [72] 
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Figure captions: 
 
Figure 1. The electronic structure (left) and partial density of states (right) for zinc-blende ZnTe 
from a DFT-LDA calculation without spin-orbit coupling.  
 
Figure 2. The deviation of the p-d separation δEp-d, δEp-d = Ep-d(cal.) - Ep-d(expt.), vs. δV(Zn_d) 
for ZnO, ZnS, ZnSe and ZnTe. The inset shows an enlarged view for the δV(Zn_d)  region 
where δEp-d approaching zero. 
 
Figure 3. Shifts of energy levels (VBM, Γ1c, X1c, X3c, and L1c) vs. fitting parameters of six 
orbitals (s, p, and d orbitals of Zn atom and Te atom). 
 
Figure 4. A comparison of experimental band gaps with those calculated with LDA and LDA+C 
methods. 
 
Figure 5. Band structures of GaAs, InSb, ZnSe, and CdTe. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



24 
 

Appendix 
 
Table A-I. List of cutoff radius (in unit of Bohr radius) for pseudopotentials 
 rc  rc  rc 
Zn_s 2.30 Zn_p 2.30 Zn_d 2.30 
O_s 1.45 O_p 1.45 O_d 1.00 
S_s 1.70 S_p 1.70 S_d 1.70 
Se_s 1.90 Se_p 1.90 Se-d 1.90 
Te_s 2.60 Te_p 2.60 Te_d 2.60 
Cd_s 2.65 Cd_p 2.65 Cd_d 2.65 
Ga_s 2.10 Ga_p 2.10 Ga_d 2.10 
In_s 2.90 In_p 2.90 In_d 2.90 
N_s 1.50 N_p 1.50 N_d 0.00 
P_s 1.95 P_p 1.95 P_d 1.95 
As_s 2.10 As_p 2.40 As_d 3.00 
Sb_s 2.60 Sb_p 2.60 Sb_d 2.60 
 
Table A-II. Fitting parameters for ZnX 
Zn_s 0.500 Zn_p 10.0 Zn_d -0.19502525 
O_s 0.652555 O_p -0.0273929 O_d 10.0 
S_s 0.640480 S_p -0.1008 S_d 5.0 
Se_s 0.568804 Se_p -0.114591 Se_d 10.0 
Te_s 0.269504 Te_p -0.072394 Te_d 22.0 
 
Table A-III. Fitting parameters for CdX 
Cd_s 0.450 Cd_p 7.00 Cd_d -0.172982 
S_s 0.621348 S_p -0.08192 S_d 22.0 
Se_s 0.574695 Se_p -0.094994 Se_d 12.0 
Te_s 0.345548 Te_p -0.060212 Te_d 4.0 
 
Table A-IV. Fitting parameters for GaX 
Ga_s 0.60 Ga_p 3.482 Ga_d -0.252373 
N_s 0.250114 N_p -0.0348319 N_d 6.0 
P_s 0.174723 P_p -0.129255 P_d 1.29255 
As_s 0.0649773 As_p -0.0862555 As_d 0.0 
Sb_s -0.141989 Sb_p -0.002094 Sb_d 2.0 
 
Table A-V. Fitting parameters for InX 
In_s 0.20 In_p 2.0 In_d -0.172582 
P_s 0.196927 P_p -0.119467 P_d 0.0 
As_s 0.107101 As_p -0.0833195 As_d -0.50 
Sb_s 0.0880463 Sb_p -0.130506 Sb_d 1.0 
 
 
 


