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Fixed-Node Diffusion Monte Carlo of Lithium Systems

K. M. Rasch∗ and L. Mitas†

Department of Physics, North Carolina State University, Raleigh, NC 27695

We study lithium systems over a range of number of atoms, specifically, atomic anion, dimer,
metallic cluster, and body-centered cubic crystal by the fixed-node diffusion Monte Carlo method.
The focus is on analysis of the fixed-node errors of each system, and for that purpose we test several
orbital sets in order to provide the most accurate nodal hypersurfaces. The calculations include
both core and valence electrons in order to avoid any possible impact by pseudopotentials. To
quantify the the fixed-node errors, we compare our results to other highly accurate calculations,
and wherever available, to experimental observations. The results for these Li systems show that
fixed-node diffusion Monte Carlo achieves accurate total energies, recovers 96–99% of the correlation
energy and estimates binding energies with errors bounded by 0.1 eV/atom.

PACS numbers: 02.70.Ss, 31.15.V-, 71.10.-w, 71.15.-m

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have been ap-
plied to a great variety of electronic structure problems
over the past three decades. These calculations provide a
number of highly accurate results for properties such as
cohesion and binding energies, excitations, reaction bar-
rier heights, defect formation energies, and other quanti-
ties; they are typically in excellent agreement with avail-
able experiments1,2. In addition, the calculations have
shed new light on correlation effects in various systems,
and therefore have become valuable as benchmarks for
other methods and comparisons. The most important
strength of this approach is that the many-body Hamilto-
nian is employed directly, and thus the electron-electron
interaction and particle correlations are treated explicitly
in a many-body manner. Another advantage of QMC
methods is its ready applicability to large systems of
interacting particles so that properties of solids can be
calculated by using supercells and extrapolations to the
thermodynamical limit.

Diffusion Monte Carlo (DMC) projects out the ground
state of a system by applying the projection operator
exp(−τH), where H is the Hamiltonian, to the trial wave
function ΨT . While any Hamiltonian can be evaluated,
we discuss electron systems with the fully interacting
Coulomb potential. In the large imaginary time limit
τ → ∞, the ground state of a given symmetry is ob-
tained. One of the fundamental limitations in achieving
exact results is the so-called fixed-node approximation
which enables one to avoid the well-known fermion sign
problem1,3. The fixed-node approximation is difficult to
improve upon since the corresponding energies are typi-
cally very small, e.g., a few percent of the correlation en-
ergy where the correlation energy is itself a small fraction
of the total energy. Therefore systematic improvements
of the nodes through minimization of the total energy or
variance of the energy for a given trial wave function is
laborious and often very costly4,5. Insights into the role
of basis sets in the error5 were not always easy to utilize
in different systems6. Improvements in algorithmic effi-
ciency, in speed and quality of wave functions optimiza-
tion routines, and in functional forms for orbitals and

wave functions continue; and yet a significant amount
of work remains to be done in simply understanding the
root origin of the nodal errors by systematically quantify-
ing the dependence of energy biases on the nodal defects.

Recently, we have analyzed the impact of the electron
density on the nodal bias in a set of free atom/ion sys-
tems, and we found the fixed-node errors to be propor-
tional to the density in this particular class of systems
for both spin-unpolarized7 and spin-polarized8 cases. A
similar pattern of increasing fixed-node errors with larger
charge density in the region of nodal errors was observed
in the presence of pseudopotentials9. As a testbed to ex-
pand this study to more complicated cases, a series of
lithium systems is attractive for several reasons. First,
inclusion of the core electrons in Li calculations is com-
putationally feasible. That enables us to avoid any addi-
tional, more complicated analysis that is necessary when-
ever pseudopotentials or effective core potentials are be-
ing employed. This ensures that any missing amount of
the binding energy, cohesive energy, or correlation en-
ergy is caused solely by the fixed-node approximation.
Second, the exact wave function for a free Li atom has a
relatively simple nodal surface which is already well ap-
proximated at the Hartree-Fock level. In addition, small
Li systems have been studied with the FN-DMC method
before. In this work we significantly expand upon previ-
ous studies with calculations of Li4 cluster and Li solid in
its equilibrium body-centered cubic structure. By com-
paring our fixed-node diffusion Monte Carlo (FN-DMC)
results with other accurate calculations and experimen-
tal results corrected for zero-point motion (DMC is car-
ried out in the Born-Oppenheimer approximation), we
can assess the magnitude of the fixed-node errors with
high accuracy. These systems represent a variety of envi-
ronments for the bonding and include directional bonds,
multi-center bonds, and delocalized metallic bonds. It is
therefore an interesting question to understand how the
fixed-node bias changes once Li enters bonding in the set-
ting of molecular bonds or periodic boundary conditions.
Based on these results we establish a systematic picture
of the nodal errors in Li systems and corresponding ac-
curacies for energy differences.
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II. METHODS

In DMC, we solve for the ground state solution of
Schrödinger’s equation

Ψ0 = lim
τ→∞

exp{−τH }ΨT (1)

where H is the Born-Oppenheimer Hamiltonian. The
antisymmetric nature of fermion systems poses a chal-
lenge to the naive application of the DMC algorithm and
leads to the fermion sign problem3,10,11. This is because
for a given boundary value problem, the eigenstate with
the lowest eigenvalue will be a symmetric state. In light
of this well-known difficulty, perhaps the simplest and
most straightforward way to circumvent the sign prob-
lem is the fixed-node approximation.

Under the fixed-node approximation, we impose a
boundary condition at the nodes of the trial wave func-
tion and maintain them for the duration of the simula-
tion. The nodes form a hypersurface defined implicitly
by

Ω = {R; ΨT(R) = 0}. (2)

The assumed nodal hypersurface creates boundaries that
constrain the solution in each nodal cell and preserve the
overall fermionic anti-symmetry of the total wave func-
tion, preventing thus any appearance of “signs.” This
allows one to ignore the sign of the wave function inside
the nodal cell and to carry out the DMC algorithm within
each nodal cell

ΨTΨ0 ≥ 0. (3)

Unfortunately, doing this exactly is a tall order. It re-
quires that for an N -electron system one must have a
description of the exact (3N − 1)-dimensional hypersur-
face Ω. Solving for such a hypersurface directly is beyond
our means, and instead we proceed by using nodal sur-
faces from approximate wave functions. Because we use
a nodal hypersurface that is not exact, the solution will
have a higher energy than the exact ground state, i.e.,
the total energy computed via FN-DMC is a variational
upper bound to the exact energy12. Further details on
the FN-DMC method can be found elsewhere, see, for
example, Ref. 1.

The trial functions used in this study are of the Slater-
Jastrow type

ΨT(R) =
∑
k

ckdet↑k[ϕi]det↓k[ϕj ] exp(U) (4)

where the one-particle orbitals are obtained from
Hartree-Fock (HF) or Density Functional Theory (DFT).
More details on the trial functions and their optimiza-
tions, Jastrow correlation factors, and DMC calculations
for periodic boundary conditions can be found in the re-
cent review, Ref. 2. We used the Qwalk software pack-
age to carry out all QMC calculations13.

TABLE I. Comparison of theoretical results for the total en-
ergy of a lithium atom where FN-DMC energy has been ob-
tained with the HF nodes.

source total energy (Ha)

HF -7.23641
FN-DMC present work -7.47801(1)

FN-DMC Bressanini et al.15 -7.478060(3)
exact16 -7.47806032

III. RESULTS

III.1. Lithium atom & electron affinity

In order to calculate the total energy of the lithium
atom, we use a restricted Hartree-Fock wave function.
Since the spin-up and spin-down subspaces are indepen-
dent at the HF level, the minority spin channel contains
only one electron, and the wave function’s node exists in
only the spin majority subspace. We can visualize this
subspace of the nodal hypersurface by considering the
wave function when 1 and 2 label the electrons in the
same spin channel. Then it follows from the form of the
HF determinant that the node is given by the condition
r1 = r2. The electron labeled as 1 therefore “sees” the
node as a sphere which passes through the position of
electron 2 and has the nucleus as it’s origin. The wave
function will be equal to zero if electron 1 occupies any
point on the spherical nodal surface.

The exact HF nodal hypersurface in the full 6D space
is a 5D hyperboloid given by the implicit equation
x21+y21 +z21 = x22+y22 +z22 . As pointed out by Stillinger et
al.14, this is not strictly exact, as the correlation with the
electron in the spin-down channel will cause deformations
away from a perfect sphere. For example, the excitation
2s12p2 will have a contribution to the exact ground state
and would in principle lead to a departure from the sin-
gle particle node (i.e., the sphere will slightly deform to
an ellipsoid or perhaps a more complicated surface that
would depend on the position of the minority spin elec-
tron). It is therefore quite remarkable that the HF nodal
surface seems to be so accurate: the total energy with the
HF nodes, shown in Table I, is accurate to ≈ 0.05(1) mHa
and the fixed-node bias is less than 0.1 % of the correla-
tion energy15. This demonstrates that the correlation is
basically completely captured by the Jastrow-like effect
and it affects the 5D hyperboloid only marginally. (This
contrasts with the Be atoms where the nodal surface is
strongly affected by correlations7.) Our own calculated
fixed-node error in the single atom energy is ≈ 0.05(1)
mHa; much smaller than chemical accuracy (≈ 1.6 mHa).
This also suggests that any fixed-node errors in the ag-
gregate species from Li atoms will be essentially identical
to the error in the binding or cohesive energy.

We can compute the electron affinity of a Li atom using
the value for the ground state total energy of the Li− ion
from Ref. 7, which has a fixed-node error comparable to
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TABLE II. Comparison of the latest calculation and measure-
ment with FN-DMC results for the electron affinity for Li (in
Ha).

Author Method EA (Ha)

Fischer21 extrap. MCHF 0.022698
present work FN-DMC HF single det. 0.0201(1)
present work FN-DMC 2 configs. 0.02279(5)
Haeffler20 Expt. 0.0227129(8)

the neutral atom. The electron affinity is given by

EA(Li) = E0(Li)− E0(Li−). (5)

Lithium has a positive electron affinity, meaning the an-
ion is more stable than the neutral atom. The HF limit
of the total energy of Li− has been computed to be
−7.4282320 Ha; the HF limit of the total energy of the
neutral Li atom is −7.43272693 so that in the HF ap-
proximation the additional electron would not be ener-
getically favorable17–19. As it is well-known, correlation
effects are crucial for describing the electron affinity with
accuracy comparable to experiment19.

Using a wave function composed of two configura-
tion state functions, i.e., the HF reference state plus
2s2 → 2p2 excitation (a symmetry adapted linear com-
bination of determinants), for the 4 electron ion yields
an FN-DMC electron affinity with an excellent accuracy
compared to experimental measurement20. A summary
of the best theoretical and experimental data are com-
pared with this work in Table II. While the two species in
the calculation share geometric details (central potential
in free space), when the 4th electron is added, the nodal
hypersurface changes and the anion shows a nodal shape
similar to the isoelectronic Be atom. The poor quality
of the result for the electron affinity using only a sin-
gle determinant trial function for Li− stands to illustrate
that the extreme accuracy of the RHF nodal hypersur-
face for 3 electrons is not typical and is rather a result of
fortuitous coincidence.

III.2. Li2

The Li2 dimer is a more complicated system. The ad-
ditional Li atom increases the number of electrons and
changes in the overall real-space geometry from one cen-
tral potential with spherical symmetry to a two-potential
cylindrical symmetry. The nodes of the lithium dimer
have been a studied number of times22,23. The best
single configuration result in the literature (in Ref. 23),
EFN-DMC = −14.9923(1), has about 3.1 mHa fixed-node
error. The fixed-node error of the best wave function in
the same reference is ≈ 0.2 − 0.3 mHa, with the total
energy of −14.9952(1). Using the value for the HF energy
reported by Filippi and Umrigar22, this recovers ≈ 99.8%
of the correlation energy. Bressanini et al.23 have pointed
out that a five configuration wave function has the nodal

rA
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rC

Li4

FIG. 1. Schematic depiction of the D2h Li4 parameters

surface close to the exact one, and therefore it is not too
difficult to obtain accurate energies at the fixed-node ap-
proximation level with errors of the order of 0.1 % as well.
Interestingly, only the three lowest excitations were re-
ally involved, 2σ2 → 1π2, 2σ2

g → 2σ2
u, 2σ2

g → 3σ2
g . Since

this system was studied exhaustively, we did not repeat
the muti-reference calculation, and instead we quote the
results of Bressanini et al.23 hereafter.

III.3. Li4

Li4 and its properties have been studied by sev-
eral methods including the basis set correlated ap-
proaches24–29. The most stable configuration of four Li
atoms is a molecule with D2h symmetry, a planar rhom-
bus geometry, and singlet electronic ground state24–28.
The geometry of the D2h Li4 is depicted schematically
in Figure 1. This can be understood as the result of a
Jahn-Teller distortion of the more symmetric geometry of
a square26. Li4 exhibits a “three-center” bonding pattern
where two electrons are shared inside each of the two tri-
angles formed by bisecting Figure 1 along the “rA” line30.

In Table III, we compare the nodes of the SCF wave
functions (unoptimized) for different levels of CI in order
to illustrate the behavior of such expansions and to select
the best starting place for our QMC trial wave function.
For each level of CI, we used complete expansions but
limited the number of virtual orbitals in the active space.
It is clear that the nodes do not improve systematically
for larger active space and higher level of theory as the
CI total energies do.

Since FN-DMC errors associated with the basis set are
not very systematic, we also tested the nodal surfaces of
several basis sets to minimize these errors. Although not
fully complete, the results seem to support the conclusion
of Bressanini et al.23 that for Li systems saturating the
s channel is more important than adding additional high
angular momentum basis functions. These results are
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TABLE III. Fixed-Node DMC total energies (a.u.) for trial
wave functions from different levels of CI, these calculations
were used to test unoptimized nodal surfaces for use as DMC
trial wave functions. The corresponding CI energies are in-
cluded as well.

theory virtual orbitals ECI EFN-DMC

RHF 0 -29.76238 -30.0177(5)
CI-SD 9 -29.81584 -30.0184(5)
CI-SDTQ 9 -29.82021 -30.0174(4)
CI-SD 15 -29.82475 -30.0228(4)
CI-SDTQ 15 -29.83131 -30.0179(4)
CI-SD 19 -29.82534 -30.0162(4)
CI-SDTQ 19 -29.83226 -30.0179(6)

TABLE IV. FN-DMC results for different basis sets with trial
wave functions from CI-SD calculations using 15 virtual or-
bitals and then optimized in with respect to VMC total en-
ergy.

basis set total energy (Ha)

Roos Aug. DZ ANO (4s3p2d) -30.02127(5)
Roos Aug. TZ ANO (4s4p3d2f) -30.02119(6)
aug-cc-pCVTZ (7s6p4d2f) -30.02263(6)

listed in Table IV. After some initial testing of basis and
multi-determinant expansions, we employed wave func-
tions constructed from the aug-cc-pCVTZ basis and in-
cluded the 15 lowest lying virtual orbitals into the CI-SD
calculation. We re-optimized the weights of the result-
ing 93 configuration state functions in the CI expansion
with VMC total energy minimization using a Levenberg-
Marquardt algorithm. The geometry parameters have
been computed a number of times in the literature, as
reported in Table V organized by the value for the Li-Li
distance labeled rC in Figure 1. The FN-DMC results
indicate that there is a short Li-Li bond ≈ 2.64 Å (2rA
in Figure 1) and a longer Li-Li bond ≈ 2.99− 3.0 Å (rC
in Figure 1).

The experimental and theoretical binding energies of
Li4 are given in Table VI. Because the presence of the Jas-
trow factor will influence the optimization of the multi-
determinant expansion, it is not clear a priori what form
of the Jastrow factor is optimal. In particular, since the
bonds are not very strong and the bond lengths are some-
what larger than in typical single-bonded situations we
tested the range of the Jastrow cutoff distance parameter.
We optimized the Jastrow coefficients and determinant
weights for two different electron-ion Jastrow distances.
The wave function with the so-called “short-range” Jas-
trow effects had its electron-ion and electron-electron-ion
terms extend to 2.45 bohr from each atom, i.e., to just
less than half the smallest Li-Li distance. For the “long
range” Jastrow, the electron-ion terms were allowed to
extend to 7.5 bohr. The qualitative difference between
these two Jastrows is that terms from different atoms in
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FIG. 2. The DMC energy extrapolated to τ = 0 for a Li4
molecule. Both wave functions originate from the same Con-
figuration Interaction CI-SD calculation, but have had the de-
terminant weights and Jastrow coefficients re-optimized with
different assumed cut-off distances in the Jastrow, as de-
scribed in the text.

the short-range Jastrow do not overlap in the region oc-
cupied by the three-center bonds. This difference in de-
scription of the wave function translates into a difference
in computational effort. In the “short-range” case, each
electron will have non-zero three-body Jastrow terms as-
sociated with only 1 atomic center at any given time;
whereas in the “long-range” case, electrons have non-zero
contributions to the Jastrow coming from each of the Li
atoms surrounding the three-center bonding region. The
resulting effect in the total energy of the wave function
was only ≈ 0.00013 per atom.

We carried out a time-step extrapolation for both wave
functions, shown in Figure 2, to ensure that the time-step
error is <≈ 0.05 mHa in the total energy, or an order of
magnitude smaller than the statistical error bars in the
binding energy. After correcting for the zero point mo-
tion, which is about 3.12 mHartree per atom28, we find a
binding energy of 0.723(3) eV. Note the reasonably good
agreement between the results although the basis set cor-
relation methods did not include any correlation of the
core (1s) states. This points out that the core states are
already quite deep and do not affect the nodal surfaces
significantly. One of the reasons is that any excitation
which would correlate the 1s level would involve states
which would lie very high in energy since such excitations
would require strongly localized type of orbitals. The ac-
curacy of the these and the results presented for the Li
dimer suggest that the nodal surfaces are minimally af-
fected by the 1s sub-shell.

The table includes also experimental data from the two
available sources, Wu36 and Brechignac et al.37, 0.84(5)
and 0.63(4) eV respectively. These data show signifi-
cant differences and seem inconsistent with each other.
Considering a reasonable agreement between the four in-
dependent calculations in Table VI that are within ≈
0.01 eV and the sizeable error bars on the experimental
values, we essentially claim that our present calculation,
being produced by an upper bound method and having
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TABLE V. Summary of the optimized geometry parameters of D2h Li4 tested in this work, and the FN-DMC total energy for
each. The trial wave function is an VMC energy optimized CI-SD expansion with 93 CSFs.

author method rA (Å) rB (Å) rC (Å) EFN-DMC
tot (Ha)

Ray24 DFT 1.298 2.759 3.050 -30.02132(2)
Rousseau and Marx27 QCISD / CCSD(T) 1.323 2.700 3.007 -30.02155(2)
Verdicchio et al.31 CCSD(T) 1.323 2.680 2.989 -30.02158(2)
Wheeler et al.28 CCSD(T) 1.316 2.681 2.987 -30.02154(2)

TABLE VI. Binding energies of Li4, uncorrected for zero-
point motion, are given in units of eV per atom.

author method binding

Alikhani and Shaik32 DFT 0.61
Bonacic-Koutecky et al.33 MRD-CI 0.63
Owen34 DMC 0.67(2)
Nissenbaum et al.29 DMC 0.733(4)
Rao et al.35 CI-SD 0.7375
Wheeler et al.28 CCSD(T) 0.7445
present work DMC 0.744(3)
Wu36 Expt. 0.84(5)
Brechignac et al.37 Expt. 0.63(4)

the lowest total energy of the theoretical calculations, is
the most accurate estimation of this total energy to date.

III.4. Bulk Lithium in a BCC crystal

Because of its position as a bulk crystal with only one
valence electron per atom, lithium in the body-centered-
cubic (BCC) crystal (Pearson symbol cI2) has been stud-
ied a few times by QMC methods in the literature38–41.
Surprisingly though, none of these calculations have used
FN-DMC with the core electrons included.

Further interest in studying lithium crystals with QMC
methods was stimulated by recent experimental and the-
oretical developments. For example, interesting phenom-
ena for high pressures, including superconductivity, have
been reported by experimental studies42,43. An intrigu-
ing hypothetical suggestion has been raised by Neaton
and Ashcroft that lithium solid may undergo a Peierls
transition into a so-called “alkali electride” at high pres-
sures, an exotic phase where paired Li atoms are stabi-
lized by pockets of highly localized electrons44,45.

Experimental measurements of the lattice constant of
BCC lithium agree that a0 = 3.51 Å(Refs. 46–51). Pre-
vious QMC simulations treat 3.482 Å(given as 6.58 bohr)
or similar values as the experimental value, perhaps ow-
ing to the fact that the experimental measures were done
at 25◦C (Refs. 38–41). Gaudoin and Foulkes suggest that
for zero temperature methods, the computed equilibrium
is expected to be a0 = 3.44 Å(Ref. 52). While we did not
construct a full energy-volume curve, we checked these
lattice constants with both DFT and FN-DMC, shown

in Table VII. At the DFT level, the difference at the ex-

TABLE VII. Total energy per atom in atomic units from
DFT/PBE-PZ and FN-DMC calculations for 16 atom cell
(2x2x2 conventional cell) for different lattice values.

a0( Å) DFT FN-DMC

3.51 -7.60873 -7.53840(3)
3.482 -7.60914 -7.53852(2)
3.44 -7.61027 -7.53867(2)

tremes of these lattices values is ≈ 1.5 mHa. The differ-
ence at the FN-DMC is smaller, ≈ 0.25 mHa, and since
the finite size errors are still present in these values, this
likely overshadows the actual differences between the lat-
tices.

We consider differences between different lattice con-
stants rather small and for the sake of consistency with
previous QMC calculations we further study the cI2
lithium solid by FN-DMC at the lattice constant a0 =
3.482 Å. Our FN-DMC calculations use a single deter-
minant Slater-Jastrow wave function with orbitals taken
from DFT calculations. Since the nodal surface would
be rather difficult to improve upon within the QMC cal-
culation of a crystalline system, we begin by comparing
several DFT functionals to find the best nodal surface;
and we found the results to lie within 2 − 2.5 mHa per
atom of the highest quality nodal surface (PBE-PZ func-
tional). This strategy has been motivated by our work
on DFT generated orbital sets to find the most opti-
mal nodal surface53,54. A select subset of the functionals
tested are reported in Table VIII. The total energy is inte-
grated over the irreducible Brillouin zone by the so-called
“twist-averaging” procedure: a DMC calculation is car-
ried out for each symmetry unique k-point in a uniform

TABLE VIII. Results of FN-DMC calculations for the Γ-point
wave function of an 8 atom supercell comparing the nodal
quality of orbital sets generated by DFT functionals.

Exchange Correlation Etot (Hartrees)

H-F -60.135(1)
PW91-GGA PW91-GGA -60.136(1)
PBE-GGA PBE-GGA -60.144(1)
PBE-GGA PZ-LDA -60.151(1)
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FIG. 3. QMC results for S(k) for several sizes of simula-
tion cell. Square symbols denote results from the 54-atom
simulation; circle symbols, 16-atom simulation; and triangle
symbols, 8-atom simulation. The curves shown are fit to the
54-atom data with the function S(k) = exp

{
−akb

}
. For

small k, RPA predicts b = 2. For the fits shown, the b param-
eter for VMC are 1.45; DMC with the mixed estimator, 1.67;
and the DMC extrapolated estimator, 1.99.

8x8x8 Monkhorst-Pack mesh and the resulting energies
are weight-averaged using by the geometric multiplicity
of the k-point as the weight55. To treat the finite size
errors that occur, both due to the Ewald sums and also
to the finite number of twists, we collect statistics on the
static structure factor S(k) during the QMC simulations.
These data are plotted in Figure 3. The correction to the
finite-size errors in the simulation cell’s energy is calcu-
lated using the functional form for S(k) as detailed by
Chiesa et al.56. The 8-atom (triangle symbols) and 16-
atom (circle symbols) data for variational Monte Carlo
(VMC) and DMC mixed estimators are less well con-
verged when compared to the 54-atom cell. The corrected
DMC mixed estimator (blue) is, however, consistent for
all sizes of cell. This suggests that, at least for some
systems, it is possible to estimate the static structure
factor correction accurately with data from smaller sim-
ulation cells. Since the system is a simple metal, within
the Random Phase Approximation the behavior of S(k)
for small values of k is expected to be proportional to k2,
as detailed by Bohm and Pines57. The curve fit to our
calculated values indicates that S(k) in our simulation
is ∝ k1.99 so that we have reasonable confidence in the
quality of the corrected mixed DMC estimator result1.
We use a linear fit to the equation

En = E∞ −
a

N
(6)

to extrapolate the total energy per atom to the infinite
bulk of the cI2 lithium crystal, as shown in Figure 4. The
data in Figure 4 show that after applying twist averag-
ing and corrections, the 16 atom cell energy per atom is
≈ 2.5 mHa from the infinite bulk value, and the 24-atom
cell, ≈ 1 mHa, while the 54 atom is less than a mHa from
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FIG. 4. The total energy per atom for twist averaged FN-
DMC with and without the finite size error (FSE) correc-
tions56 plotted against the inverse of the number of atoms in
the cell. The data are fit with an extrapolation to infinite bulk
size. The infinite bulk total energy per atom of -7.5371 Ha
for the FN-DMC, and -7.5369 for FN-DMC with FSE correc-
tions. These values are within error bars of each other. The
statistical error bars on the data are smaller than the size of
the plot symbol and so are not visible.

the extrapolated value. We believe that the Li bulk en-
ergy could be further improved by more sophisticated or-
bitals and optimization by employing more accurate wave
functions, such as the ones based on pair orbitals29,58,59;
however, in this study the focus was to understand the
trial functions that are, at present, commonly used for
solid state and quantum chemistry calculations.

III.5. Discussion

In order to compare the quality of results for these
systems, Table IX shows the per atom energy evolving
toward the bulk value as the size of the lithium system
increases. These values are based either on the best
total energy calculations available or on using experi-
mental binding and estimated zero point motion ener-
gies subtracted from the exact atomic energy. Therefore
they represent the depths of the binding curves assum-
ing T = 0 and infinite nuclear masses, similar to previous
studies, see, for example, Ref. 22. For the lithium dimer,
we quote the values of Ref. 23. For the Li4 cluster, we
list our own FN-DMC calculated binding energy on the
grounds that it is the best currently available estima-
tion. For the body-centered cubic crystal, we take an
estimate of the zero point vibrational energy of 0.00172
Ha. from Ref. 60, and the cohesive energy of 0.06087 Ha.
from Ref. 61, and we subtract these from the exact single
atom total energy. The quoted value of the experimental
cohesive energy is obtained from the enthalpy extrapo-
lated to T = 0 using experimental data, see Ref. 61 and
62. Table IX shows the per atom energy evolving toward
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TABLE IX. Summary of the estimated total energies per atom
for a sequence of different size Li systems. E0 for the n = 4
cluster we substitute use the obtained FN-DMC value for the
binding energy.

size EFN-DMC Est. E0 Estimated from

1 −7.4780(1) −7.47806 Hylleraas expan.
2 −7.4976(1)a −7.4977 Expt.+ZPMb

4 −7.50538(1) −7.50541 FN-DMC binding
cI2 crystal −7.5369(6) −7.54066 Expt.+ZPMc

a from Ref. 23
b Atom + ZPM+ experimental binding from Ref. 22
c Atom + ZPM + experimental binding from Ref. 60 and 61

the bulk value as the size of the lithium system increases.
The imperfect result for the FN-DMC correlation en-

ergy of the Li solid is still very accurate, higher only
by the fixed-node bias of about 3.7 mHa (≈ 4 % of the
correlation energy) from the estimated exact value. The
underestimation of the cohesive energy is essentially the
same, approximately 0.1 eV. We consider this to be re-
markably accurate in light of the simplicity of the single-
reference Hartree-Fock wave function nodes. Given the
fact that the spin-up and spin-down channels are com-
pletely decoupled in HF, the complexity of the nodal sur-
face is not fully captured by this trial function; neverthe-
less the accuracy of the total energy appears to be quite
robust so that the impact of these errors is compara-
bly small. We conjecture that the electronic structure
is dominated by the nearly-free electron picture that is
far from the strongly correlated regime. Therefore the
single-reference wave functions lead to qualitatively and
also quantitatively accurate descriptions of ground state
properties of the Li solid.

Taking the analysis of the Li crystal further, we can
divide the bias into essentially two components, one that
has the atomic (core-valence) origin and the remain-
ing “homogeneous” (valence-valence) part. These two
components result from imperfections in capturing core-
valence correlations and valence-valence correlations of
the metallic 2s band. Qualitatively, the order of magni-
tude of the atomic part can be extracted from the Li2
molecule as well as from the Li− anion. Note that in Li2
(Li−) one-particle states can be partitioned into the core
singlets 1s2 and the valence singlet 2σ2

g (2s2). The sepa-
rated cores are essentially nodeless, and the separated va-
lence singlet is nominally nodeless as well (note that the
one-particle nodes are generated by the orbital orthog-
onality and they do not correspond to the many-body
fermion nodes). The fermion nodes are formed by anti-
symmetrization between the core and valence electrons,
i.e., belong to the core-valence subspace of correlations.
Considering Li2 as a good model for these type of correla-
tions, the fixed-node error in the molecule for the single-
reference Slater-Jastrow trial function is about 0.0032 Ha
in total, and therefore ≈ 0.0016 Ha per Li atom. Simi-
larly, for the Li− anion the corresponding value is about
0.0026 Ha. Therefore, we consider ≈ 0.002 Ha per atom

as a reasonable estimation for the core-valence fixed-node
bias. Besides this core-valence component, the remaining
correlations of the Li crystal are in the valence-valence
subspace of the 2s metallic band. Away from the core
regions these metallic states are smooth, delocalized and
form a system that is close to the homogeneous electron
gas (HEG), a well-known paradigmatic model for a metal.
The valence electronic density of our simulation cell cor-
responds to the Wigner-Seitz radius rs ≈ 3.24, and there-
fore we can estimate the order of magnitude of the fixed-
node error of the Slater-Jastrow wave function in HEG
using previous studies. Accurate values of the HEG en-
ergies and the corresponding Slater-Jastrow fixed-node
errors are known for some values of rs based on nearly
exact calculations with backflow wave functions, for fur-
ther details, see Refs. 59, 63–66. Using these results the
estimated fixed-node error is about 0.0013 a.u. (small
differences between the studies are not crucial for our
purposes here). Interestingly, we see that the nodal er-
ror contributions from the atomic inhomogeneities (core-
valence) and from the homogenous metallic band are of
comparable sizes. It is reassuring that the sum of these
two components is ≈ 0.0035 a.u. which is very close to
the fixed-node error we found. This finding also sug-
gests the barrier to eliminating the remaining fixed-node
bias. Clearly, one would need to address both the local-
ized (core-valence) correlations, as well as the HEG-like
(valence-valence) correlations, on the same footing. In
the future, perhaps an expansion in local atomic excita-
tions can be combined with backflow terms so that the
resulting trial wave function would capture both compo-
nents of the overall missing correlations.

IV. CONCLUSION

As the size of Li systems increases from a single atom
to the bulk crystal, it is clear that the complexity of
the nodal hypersurface grows. In the simplest case of
the atom, a nearly exact approximation to the node is
known. For related small systems, the nodal error er-
rors are small, and it is possible to recover almost exact
nodes with acceptable sizes of expansions in excited de-
terminants. What is valuable and somewhat unexpected,
is the fact that the accuracy of the FN-DMC calculation
with single reference trial functions is high even for the
Li solid. Note that the solid phase is metallic, so that its
electronic structure is different from atomic and molecu-
lar systems with localized ground states. The presented
calculations show that for Li systems, readily available
trial wave functions are sufficiently accurate to provide
cohesive and binding energies to within an accuracy of
0.05−0.1 eV. We also find that the remaining fixed-node
error in the Li solid for the Slater-Jastrow wave function
is almost equally divided between the core-valence and
the valence-valence contributions. Our understanding of
the fixed-node errors is gradually advancing, and the re-
sults presented here add another piece into the mosaic
of previously obtained insights which indicate that both
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the electronic density and the complexity of bonds, in
particular, the bond multiplicities, strongly influence the
nodal accuracy.
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