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Commensurate and incommensurate spin-density waves and

the superconductivity dome in heavy electron systems

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306

The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector
Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can
gradually be suppressed by mismatching the nesting and a quantum critical point is obtained as
the Néel temperature tends to zero. If the vector Q is commensurate with the lattice (Umklapp
with Q = G/2), pairs of electrons can be transferred between the pockets and a superconducting
dome above the quantum critical point may arise. If the vector Q is not commensurate with the
lattice there are eight phases that need to be considered: commensurate and incommensurate spin
and charge density waves and four superconductivity phases, two of them with modulated order
parameter of the FFLO type. The renormalization group equations are studied and numerically
integrated. The phase diagram is obtained as a function of the mismatch of the Fermi surfaces and
the magnitude of |Q−G/2|.

PACS numbers: 71.27.+a, 71.28.+d, 72.15.Qm, 75.20.Hr

I. INTRODUCTION

Landau’s Fermi liquid (FL) theory has been successful
in describing the low energy properties of most normal
metals. However, numerous heavy fermion systems1−4

display deviations from FL behavior, known as non-Fermi
liquid (NFL) properties. NFL manifests itself as, e.g., a
log(T )-dependence in the specific heat over T , a singu-
lar behavior at low T of the magnetic susceptibility, and
a power-law dependence of the resistivity, with an ex-
ponent close to one. This breakdown of the FL can be
tuned by alloying (chemical pressure), hydrostatic pres-
sure or the magnetic field. In most cases the systems are
close to the onset of antiferromagnetism (AF) and the
NFL behavior is attributed to a quantum critical point
(QCP).5−15 NFL behavior, AF order and a supercon-
ducting dome in the neighborhood of a QCP have been
observed in CeRh2Si2,

16,17 CePd2Si2 and CeIn3
18,19 un-

der pressure.

Previously, we have studied the pre-critical region of
a heavy electron band with two parabolic pockets, one
electron-like and the other hole-like, separated by a wave
vector Q. The interaction is the remaining repulsion
between heavy quasiparticles after the heavy particles
have been formed in the sense of a Fermi liquid and
is assumed to be weak. If the number of particles in
each pocket is conserved the interaction consists of three
terms: (i) a small momentum transfer between the pock-
ets, V (q), (ii) a large momentum transfer between the
pockets of the order of Q, U , and (iii) an interaction be-
tween quasiparticles in the same pocket, W . We used (1)
a field-theoretical multiplicative renormalization group
(RG) approach10 and (2) the Wilsonian RG20 that elim-
inate the fast degrees of freedom close to an ultraviolet
cutoff and rewrite the Hamiltonian in terms of renormal-
ized slow variables.13 The interaction V induces itiner-
ant AF due to the nesting of the Fermi surfaces of the
two pockets. For perfect nesting (electron-hole symmetry

between the pockets) an arbitrarily small interaction is
sufficient for a ground state with long-range order. The
degree of nesting is controlled by the mismatch param-
eter, δ = 1

2 |kF1 − kF2|vF , where kF1 (kF2) is the Fermi
momentum of the electron (hole) pocket. In this way
the ordering temperature can be tuned to zero, leading
to a QCP. The mismatch parameter δ parametrizes the
pressure or doping, since both are able to modify the
Fermi momenta of the pockets. The QCP gives rise to
the desired NFL properties.10,13,21,22

The above two pocket model yields superconductivity
for W < 0. An extension of the model to include the
transfer of pairs of electrons between the pockets is able
to generate superconductivity for W > 0.23 This process
is of the Umklapp type and requires the additional as-
sumption that 2Q is equal to a vector of the reciprocal
lattice. This model has been studied for a cylindrical
Fermi surface by Chubukov, Efremov and Eremin24 in
the context of iron-based superconductors. For certain
parameters this extension is able to generate a supercon-
ductivity dome around the QCP without substantially
modifying the NFL properties.23

In this paper, we investigate the antiferromagnetic
and superconducting responses in the neighborhood of
the QCP of the extended model (with pair transfer) for
spherical Fermi surfaces and nesting vector Q differing
from G/2, i.e. in the incommensurate case. Four den-
sity response functions have to be considered in this case,
namely spin and charge density waves with wave vectors
Q (incommensurate with the lattice) and G/2 (commen-
surate), as well as four response functions for supercon-
ductivity, namely S, S+ with homogeneous order parame-
ters and the corresponding phases with order parameters
modulated by G/2 − Q. The latter two resemble su-
perconductivity of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) type,25 but with the oscillations determined by
the deviation from commensuration of Q with the lattice
rather than tuned by the magnetic field.
The remainder of the paper is organized as follows. In



2

sect. II we summarize the model and previous results for
the commensurate two-pocket model with pair-transfer
scattering amplitude. In sect. III we obtain the renor-
malization group equations for all the interactions and
the eight response functions mentioned above. In con-
trast to the case Q = G/2 these equations now have to
be integrated numerically. The numerical results for the
response functions and the phase diagram are presented
in sect. IV. Conclusions follow in sect. V.

II. THE MODEL AND PREVIOUS RESULTS

A strong repulsive interaction between electrons gives
rise to heavy fermion bands. In the spirit of the FL the-
ory, there are weak remaining interactions between the
heavy quasi-particles left after the heavy particles are
formed. The heavy electron band is described by two
pockets, one electron-like and the other one hole-like, sep-
arated by a wavevector Q10,13

H0 =
∑

kσ

[

ǫ1(k) c
†
1kσc1kσ + ǫ2(k) c

†
2kσc2kσ

]

, (1)

where k is measured from the center of each pocket, and
assumed to be small compared to the nesting vector Q.
Both bands are parabolic, have different Fermi momenta
and for simplicity we assume that the Fermi velocity (or
density of states) is the same for both pockets. The case
with different Fermi velocities is discussed in Ref. 23.
The weak remaining interactions between quasi-

particles are given by HW +HV +HU +HP
10,13,23

HW =
∑

kk′qσσ′j=1,2

Wj(q) c
†
jkσcjk+qσc

†
jk′+qσ′cjk′σ′ ,(2)

HV =
∑

kk′qσσ′

V (q) c†1k+qσc1kσc
†
2k′−qσ′c2k′σ′ , (3)

HU = U(Q)
∑

kk′qσσ′

c†1k+qσc
†
2k′−qσ′c1kσ′c2k′σ , (4)

HP = P
∑

kk′qσσ′

[

c†1k+qσc
†
1k′−qσ′c2k′+p∗σ′c2k+p∗σ

+H.c.
]

. (5)

Here W is the interaction for particles within the same
pocket (for simplicity we consider W1 = W2 = W ), V
represents the interaction strength for small momentum
transfer between the pockets (|q| ≪ |Q|), U corresponds
to a momentum transfer of the order of Q, and P refers
to a process transferring two particles between the pock-
ets, i.e. the number of particles per pocket is no longer
conserved. The limit of the Hubbard model (on-site re-
pulsion for electrons with opposite spin) is obtained by
choosing W1 = W2 = V = U = P .
Here p∗ = Q − G/2 is the vector necessary for the

momentum conservation in the HP interaction. The
momentum is automatically conserved for the remain-
ing three scattering amplitudes. For the commensurate

case p∗ = 0, i.e. the Umklapp condition is satisfied in
the scattering process HP .

24 In the incommensurate case
necessarily p∗ 6= 0, which restricts the phase space in the
scattering process for the transfer of a pair of particles
between the pockets. Similarly, the Fermi surface mis-
match reduces the efficiency of the particle transfer be-
tween pockets. When kF1 = kF2 there are no restrictions
on the phase space for the transfer and the scattering
amplitude P is maximum. Relaxing of this condition re-
duces the probability for the pair transfer and hence the
amplitude P should decrease with the Fermi surface mis-
match δ. We can expand the amplitude P in powers of δ
and write P (δ) = P (0)− a1δ −

1
2a2δ

2, where a1, a2 > 0,
since the mismatch should suppress this scattering am-
plitude. The dependence of the other interaction ampli-
tudes on δ is expected to be much weaker because they
conserve the number of particles in each pocket and can
be neglected.
The renormalization group equations for the commen-

surate situation (Q = G/2) can be integrated analyti-
cally and yield for the vertices

v ± pa =
v0 ± pa0

1− (v0 ± pa0)ξ1
, (6)

w ± pc =
w0 ± pc0

1 + (w0 ± pc0)ξ0
, (7)

(v − 2u) ± (pa − 2pb)

=
(v0 − 2u0)± (pa0 − 2pb0)

1− [(v0 − 2u0)± (pa0 − 2pb0)
]

ξ1
. (8)

Here w = WρF , v = V ρF , u = UρF , pa = ρFPa,
pb = ρFPb and pc = ρFPc are dimensionless vertices
and ρF is the density of states (assumed to be equal for
both pockets). The subindex 0 indicates the initial value
of the interaction before renormalization. The logarith-
mic scaling variable is ξ. For perfect nesting the renor-
malization continues until either ξ tends to infinity or a
vertex diverges. For mismatched Fermi surfaces the in-
tegration of Eqs. (6) and (8) has to be stopped when
the Fermi surface mismatch δ is reached. Similarly, the
external energy and the smearing of the Fermi surface by
the temperature have to be taken into account, so that
the renormalization ends when ξ1 = ln[D/(|ω|+2T + δ)]
unless a vertex diverges earlier. Here D is the energy
cutoff. The Cooper channel, Eq. (7), only involves parti-
cles within the same pocket and hence the Fermi surface
mismatch does not play any role and the renormalization
continues until ξ0 = ln[D/(|ω|+ 2T )].
Note that each vertex diagram has four legs, two in-

going with momenta k1 and k2 and two outgoing with k3
and k4. In analogy to parquet equations, the logarithmic
dependence of P can occur in three channels, namely, the
zero sound channel (k1,k4), the so-called third channel
(k1,k3) and the Cooper channel (k1,k2). In Eqs. (6 -
8) we have denoted these channels as Pa, Pb and Pc,
respectively.
There are six interaction vertices, which in principle

correspond to six order parameters. The most impor-
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tant forms of order correspond to (i) SDW, (ii) CDW,
(iii) two for superconductivity, and (iv) two additional
ones, which correspond to alternate SDW and CDW
operators.26 The latter ones are of no relevance to the
present paper and will be ignored. The relevant four op-
erators are

OSDW =
∑

k

(

c†1k↑c2k↑ − c†1k↓c2k↓

)

, (9)

OCDW =
∑

k

(

c†1k↑c2k↑ + c†1k↓c2k↓

)

, (10)

OS =
∑

k

(

c†1k↑c
†
1−k↓ + c†2k↑c

†
2−k↓

)

, (11)

OS+ =
∑

k

(

c†1k↑c
†
1−k↓ − c†2k↑c

†
2−k↓

)

. (12)

The respective susceptibilities, obtained by joining the
legs of the vertices giving rise to bubble diagrams, are

χSDW (Q, ω) = 2ξ1ρF
v(ξ1) + pa(ξ1)

v0 + pa0
, (13)

χCDW (Q, ω) = 2ξ1ρF
v(ξ1)− 2u(ξ1) + pa(ξ1)− 2pb(ξ1)

v0 − 2u0 + pa0 − 2pb0
,

(14)

where ξ1 depends on the Fermi surface mismatch δ, and

χS(Q, ω) = 2ξ0ρF
w(ξ0) + pc(ξ0)

w0 + pc0
, (15)

χS+(Q, ω) = 2ξ0ρF
w(ξ0)− pc(ξ0)

w0 − pc0
, (16)

where again ξ0 does not contain δ. For δ → 0 these equa-
tions have been obtained previously by Chubukov26 for
cylindrical Fermi surfaces in the context of Fe-based su-
perconductors. The results are only based on the nesting
condition and are not influenced by the dimension of the
problem. The response functions are closely related to
the corresponding vertices.
A divergent response function indicates strong cou-

pling and signals an instability. For a repulsive Hubbard-
like interaction χSDW displays a divergence and a spin
density wave is possible with a Néel temperature

TN = 1
2D exp{[−[ρF (V0 + Pa0)]

−1} − 1
2δ = 1

2 (δ0 − δ) .
(17)

The above relation defines δ0 and TN has a linear depen-
dence with δ. The condition for a QCP is TN = 0 which
is reached for δ = δ0, and if TN < 0 long range order
has not developed. Hence, the Fermi surface mismatch
suppresses the AF order and for sufficiently large Fermi
surface mismatch the renormalization does not lead to a
SDW instability.13 The QCP is an unstable fixed point
and can only be reached by perfectly tuning the system.10

If V0 − 2U0 + Pa0 − 2Pb0 < 0 the CDW response func-
tion renormalizes to zero, suggesting no CDW long-range
order. Similarly, the Cooper channel response function
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ln(ω/ω0)
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(ω
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SDW

δ=0.17

δ=0.15

S
+

S

CDW δ=0.15
δ=0.17

FIG. 1: (color online) Inverse of the correlation functions
normalized to their value at ω0 = 0.1. The parameters are
D = 10, w0 = 0.7 and v0 = u0 = pa0 = pb0 = pc0 = 0.12.
This corresponds to δ0 = 0.155 at the QCP. The SDW and
CDW curves refer to δ = 0.15 and δ = 0.17. χSDW for δ < δ0
diverges at ω = 2TN . The dependence of the amplitude P
on δ has been neglected here. Note the divergence of χS+ at
very low energies corresponding to a very small Tc.

χS also renormalizes to zero, and hence no superconduc-
tivity is expected from this channel. However, the S+

channel has zero effective coupling for W0 = Pc0. The
behavior of this channel then depends delicately on the
exact compensation ofW0 by Pc0. If Pc0−W0 > 0 the su-
perconducting transition temperature for the S+ channel
is

Tc =
1
2D exp{[−[ρF (Pa0 −W0)]

−1} . (18)

Note that Tc only depends on δ through the pair-transfer
amplitude Pa, which decreases with δ and parametrizes

the pressure. Let us define δs such that W
(0)
0 −Pc0(δs) =

0 and assume δs > δ0. Hence, at very low T there is S+

superconductivity for δ < δs and Tc gradually increases
with decreasing δ and eventually gives way to AF close
to the QCP at δ0. Tc is going to cross the SDW bound-
ary given by TN and the two forms of order, SDW and
S+, compete for the same portion of the Fermi surface.
A Ginzburg-Landau expansion of the free energy with
the two order parameters shows the existence of a mixed
phase.23 Since usually TN (δ = 0) ≫ Tc(δ = 0), the SDW
eventually prevails over the superconductivity giving rise
to a dome.
Superconducting domes of this type have been ob-

served in CeRh2Si2,
16,17 CePd2Si2 and CeIn3

18,19 un-
der pressure. Due to the competition between the SDW
and the S+ order the dome is split into two regions,
in agreement with NMR experiments for CeIn3,

27 for
CeCu2(Si0.98Ge0.02)2,

28 and CeRhIn5.
29

The inverse of the correlation functions normalized to
their value at ω0 is shown in Fig. 1 for a cutoff D = 10,
w0 = 0.7 and v0 = u0 = pa0 = pb0 = pc0 = 0.12. This



4

corresponds to a Fermi surface mismatch parameter at
the QCP of δ0 = 0.155. For this figure we neglected
the δ-dependence of the pair transfer amplitude P . The
two SDW and CDW curves correspond to δ = 0.15 and
δ = 0.17, i.e. before and after the QCP. The CDW sus-
ceptibility remains finite in either case, but the SDW
diverges for δ = 0.15. Similarly, the susceptibility for the
S-superconducting channel remains finite, while the one
of the S+ channel diverges at a small ω. This corresponds
to a small superconducting Tc.

III. TRANSFER OF PAIRS OF ELECTRONS

BETWEEN POCKETS: THE

INCOMMENSURATE CASE

So far we have considered the situation where an Umk-
lapp condition between the two pockets, i.e. 2Q = G,
is satisfied.24 In this section we extend the calculation to
the case p∗ = Q−G/2 6= 0. The perturbative corrections
to the interaction vertices are given by the same diagrams
as before, which can be found in Figs. 1 through 3 of Ref.
23. The renormalization equations for the vertices are,
however, different, as a consequence of a reduced geomet-
rical phase space due to the finite p∗.
The effects of δ and p∗ are different as shown in Fig. 2.

One of the pockets has been translated by Q. Hence the
spheres are no longer concentric, but the centers are now
separated by the vector p∗. For the diagram on the left
in Fig. 2 p∗ is smaller than k12 = kF1 − kF2 = 2δ/vF ,
while for the sketch on the right p∗ > k12.

k
F2

k
F2

k
F1k

F1

p*+k
12

p*+k
12

k
12
-p*

p*-k
12

FIG. 2: (color online) Sketch of the Fermi spheres of radius
kF1 and kF2 displaced by p∗, the incommensurability vector.
Here k12 = kF1 − kF2. The diagram on the left is for p∗ <
k12 = 2δ/vF and the one on the right for p∗ > k12.

As an example we consider the contribution of order
p2a to the small-momentum transfer interaction v, given
by Fig. 2(a) in Ref. 23. The diagram corresponds to
a bubble diagram with antiparallel lines of one electron
and one hole propagator and hence involves the Fermi
surface mismatch δ. But the interactions Pa also involve
the momentum p∗ to ensure momentum conservation.
The contribution is proportional to

∫

dω′

2π

∫

d3k

(2π)3
1

i(ω + ω′)− ǫ1(k− p∗)

×
1

iω′ + ǫ2(k+ p∗)
, (19)

where ω is the external energy. To evaluate this integral
we assume that p∗ is a sufficiently small quantity to jus-
tify a Taylor expansion in powers of p∗. Using spherical
coordinates, odd powers of p∗ vanish identically due to
the angular integrations. Hence, the first nonzero con-
tribution is proportional to α = p∗2/2m and we neglect
fourth order terms. The overall contribution of the in-
tegral is logarithmic in the cutoff and the external fre-
quency and the α-term can be re-incorporated into this
logarithmic dependence, yielding

ξ2 =
1

2
ln

(

D

|ω|+ 2T + |δ − 8α/3|

)

+
1

2
ln

(

D

|ω|+ 2T + |δ + 8α/3|

)

. (20)

Similarly, the diagrams of Figs. 2(b) and 2(c) of Ref. 23
have only the p∗-dependence in ǫ2 but not in ǫ1 and the
logarithmic variable is

ξ3 =
1

2
ln

(

D

|ω|+ 2T + |δ − 2α/3|

)

+
1

2
ln

(

D

|ω|+ 2T + |δ + 2α/3|

)

. (21)

The leading order diagrams for the zero sound channel
now yield the renormalization of the interactions V and
Pa

dv = v2dξ1 + p2adξ2 , dpa = 2vpadξ3 . (22)

The logarithmic diagrams contributing to the third
channel (see Fig. 3 of Ref. 23) yield the scaling equations
for Pb and U30

dpb = 2
[

pbv + upa − 2upb
]

dξ3 , (23)

du = −2
[

u2 − uv
]

dξ1 + 2pb(pa − pb)dξ2 . (24)

The above diagrams depend on the Fermi surface mis-
match and the terms involving a pair transfer vertex, pa
or pb, also depend on the parameter α.
Similarly, the Cooper channel is modified by diagrams

with the interaction vertex pc and to leading logarithmic
order we have

dw = −w2dξ0 − p2cdξ4 , dpc = −wpc(dξ0 + dξ5) , (25)

where

ξ4 = ln

(

D

|ω|+ 2T + 8α/3

)

, (26)

ξ5 = ln

(

D

|ω|+ 2T + 2α/3

)

. (27)

All the diagrams here involve loops with parallel lines
referring to the same pocket. Hence, δ does not play
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a role here. These equations are completely decoupled
from Eqs. (22)-(24).
In contrast to the commensurate case, where α = 0 and

the differential equations could all be integrated analyti-
cally, for the incommensurate situation numerical meth-
ods have to be employed.
We now turn to study the possible phases for the in-

commensurate case. We noted that the vertices for den-
sity waves (Eqs. (22)-(24)) completely decouple from
the Cooper channel (Eq. (25)). Hence the density wave
response can be treated separately from the correlation
functions for superconductivity.

v

σ

σ
′

(a) pa

σ

σ
′

p
∗

p
∗

(b)

u

σ

σ

σ
′

σ
′

(c)

pb

σ

σ

σ
′

σ
′

p
∗

p
∗

(d)

w

↑

↓

(e) w

↑

↓

(f)

pc

↑

↓

−p
∗

p
∗

(g) pc

↑

↓

p
∗

−p
∗

(h)

FIG. 3: First-order diagrams contributing logarithmically to
the renormalization of the correlation functions. The wavy
lines represent one of the six interactions v, u, w, pa, pb and
pc. The solid and dashed lines correspond to propagators for
particles in the electron and hole pockets, respectively. Hole
propagators that necessarily carry p∗ are explicitly indicated.
Diagram (a) contributes to χinc

SDW and to χinc

CDW , (b) to χcom

SDW

and to χcom

CDW , (c) to χinc

CDW , (d) to χcom

CDW , (e) and (f) to
χS and χS+ , as well as to χFFLO

S and χFFLO

S+ , but carrying

momentum p∗, and (g) and (h) to χFFLO

S and χFFLO

S+ .

There are two types of possible density waves, namely,
commensurate (wavevector G/2) and incommensurate
(wavevector Q) with the lattice. The four operators for
spin and charge density waves are then

Oinc
SDW (Q) =

∑

k

(

c†1k↑c2k↑ − c†1k↓c2k↓

)

, (28)

Ocom
SDW (G/2) =

∑

k

(

c†1k↑c2k+p∗↑ − c†1k↓c2k+p∗↓

)

,(29)

Oinc
CDW (Q) =

∑

k

(

c†1k↑c2k↑ + c†1k↓c2k↓

)

, (30)

Ocom
CDW (G/2) =

∑

k

(

c†1k↑c2k+p∗↑ + c†1k↓c2k+p∗↓

)

,(31)

and the first order perturbative corrections to the corre-
sponding susceptibilities are

χinc
SDW (Q) = 2ρF (ξ1 + vξ21 + · · ·), (32)

χcom
SDW (G/2) = 2ρF (ξ3 + paξ

2
3 + · · ·), (33)

χinc
CDW (Q) = 2ρF (ξ1 + vξ21 − 2uξ21 + · · ·), (34)

χcom
CDW (G/2) = 2ρF (ξ3 + paξ

2
3 − 2pbξ

2
3 + · · ·), (35)

where the notation is the same as for the vertices. The
corresponding diagrams are displayed in Fig. 3.
Due to the fact that the zeroth-order term of these

correlation functions has a logarithmic dependence, these
susceptibilities do not satisfy the criterion of multiplica-
tive renormalization.10,31 An auxiliary quantity is intro-
duced, χ = (2ρF )

−1(∂χ/∂ξ), which is normalized to
unity at the cutoff energy and satisfies the scaling hy-
pothesis. The renormalization group equations for the
susceptibilities are now

d lnχinc
SDW (Q) = 2vdξ1 , (36)

d lnχcom
SDW (G/2) = 2padξ3 , (37)

d lnχinc
CDW (Q) = 2(v − 2u)dξ1 , (38)

d lnχcom
CDW (G/2) = 2(pa − 2pb)dξ3 . (39)

Once the renormalized vertices are calculated, Eqs. (36)-
(39) can be integrated to obtain the auxiliary quanti-
ties. An integration of the auxiliary susceptibilities fi-
nally yields the desired response functions.
A similar procedure yields the superconductivity re-

sponses. Besides the S and S+ pairings which involve
Cooper pairs carrying zero momentum, Cooper pairs
with momentum p∗ are also possible. The latter lead
to space modulated order parameters and are analogous
to FFLO phases in strong magnetic fields. In this case
the period of the space modulation is given by p∗. The
four relevant operators are given by

OS =
∑

k

(

c†1k↑c
†
1−k↓ + c†2k↑c

†
2−k↓

)

, (40)

OS+ =
∑

k

(

c†1k↑c
†
1−k↓ − c†2k↑c

†
2−k↓

)

. (41)

OFFLO
S =

∑

k

(

c†1k+p∗↑c
†
1−k↓ + c†2k+p∗↑c

†
2−k↓

)

, (42)

OFFLO
S+ =

∑

k

(

c†1k+p∗↑c
†
1−k↓ − c†2k+p∗↑c

†
2−k↓

)

, (43)

and the first order perturbative corrections to the corre-
sponding susceptibilities are

χS = 2ρF (ξ0 − wξ20 + · · ·), (44)
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FIG. 4: Inverse of the density correlation functions normalized to their value at ω0 = 0.1. (a) incommensurate SDW, (b)
commensurate SDW, (c) incommensurate CDW, and (d) commensurate CDW for δ = 0.17, D = 10, and v0 = u0 = pa0 =
pb0 = 0.12. The different curves correspond to different values of α = p∗2/2m: α = 0 (solid lines), α = 0.04 (dashed), α = 0.08
(dotted), α = 0.12 (dash-dotted) and α = 0.16 (long-dashed). While the CDW responses remain finite for repulsive interactions,
long-range SDW order can be induced for nonzero p∗.

χS+ = 2ρF (ξ0 − wξ20 + · · ·), (45)

χFFLO
S = 2ρF (ξ5 − wξ25 − 2pcξ

2
5 + · · ·), (46)

χFFLO
S+ = 2ρF (ξ5 − wξ25 + 2pcξ

2
5 + · · ·). (47)

Again, these susceptibilities do not satisfy the criterion
of multiplicative renormalization and auxiliary quantities
need to be defined. These auxiliary correlation functions,
χ, satisfy scaling and the corresponding differential equa-
tions are

d lnχS = −2wdξ0 , (48)

d lnχS+ = −2wdξ0 , (49)

d lnχFFLO
S = −2(w + pc)dξ5 , (50)

d lnχFFLO
S+ = −2(w − pc)dξ5 . (51)

The differential equations need to be integrated numeri-
cally to obtain the auxiliary quantities and a second in-
tegration yields the actual susceptibilities. A trapezoidal

rule integration with a sufficiently dense distribution of
points works quite well.
Note that the vertex functions for the commensurate

case can be obtained from the incommensurate situation
in the limit p∗ → 0. However, the scaling equations for
the susceptibilities are different and the commensurate
case cannot be recovered as p∗ → 0.

IV. NUMERICAL RESULTS

The numerical integration of the above differential
equations is actually straightforward but quite tedious
because some of the vertex functions grow rapidly un-
der renormalization. To obtain the correlation functions
requires three nested integrations, which have to be per-
formed with careful accuracy checks. Since for the charge
and spin density waves there are commensurate and in-
commensurate response functions, the susceptibilities are
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FIG. 5: Inverse of the superconductivity correlation functions normalized to their value at ω0 = 0.1. The type of order is
defined by the operators in Eqs. (40) - (43): (a) S-pairing, (b) S-pairing modulated by p∗, (c) S+-pairing, and (d) S+-pairing
modulated by p∗ for D = 10, w0 = 0.7 and pc0 = 0.12. The various curves correspond to different values of α = p∗2/2m: α = 0
(solid lines), α = 0.04 (dashed), α = 0.08 (dotted), α = 0.12 (dash-dotted) and α = 0.16 (long-dashed). Superconductivity is
suppressed by α and only can occur if α < Tc. Here the dependence of pc0 on δ has been ignored.

different than for the commensurate α = 0 case, and the
limit α → 0 does not have physical meaning.

The inverse of the density correlation functions nor-
malized to their value at ω0 = 0.1 is shown in Fig. 4 for
various values of α. The incommensurate and commen-
surate spin-density waves (Fig. 4(a) and 4(b), respec-
tively) are driven by the vertices v and pa, respectively.
For α = 0 both vertices grow rapidly under renormaliza-
tion and eventually saturate if δ > δ0, which is the case
in Fig. 4. With increasing α, the logarithmic variable
ξ2 increases because δ is compensated by α in one of the
terms. Hence, for small α and the parameters for Fig.
4, no SDW instability is to be expected. This changes
with increasing α and for α = 0.08 the figure shows a
divergence of both, χinc

SDW and χcom
SDW . Further increases

of α take the system back to finite susceptibilities. On
the other hand, due to the repulsive nature of the inter-
actions there are no CDW instabilities (Figs. 4(c) and
4(d)).

Fig. 5 displays the responses for the four possible forms
of superconducting order. The dependence on δ is only
through pc0 and has been neglected here. From Eqs.
(48) - (51) it is evident that α is detrimental to super-
conductivity. Indeed, none of the four phases is favored
at sufficiently large α. For zero-α three of the response
functions diverge at a low but finite frequency and the
critical temperature is given by Eq. (18). The largest
correlation function is χFFLO

S+ and this is then the most
likely form of long-range order.

In Fig. 6 we show the SDW boundaries for the ground
state phase diagram for δ vs. α. The remaining parame-
ters are the same as in Fig. 4. For δ > δ0 with increasing
α we first have Pauli paramagnetism and Fermi liquid
behavior, then due to the compensation of δ by α in ξ2
a SDW arises while |δ − 8α/3| is sufficiently small. For
larger α the system returns to a paramagnetic phase but
with NFL character. Note that the instability is with
respect to both SDW order, commensurate (wavevector
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0.03
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0.15

α

FL

SDW
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 δ0

FIG. 6: Ground state phase diagram for α = p∗2/2m as a
function of δ displaying the SDW phase and the Fermi liquid
and NFL regions. The arrow points to the QCP for α = 0
at δ0. The parameters are D = 10, w0 = 0.7 and v0 =
u0 = pa0 = pb0 = pc0 = 0.12. Both, commensurate and
incommensurate, SDW correlation functions diverge at the
same boundary. Superconductivity is suppressed by α and
only can occur if α < Tc. For the present parameters this
essentially corresponds to the α = 0 line on the figure. The δ-
dependence of the pair transfer amplitudes has been neglected
here.

G/2) and incommensurate (wavevector Q) with the lat-
tice, since they are both driven by the coupled vertices
v and pa. The SDW order could then have either form
or even be a superposition of both. At the lower bound-
ary for δ > δ0 the incommensurate SDW susceptibility is
slightly larger.
For δ < δ0, on the other hand, the system is unstable

to SDW even for small α. With increasing α the order
is eventually suppressed and the system becomes a NFL
Pauli paramagnet (see Fig. 6). At the phase bound-
ary the commensurate response is several orders of mag-
nitude larger than the incommensurate one. Hence, a
SDW with wavevector G/2 dominates the phase in that
parameter regime.
The origin of the compensation of δ by α in ξ2 through

the term with |δ−8α/3| is the following. δ represents the
Fermi surface mismatch due to concentric (after translat-
ing one pocket byQ) spheres. A non-zero p∗ corresponds
to a translation in reciprocal space that leaves the spheres
non-concentric. There is then a shortest and largest dis-
tance between the spheres, which in terms of energies
corresponds to |δ− 8α/3| and δ+8α/3, respectively. For
ξ3 only one propagator is shifted leading to a smaller
energy adjustment. This is schematically shown in Fig.
2.
Fig. 7 displays the Néel temperature, TN , as a function

of α for various parameter values δ. For a given δ, TN

has a cusp when α = 3δ/8. For δ > δ0 no SDW order is
found for small α. Increasing α induces long-range order
and TN increases, passes through a maximum (cusp) and
decreases until the SDW is suppressed. On the other

0.00 0.02 0.04 0.06 0.08 0.10 0.12
α

-10

-8

-6

-4

-2

0

ln
(2

T
N

/ω
0)

δ=0.15

δ=0.18
δ=0.16

0.17

SDW

FIG. 7: (color online) Logarithm of the Néel temperature TN

in units of ω0 = 0.1 vs. α for several values of the Fermi sur-
face mismatch parameter δ. The parameters are D = 10 and
v0 = u0 = pa0 = pb0 = 0.12. While there is no CDW insta-
bility for repulsive interactions, a SDW instability is induced
with increasing α due to the compensation of δ by α in one of
the terms of ξ2. For sufficiently large α the SDW instability
is again suppressed. Due to the |δ − 8α/3|-dependence there
is a cusp in TN vs. α, which corresponds to the zero of the
absolute value. If δ < δ0 the SDW extends to α = 0. The
dependence of the amplitude P on δ has been neglected here.

hand, if δ < δ0 the SDW already exists for α = 0 and
by increasing α TN goes through the cusp and eventually
the long-range order is quenched.

V. CONCLUSIONS

The nesting of a heavy electron Fermi surface can give
rise to intinerant AF long-range order. The degree of
nesting is controlled by the mismatch parameter δ and
this way the ordering temperature, TN , can be tuned to
zero, leading to a QCP. The QCP is an unstable fixed
point and can only be reached by perfectly tuning the
system. Otherwise, the RG flow will deviate to a phase
with long-range order or the compound remains a heavy
electron paramagnet. There is no characteristic energy
scale associated with the QCP and a small perturbation
to the system may give rise to a new physical situation
at low energies. This fact is probably responsible for the
lack of universality in NFL compounds close to the QCP.
We considered the two-pocket model10,13 including the

transfer of pairs of electrons between the pockets24 and
investigated the RG flow in the context of NFL behavior
for heavy fermion systems.23 The pair transfer usually
requires the inclusion of Umklapp processes, i.e. a nest-
ing wave vector commensurate with the lattice. Here we
studied the situation where the nesting vector Q is not
commensurate with the lattice, the difference being de-
noted with p∗. This opens the possibility of more forms
of long-range order, i.e. commensurate and incommen-
surate density waves and superconductivity of the FFLO
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type, where the modulation of the order parameter is
given by p∗.
The channels for superconductivity (particle-particle

or hole-hole loops) do not depend on the Fermi surface
mismatch cutoff, and are completely decoupled from the
channels for SDW and CDW (particle-hole loops), which
are affected by δ. The parameter α = p∗2/2m rapidly
suppresses superconductivity, but may induce spin den-
sity waves. CDW are in general not favorable with re-
pulsive interactions. For p∗ = 0 the two spherical Fermi
surfaces are concentric, once the hole pocket is shifted by
Q. If p∗ 6= 0 the spheres are no longer concentric and
the distance in k-space between them is no longer con-
stant, having a maximum and a minimum. This leads
to the two terms in the logarithmic variable ξ2, one with
|δ − 8α/3| and the other with δ + 8α/3. The former can
lead to a SDW instability with both, the incommensu-
rate and commensurate, responses diverging for the same
range of parameters δ and α since they are driven by the
same coupled diverging vertices.
For fixed α the AF QCP can be tuned by varying δ so

that TN → 0. Here δ parametrizes the applied pressure
or doping, while α is determined by the band structure.
Pressure affects the band structure of metals and may
increase or decrease the energy of the top and bottom of
the pockets. Hence, pressure changes kF1 and kF2 with
changing the number of electrons and consequently the
Fermi surface mismatch parameter δ.
The differential equations satisfied by the susceptibil-

ities are different for α = 0 and α 6= 0. Hence, the
limit α → 0 is different from α = 0 and not meaningful
since the difference between commensurate and incom-
mensurate disappears and the period of modulation of
the FFLO phases becomes infinite (all phases are ho-
mogeneous). Since superconductivity is only viable for
very small α, the α = 0 equations should be used. This
leads to a superconducting phase of the S+ type with Tc

given by Eq. (18). The δ-dependence of Pc yields a δs

above which Tc vanishes. If δs >> δ0 a strong supercon-
ducting phase is obtained in qualitative agreement with
CeCu2(Si1−xGex)2

32 and CeMIn5 (M = Co, Rh, Ir).33

On the other hand, if δs is only slightly larger than δ0 a
superconducting dome arises. Superconducting domes of
this type have been observed in CeRh2Si2,

16,17 CePd2Si2
and CeIn3

18,19 under pressure. Due to the competition
between the SDW and the S+ order the dome is split into
two regions,23 in agreement with NMR experiments for
CeIn3,

27 for CeCu2(Si0.98Ge0.02)2,
28 and CeRhIn5.

29

The results are valid in the disordered phase for weak
and intermediate coupling. However, since the renor-
malization group does not allow a return to a weak-
coupling fixed point once the system is strongly coupled,
the present approach qualitatively describes the entire
precritical regime. Some of the properties are quite uni-
versal and independent of the type of QCP. The present
model is simple enough so that actual calculations could
be performed and may provide insights even for more
complex physical situations.
Finally we would like to point out other recent ap-

proaches to unconventional superconductivity in heavy
fermion systems starting from the Anderson-Kondo lat-
tice models. Bodensiek et al.34 found robust s-wave su-
perconductivity using the dynamical mean-field theory
(DMFT). The DMFT only captures local correlation ef-
fects and local spin fluctuations. This result, however,
does not exclude other pairings such as d-waves. Using
the so-called statistically consistent renormalized mean-
field theory, Howczak et al.35 obtained a phase diagram
that includes the coexistence of antiferromagnetism and
superconductivity. It would be of interest to learn how
fluctuations affect the phase boundaries.
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