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The sign problem is the fundamental limitation to quantum Monte Carlo simulations of the
statistical mechanics of interacting fermions. Determinant quantum Monte Carlo (DQMC) is one
of the leading methods to study lattice models such as the Hubbard Hamiltonian, which describe
strongly correlated phenomena including magnetism, metal-insulator transitions, and (possibly)
exotic superconductivity. Here, we provide a comprehensive dataset on the geometry dependence
of the DQMC sign problem for different densities, interaction strengths, temperatures, and spatial
lattice sizes. We supplement these data with several observations concerning general trends in
the data, including the dependence on spatial volume and how this can be probed by examining
decoupled clusters, the scaling of the sign in the vicinity of a particle-hole symmetric point, and the
correlation between the total sign and the signs for the individual spin species.

PACS numbers: 71.10.Fd, 02.70.Uu

I. INTRODUCTION

Monte Carlo simulations of classical systems have
generated very precise information about phases and
phase transitions in statistical mechanics. One dramatic
example of the power of the methodology is that of the
Ising model, where the transition temperature on a cubic
lattice is now known to six decimal places1 and critical
exponents have been evaluated to four decimal places.2 A
roughly similar situation holds for unfrustrated quantum
spin and boson systems. For example, in the Bose-
Hubbard Hamiltonian,3 the critical interaction strengths
at a density of one boson per site for the superfluid
to Mott insulator transition in the ground state, are
available4 to an accuracy of better than one part in
103. Spatial lattice sizes are somewhat smaller than for
classical problems since writing the partition function as
a path integral introduces an additional ‘imaginary time’
dimension, but are nevertheless quite large, e.g., up to
104 sites for the Bose-Hubbard example cited above.
Fermions (in more than one dimension) are more

challenging for two reasons. First, the fermionic action
is non-local: the Boltzmann weight typically takes the
form of a determinant. Thus, updating all the degrees
of freedom has a computation time which scales as
a nonlinear power of the system size N . The cost
of a method like determinant quantum Monte Carlo
(DQMC)5 scales as N3, as opposed to the naive linear
in N scaling (ignoring such complications as critical
slowing down) in many classical and quantum spin/boson
applications. Second, and far worse, there is no guarantee
the sign of the determinant, which is used as the
probability, is positive. Although one can formally use
the absolute value as a weight, and include the sign in
the measurement, in practice one ends up evaluating
the ratio of two numbers, which becomes dominated by
statistical error at low temperatures as they both become
very small. This situation is known as the “fermion sign
problem”,6,7 whose solution is conjectured to be NP-
hard.8 At present, therefore, there is no known method of

accessing the low temperature properties of Hamiltonians
like the Fermi-Hubbard model with QMC.

Fortunately, there are some situations where the sign
problem is not manifest. For example, the Boltzmann
weight often takes the form of the product of two
determinants, one for each of the two electron spin
species, and it can happen that the signs of the individual
determinants perfectly match, so that the Boltzmann
weight remains positive. This occurs in the complete
parameter range of the Hubbard model with attractive
interactions, enabling a study of superconductivity and
charge density wave physics. It also occurs in the
Hubbard model with repulsive interactions on bipartite
lattices in the limit of average one particle per lattice
site (half-filling), so that the Mott transition and long-
range antiferromagnetism can be explored. Other
instances of situations where the sign problem is absent
are mentioned in Sec. IIC. However, many of the
most interesting questions concerning strong correlation
physics remain inaccessible, most notably the question
of whether the two-dimensional (2D) square lattice
repulsive Hubbard Hamiltonian has a low temperature d-
wave superconducting transition, so that it would provide
a good description of cuprate superconductivity.9

We have two main goals in this manuscript. The
first is to present a set of data for the sign problem in
DQMC for different geometries. These include bipartite
[one-dimensional chain, ladder, 2D square, and three-
dimensional (3D) cubic, Lieb, honeycomb and the 1/5-
depleted square] lattices, and non-bipartite Kagome
and triangular lattices. We consider DQMC because
it is a powerful and widely utilized approach to the
correlated electron problem. Our second goal is to
discern trends in the DQMC sign problem. We will
consider, for example, several new issues: how the sign
depends on the spatial lattice size, the scaling of the
sign in the vicinity of particle-hole symmetric (PHS)
points, and the ‘entanglement’ of the sign as probed
by the consideration of coupled cluster geometries.
Although statements concerning the first of these points,
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the spatial size dependence, have been made in the
literature, numerical data are rather scanty, owing to
the computational limitations existing in the initial
investigations. Specifically, the data in Refs. 7 and 10
were restricted to 4x4, 6x6, and 8x8 lattices. As a
consequence, the scaling regime was not reached for many
of the parameter sets. For example, the average sign
sometimes increases as the system size grows, rather
than decreasing. This situation is rectified here. The
lattices we study also have various unique features, such
as nesting of the Fermi surface, van-Hove singularities
in the density of states N(ω) =

∑

k δ(ω − ǫk), and flat
bands, whose possible effects on the sign problem we will
examine.

It is worth noting what we will not cover: There
are a number of methods which are closely related to
DQMC in that they involve a Hubbard-Stratonovich
decoupling of the interaction, and a Boltzmann weight
built from fermion determinants. These include impurity
algorithms,11 as well as the dynamical mean field
theory (DMFT)12–14 and its cluster extensions, the
dynamical cluster approximation (DCA),15 and the
cellular DMFT.16 A strength of some of these methods
is that the sign problem is greatly mitigated relative
to DQMC, at least if the cluster size is not too large.
This is true even if the bath degrees of freedom are
discretized.17 Also closely related to DQMC are zero-

temperature algorithms which use e−βĤ as a projection
operator on a trial wave function.10,18 Constraints can be
introduced in these ground state methods to eliminate
the sign problem, at the expense of systematic errors
in the solution.19 Despite their relations to DQMC, we
will not discuss these approaches here. Similarly, within
DQMC itself there are different choices of the manner in
which the Hubbard-Stratonovich field is decoupled.20–22

Here, we base our calculations on only the “density
decoupling”, described in Sec. IIB. Though we do
not explicitly consider the above related approaches, we
expect that some of our results and general analysis may
have applications to them as well.

The remainder of this paper is organized as follows:
In Sec. II we review the Hubbard Hamiltonian and the
basic formulation of DQMC, followed by some general,
well-known properties of the resulting sign problem. In
Sec. III we record values for the average sign for different
lattice geometries. Section IV examines general patterns
in this data. Finally, Sec. V contains concluding remarks.

II. GENERAL CONSIDERATIONS

CONCERNING THE SIGN PROBLEM

A. The Hubbard Hamiltonian

Our focus is on the single-band Hubbard Hamiltonian,

Ĥ =−
∑

〈ij〉σ

tij
(

c†iσ cjσ + c†jσ ciσ
)

− µ
∑

iσ

niσ

+ U
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

(1)

Here c†iσ(ciσ) is the creation (destruction) operator for
a fermion with spin σ on site i = 1, 2, · · ·N and

niσ = c†iσciσ is the number operator. tij is the hopping
amplitude between nearest-neighbor sites i and j, U is
the interaction strength, and µ is the chemical potential.
For geometries where there is only one type of hopping,
we set tij = t = 1 as the unit of energy. We will

denote the first line of the Hamiltonian Ĥ in Eq. (1)

by K̂, and the second line by V̂ . This latter term is
written in PHS form. (See Sec. IIC.) The different models
considered in this paper are distinguished solely by the
geometry encoded in the near-neighbor designation 〈ij〉
in the kinetic energy term. Even with a common choice
t = 1, different geometries have distinct bandwidths W ,
the spread of eigenvalues of the U = 0 (single particle)
Hamiltonian. Although it is sometimes the case23 that
using W as the scale of kinetic energy, rather than t,
produces better comparisons across different models, we
did not find that to be useful here. We retain the
standard convention of normalizing to t.

There is, of course, much interest in generalizations
of the Hubbard Hamiltonian, e.g., to multiple bands,
longer-range density-density interactions, and Hund’s
rule type interactions. Multiple bands, can in fact be
written in the form of Eq. (1), with the understanding
that the label i incorporates both spatial and band
indices. Thus, from the viewpoint of a DQMC
simulation, setting up the 2D ‘periodic Anderson model’
(PAM) which has a square lattice of spatial sites
and two orbitals per site, is formally identical to a
two layer geometry, in which there is a single orbital
on each site. Thus, with the freedom to choose
Ui (tij) to be site/orbital (bond) dependent, Eq. (1)
incorporates Hamiltonians like the PAM. Concerning
intersite (interorbital) and Hund’s rule interactions, the
sign problem is typically much worse than for an on-
site U between fermions of different spin species only.
For example, for a model of the CuO2 planes of
cuprate superconductors,24 it was found that the sign
problem restricted simulations to interactions Upd . 1 at
temperatures where local spin correlations were seen to
begin to develop. Like DQMC, Hund’s rule interactions
also present grave sign problem difficulties in DMFT.25

We do not explicitly consider them here.
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B. Determinant Quantum Monte Carlo

The fundamental idea of DQMC26 is to take
advantage of the fact that it is possible to compute
analytically the trace of a product of the exponentials
of quadratic forms of fermion creation and destruction
operators. If we denote the vector of creation operators

( c†1 , c
†
2 , c

†
3 · · · c†N ) by ~c †, and Aj are (symmetric) N×N

matrices of real numbers, then

Tr ( e~c
†A1~c e~c

†A2~c e~c
†A3~c · · · e~c †AL~c )

= det ( I +B1B2B3 · · ·BL ) (2)

Here Bi = eAi . It is important to emphasize that
the trace in the left hand side of Eq. (2) is over a
2N dimensional Hilbert space of the fermionic operators
while the determinant on the right hand side is taken
over a real matrix of dimension N .
The interaction term in the Hubbard Hamiltonian

Eq. (1) is not quadratic in the fermionic operators,
but can be made so by first discretizing the inverse
temperature β = Lτ and then employing the Trotter
approximation27–29

Tr e−βĤ = Tr ( e−τĤ e−τĤ · · · e−τĤ ) (3)

≈ Tr ( e−τK̂ e−τV̂ e−τK̂ e−τV̂ · · · e−τK̂ e−τV̂ )

Here the exponential of the full Hamiltonian Ĥ = K̂+ V̂
is approximated by the product of the exponentials of K̂
and V̂ , a well-controlled procedure which can be made
arbitrarily accurate by taking τ → 0.
The purpose of this procedure is the isolation of

the exponential of the interaction term V̂ , which can
then be rewritten using a Hubbard-Stratonovich(HS)
transformation:

e−τU(ni↑−
1

2
)(ni↓−

1

2
) =

1

2
e−Uτ/4

∑

X=±1

eλX (ni↑−ni↓), (4)

where coshλ = eUτ/2. Because one needs to transform
the interaction term on every spatial site i = 1, 2, · · ·N
and also for each of the l = 1, 2, · · ·L exponentials of τV̂
in Eq. (3), there are a total of NL HS variables X (i, l).
In Eq. (4), we have employed the discrete HS

transformation introduced by Hirsch,37 but one could
also use a continuous variable X and a Gaussian integral,

e−τU(ni↑−
1

2 )(ni↓−
1

2 ) =
e−Uτ/4

√
π

∫

dX e−X 2+2γX (ni↑−ni↓)

(5)

with γ =
√

Uτ/2. There are some differences in the
efficiency of the exploration of phase space between the
discrete and continuous cases.20

Once the HS transformation is introduced, all the
exponentials in the trace of Eq. (3) are quadratic in the
fermion operators, so, the identity in Eq. (2) can be used

to perform the trace over the Hilbert space analytically.
The sum over the HS configurations X (i, l) is performed
stochastically using Monte Carlo techniques. The
corresponding Boltzmann weight takes the form of the
product of two determinants (one for each spin specie) of
matrices Mσ(X ) of dimension N . As this determinant
product may be negative for some HS configurations,
the sampling is done using the absolute values of the
determinant product, and measured expectation values
are adjusted accordingly.

The average sign 〈S〉 is then defined to be the ratio
of the integral of the product of up and down spin
determinants, to the integral of the absolute value of the
product. An analogous definition holds for the average
sign 〈Sσ〉 of the individual determinants:

〈S〉 =
∑

X detM↑(X ) detM↓(X )
∑

X | detM↑(X ) detM↓(X ) |

〈Sσ〉 =
∑

X detMσ(X )
∑

X | detMσ(X )| . (6)

In the case we consider here, with no external magnetic
field, by symmetry 〈S↑〉 = 〈S↓〉.

As a practical matter, these quantities are obtained
by generating configurations with the (non-negative)
weight |detM↑(X )detM↓(X )| and measuring the ratios
detM↑(X ) detM↓(X ) / | detM↑(X ) detM↓(X ) | and
detMσ(X ) / | detMσ(X ) | for each configuration X . In
Eqs. (4) and (5), we have coupled the HS variable to
the z component of fermionic spin, ni↑ − ni↓. It is
also possible to write transformations which involve the

xy components of a spin, c†i↑ci↓, or even local pairing

operators, c†i↑c
†
i↓. These in general worsen the sign

problem.21,22 In the attractive Hubbard Hamiltonian,
the HS variable couples to the charge ni↑ + ni↓ on
site i. This makes the matrices Ai identical for up
and down fermions, so that their determinants are also
identical, and thus, there is no sign problem. If a charge
decoupling is used for the repulsive model, the HS
transformation would involve complex numbers, and the
determinants would be complex as well, leading to an
even more challenging ‘phase problem’.

We note that there are many details omitted in this
brief description, including methods to stabilize the
product of the Bi matrices so that round-off errors
do not accumulate, the precise Monte Carlo update
procedure (how many variables are altered in each step),
more rapid procedures for obtaining the ratio of new
to old determinants after a HS variable is updated,
how to evaluate non-equal time observables, analytic
continuation to obtain dynamic behavior, and so forth.
The reader is referred to Refs. [10,18,30–36] for more
complete discussions.
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C. Particle-Hole Symmetry

On a bipartite lattice, and at µ = 0, the Hamiltonian
Eq. (1) is PHS. That is, the Hamiltonian is invariant

under the transformation c†iσ → (−1)iciσ. Here (−1)i =
+1(−1) on the A(B) sublattice. This symmetry is present
even if t and U vary spatially across the lattice. As one
physical consequence, the density ρi = 〈ni↑ + ni↓ 〉 = 1
(half-filling) for all values of t, U and T . Correlation
functions at density ρ and 2 − ρ have the same values,
or are trivially related. Particle-hole transformations
involving only one spin specie can also be used to relate
the attractive and repulsive Hubbard Hamiltonians in
this limit.
PHS has profound implications for DQMC. When

it is present, the determinants of the up and down
matrices Mσ have the same sign. Thus, although they
individually can go negative, their product is always
positive. As a consequence, low temperature physics
can be accessed at half-filling. This fact enabled DQMC
to establish rigorously37,38 that the single band, square
lattice Hubbard model has long-range Neél order at
T = 0, as opposed to a disordered (resonating valence
bond) ground state.
The sign problem can be absent in some other types of

Hamiltonians with a similar symmetry requirement, for
example in a model with an interaction which takes the
form of the square of near-neighbor hopping,39 for a low
energy theory of the onset of antiferromagnetism,40 and
in spin polarized Fermi systems.41 Indeed, the number
of special situations where the sign problem is absent
is rapidly growing, including, for example, in quasi-1D
condensed matter models of ferromagnetism,42 and via
the ‘fermion bag’ approach, in lattice gauge theory.43,44

The sign problem is also absent in Hubbard models
with a larger number of spin components,45 and, very
interestingly, in a class of spinless fermion models46, a
unique situation where positivity is not dependent on
having an even number of fermionic species.

III. SIGN PROBLEM DATASETS

Our goal in this section is to present a unified and easily
comparable collection of data for the sign problem for
different lattice geometries, including hypercubic lattices
in dimensions d = 1, 2, 3; other bipartite structures like
the honeycomb, Lieb and 1/5-depleted square lattices;
and finally two non-bipartite lattices: triangular and
Kagome. For each case we will exhibit the average sign
for a range of temperatures T , interaction strengths U ,
lattice sizes, and densities.
We focus on the product of the signs of the up and

down determinants, since that is what is relevant for
extracting physics from the DQMC simulation. However,
in Sec. IVB we will present a brief analysis of the
individual spin components. Among other things, we
observe that, except at PHS points, the signs of the up

and down determinants tend to be rather uncorrelated,
so that the signs of the individual components lend no
further information, and can be qualitatively inferred
from the square root of the total sign.
Some of these geometries have unique features in their

non-interacting densities of states (DOS). The square
lattice possesses a van-Hove DOS singularity at ρ = 1.
In contrast, the honeycomb lattice has a DOS which
vanishes linearly there. The Lieb lattice has a flat energy
band between two dispersing ones, while the flat band in
the Kagome lattice can be chosen to be either the lowest
or highest set of energy levels, depending on the sign of t.
One of our goals is to examine how such features might
affect the fermion sign, an issue to which we will return
in the conclusion.

A. Hypercubic Lattices

In this subsection we present data for hypercubic
lattices; linear chains, ladders, the square lattice, and
the cubic lattice. In all cases, we use periodic boundary
conditions except for the rungs of the ladder geometry.
Although the sign does not cause a problem for

Hubbard world line methods48,49 in one dimension,
DQMC does have a sign problem in this case50. In Fig. 1,
the average fermion sign, 〈S〉 (also denoted 〈sign〉), for
the chain geometry is shown for fixed U = 4 and β = 8.
Figure 1(a) shows the doping dependence of the sign,
which has a non-trivial structure. Most notably, it shows
a peak around ρ = 0.5. One may wonder if such a local
maximum arises due to remnants of the ‘shell’ effect.
That is, at U = 0 the k space grid is sufficiently coarse
such that ρ(µ) shows distinct plateaus where 〈S〉 tends
to be closer to one. This phenomenon is well known,
for example, on square lattices that are not too large
(e.g., 4 × 4). However, as will be seen in Fig. 3, this
occurs only on small lattices, and is unlikely the origin
of the maximum at quarter filling here where the k space
grid is much more refined. Another interesting feature
is that 〈S〉 remains small at low density. This is, again,
rather different from what happens on a square lattice
where 〈S〉 → 1 as ρ → 0 (Fig. 3) or even ladders (Fig. 2).
The low value of 〈S〉 as ρ → 0 does not appear to be
connected to the divergence of the density of states at the
bottom of the band since the same divergence occurs in
the ladder geometry where 〈S〉 recovers to one as ρ → 0.
Figures 1(b) and 1(c) show the scaling of the average

sign with spatial lattice size N and inverse temperature
β respectively. After plateaux at small N and β, where
〈S〉 = 1, the average sign decreases in a manner which is
largely consistent with exponential. ln〈S〉 is not perfectly
linear in β or N , but exhibits some downward curvature,
which we believe indicates the scaling regime has not yet
been fully attained. We will remark on this more fully
later in this section. As we shall see, this exponential
decrease is also the case in other geometries, although the
decrease with N once one exits the plateau is in general
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FIG. 1: (Color online) Sign problem for chains of different
lengths at U = 4 (which equals the bandwidth in this
geometry). (a) The dependence of 〈S〉 on the density. (b)
ln 〈S〉 vs the system size, N , and (c) vs β at several fixed
densities ρ. The densities used in panels (b) and (c) are
indicated by vertical dashed lines in panel (a). The errorbars
in this figure and in the remaining figures in this paper can
be inferred from the scatter in the data, and hence, may not
have been shown. Axis label 〈sign〉 is referred to as 〈S〉 in
text.

less abrupt than with β. In Fig. 1(b) at ρ = 0.625, 0.875,
the average sign, despite its exponential decay, remains
quite manageable out to N & 200. Even at ρ = 0.2 the
spatial size must be tripled from N ∼ 70 before ln〈S〉 ∼
−4. In Fig. 1(c), on the other hand, the decay to ln〈S〉 ∼
−4 takes place after only a 50% increase in β (from β = 8
to β = 12).

Next, we turn to ladder geometries, which are natural
extensions of chains, before studying the square lattice.
Ladders are of interest for several reasons. First, they
have been extensively studied by DMRG51 as a stepping
stone to 2D. Second, by changing the ratio t⊥/t of the
rung hopping to the hopping along the chains, one can
access U = 0 states that are metallic or band-insulating
at half-filling. The effect of these phase changes on the
sign problem for U 6= 0 is one goal of the data presented
here and in Sec. IVB.

The results for the average sign on different ladders are
plotted in Fig. 2. The rung hopping is set to t⊥ = 1, so
that the U = 0 band structure is metallic. As with Fig. 1,
the top panel shows the density dependence for different
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FIG. 2: (Color online) Same as Fig. 1 but for the ladder
geometry with the rung hopping equal to the hopping along
the chains and different values of the interaction strength and
β, which are noted in the panels.

system sizes at fixed U, β while the bottom two panels
show that the decay is consistent with exponential in N
and β. (See remarks to follow on challenges in capturing
fully linear behavior of ln〈S〉(β).) 〈S〉 has a minimum
at filling ρ ≈ 0.8, similar to what is known to occur also
for a square lattice. (See Fig. 3.) For t⊥/t > 2 the
noninteracting system is a band insulator (BI). Because
the BI occurs at the particle-hole symmetric density ρ =
1, 〈S〉 is pinned at unity. Therefore, for this case, we will
examine the signs of the determinants of the individual

spin matrices 〈S↑〉 = 〈S↓〉 in Sec. IVB.

The square lattice is the most well-studied Hubbard
model geometry, owing to its possible relevance as a
simple model of cuprate superconductivity and d-wave
pairing driven by antiferromagnetic fluctuations.9 The
total sign for the square lattice at U = 6, β = 4 is
shown as a function of filling ρ for different lattice sizes
in Fig. 3(a). As mentioned earlier, the peak in the
4 × 4 lattice occurs as five of the 16 allowed k points
(corresponding to a density ρ = 10/16 = 0.625) fill up
prior to half-filling. This peak is even more evident10

at U = 4 providing further evidence that, in this case,
〈S〉 is connected to the shell structure at U = 0, though
the connection appears to diminish with larger U . It is
possible that the shell structure would appear on larger
lattices if lower temperatures were accessible. A rather
universal feature is the minimum in 〈S〉 at ρ ≈ 0.85,
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FIG. 3: (Color online) Same as Fig. 1 but for the square
geometry and with different parameters, which are noted in
the panels.

which is shared by the ladder geometry.

The very nature of the sign problem makes it
challenging to provide a completely compelling linear
plot of ln 〈S〉 as a function of β. For the data in
Fig. 3c, for example, at β = 5.33 a run with 105 sweeps
through the space-time lattice of Hubbard-Stratonovich
variables (100 spatial sites and 64 time slices) takes
several hours on a work-station, and gives 〈S〉 = 0.0095±
0.0012 (corresponding to ln 〈S〉 = −4.66. The slope
d ln 〈S〉/dβ ∼ −4, so we can roughly estimate ln 〈S〉 ∼
−8.9 at β = 6.33, and hence 〈S〉 ∼ 0.00013. A
measurement of this value to 10% accuracy would require
an error bar of about 0.00001, a factor of ∼ 102 less than
the error obtained at β = 5.33. Since error bars only go
down as the square root of the number of measurements,
such a run would entail ∼ 104 times as many sweeps, and
a cpu time of several months.

The U dependence of the average sign at fixed β = 4
and N = 100 for a square lattice is shown in Fig. 4 at
ρ = 0.625 and 0.875. The evolution of 〈S〉 with U is
rather similar to that with β: A plateau at weak coupling
where 〈S〉 ≈ 1 is followed by an abrupt downturn. Thus,
in practice, once the sign begins deviating from unity
there is only a narrowwindow of stronger couplings where
data can be acquired. This is demonstrated in Fig. 4 as
〈S〉 as a function of U is shown to decrease exponentially
once U & 4.
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FIG. 4: (Color online) The U dependence of the sign problem
for the square lattice.

Here, we briefly generalize our ladder results by
providing a more complete description of the behavior
of 〈S〉 as the aspect ratio of the lattice goes from one to
two dimensions. Fig. 5 shows data at U = 6 and β = 6 for
lattices with a fixed N = 96 but different aspect ratios.
As mentioned earlier, the chain geometry seems to be
rather unique. For all other cases, the average sign is
close to unity for a range of low densities, and then steps
downwards to small values in a region centered at ρ ∼ 0.8,
recovering only at the PHS point ρ = 1.

The precipitous nature of the decrease in 〈S〉 near
ρ = 1, evident in Fig. 5, is quantified in Fig. 6. Panel
6(a) shows the logarithm of the sign versus the doping
away from half-filling. The linear behavior indicates that
〈S〉 ∼ ea|ρ−1|. The decay constant a is large and negative.
Its β and U dependences are given in Fig. 6(b). To our
knowledge, this behavior of 〈S〉 had not been studied
before. However, scaling forms for physical observables
like the compressibility κ = ∂ρ/∂µ as one exits the
Mott phase at ρ = 1 have been suggested.60,61 In these
theories, κ follows a power law κ ∝ (1 − ρ)−η, so that it
diverges just before it vanishes. This also occurs in the
boson Hubbard model.3,62

We conclude this section on hypercubic geometries by
showing the behavior of 〈S〉 for a cubic lattice in Fig. 7.
Because the number of lattice sites grows so rapidly with
linear size, we consider cases where Lx 6= Ly 6= Lz (while
keeping all linear lengths even to avoid frustration of
antiferromagnetic correlations.) The qualitative behavior
is almost identical to that of rectangular lattices, with
a deep minimum in 〈S〉 upon doping from half filling,
followed by a recovery at ρ . 0.6. Curves for different
sizes almost coincide for these large dopings, indicating a
very slow decay with N , as seen in Fig. 7(b). Indeed,
for some densities 〈S〉 even increases as N increases.
Presumably, this is a transient phenomenon associated
with the rather small linear lattice lengths which are
accessible in 3D. The decay with β, Fig. 7(c), is, as usual,
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FIG. 5: (Color online) The average sign as a function of ρ for
the rectangular lattices with the same lattice size N = 96 but
different lengths of the sides.

rapid.

B. Other Bipartite Lattices

Hypercubic lattices are just one instance of bipartite
geometries which are free of the sign problem at half-
filling owing to the PHS. Here we present data for
three additional bipartite geometries, all of which are of
interest because of their materials applications.
We consider first the “Lieb lattice” which consists of an

underlying square array of A sites with additional two-
fold coordinated B sites on each bond (see the left panel
of Fig. 8). This structure is a more chemically realistic
multiband representation of the CuO2 planes of the
cuprate superconductors, with the Cu atoms forming the
square array and bridging O atoms. The relevant filling
of such a three-band model for the cuprates consists of
one hole per CuO2 unit cell, that is, well away from half-
filling. Indeed, a realistic model of the cuprates would
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FIG. 6: (Color online) (a) By doping the system away from
half filling on the square lattice, the average sign decreases
exponentially, i.e., 〈S〉 ∼ ea|ρ−1|. In (b) the decay constant,
a, is plotted as a function of U for different values of β. The
lattice size is N = 10× 10.
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FIG. 7: (Color online) Same as Fig. 1 but for the cubic
geometry and with different parameters, which are noted in
the panels.

t

t’ a

a2

1

FIG. 8: (Color online) The Lieb lattice (left) and the 1/5-
depleted square lattice (right). The latter is taken from
Ref. 23. Arrows (dashed squares) show the unit vectors (cells)
for each geometry.

incorporate a substantial energy ǫpd which represents
the additional cost of holes to occupy an O p-orbital
compared to a Cu d-orbital.

Nevertheless, the half-filled case, with three fermions
per unit cell and ǫpd = 0, has considerable interest: Lieb
has given63 a rigorous demonstration of a ferrimagnetic
ground state in this situation. The crucial observation
is that the numbers of sites on the A and B sublattices
(NA and NB, respectively) are unequal. Lieb showed
that for any bipartite lattice with NB > NA there is a
‘flat band’ with NB − NA zero energy eigenstates64. A
recent DQMC study has explored the attractive Hubbard
model in this geometry65. The presence of a flat
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band was found to have important effects on physical
properties like the local moment and pairing correlations.
Figure 9 examines the sign problem for the repulsive case.
No qualitative difference is discernible from the square
lattice. Indeed, the sign shows no signal whatsoever as
it passes through ρ = 2/3, the filling which corresponds
to entry into the flat band.

The honeycomb lattice is another bipartite lattice we
study here. It has an interesting semi-metallic density
of states which vanishes linearly at ω → 0. Like the
hypercubic lattices, it has NA = NB. Figure 10 exhibits
the average sign in the usual array of panels. 〈S〉 is a
bit reduced in densities ρ . 0.6 compared to the other
bipartite lattices, but otherwise behaves in a manner
rather similar to them.

Our final bipartite geometry is a 1/5-depleted square
lattice. This is a cousin of the Lieb lattice, in that it can
be regarded as a square lattice with 1/4 (rather than 1/3)
of the sites removed, and is the geometry appropriate to
the magnetic V atoms in CaV409 (see the right panel of
Fig. 8). As with the Hubbard model on a Lieb lattice,
this model exhibits interesting magnetic orderings. In
particular, at half-filling and U = 6, as the ratio t′/t of
the inter- to intra-plaquette hopping is increased, one
goes from a plaquette singlet phase to a phase with
antiferromagnetic long-range order at (t′/t)c1 ≈ 0.7 and
then to a dimer singlet phase where long-range order
is again absent at (t′/t)c2 ≈ 1.3. Figure 11 shows
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FIG. 9: (Color online) Same as Fig. 1 but for the Lieb lattice
and with different parameters, which are noted in the panels.

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

〈 si
gn

〉

(a) honeycomb U=8

β=4

N=32
N=50
N=72
N=98
N=128
N=162
N=200

0 60 120 180
N

−3

−2

−1

ln
〈 si

gn
〉

(b) U=8

β=4

ρ=0.625
ρ=0.875

0 2 4
β

−3

−2

−1

0

ln
〈 si

gn
〉

(c)

U=8

N=98

ρ=0.625
ρ=0.875

FIG. 10: (Color online) Same as Fig. 1 but for the honeycomb
geometry and with different parameters, which are noted in
the panels.

the doping dependence of the average sign for the 1/5-
depleted square lattice for t′ = t, which corresponds to
the ordered phase at ρ = 1.
Figure 12 gives the dependence on t′/t for two fixed

chemical potentials which correspond to ρ ≈ 0.9 and
0.6 . ρ . 0.7. Although the density is varying a bit with
t′/t, there is a steady decrease in 〈S〉 as t′/t decreases.
The dimer singlet phase at large t′/t has a well-behaved
sign, while the plaquette singlet phase has a much smaller
average sign, presumably as a consequence of the fact
that the sign problem of an isolated 2 × 2 plaquette is
much worse than a dimer.

C. Triangular and Kagome Lattices

We conclude our survey of lattice geometries with two
non-bipartite cases: the triangular and Kagome lattices.
Since there is no PHS, we expect there will be a sign
problem at all densities, including half filling. Moreover,
we must present data over a full range of fillings, 0 ≤
ρ ≤ 2. The sign of the hopping is also relevant for these
structures. Our choices are t = 1 for the triangular lattice
and t = −1 for the Kagome lattice. In terms of the
density of states, these choices mean that the DOS is
nonzero in the ranges [-6, 3] and [-2, 4] for the triangular
and Kagome geometries, respectively.
Figure 13 shows results for the triangular lattice. Shell
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FIG. 11: (Color online) Same as Fig. 1 but for the 1/5-
depleted square lattice with equal inter- and intra-plaquette
hopping amplitudes and different parameters for U , β and N ,
which are noted in the panels.

structure is evident for the smallest cluster (N = 9),
however, as with the square lattice, is absent for larger
lattices (N = 36, 81). The most marked difference from
the bipartite cases is that 〈S〉 is not pinned at one for ρ =
1, but otherwise the behavior of 〈S〉 is quite similar to the
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FIG. 12: (Color online) Evolution of the average sign on the
1/5-depleted square lattice as the ratio of the inter- and intra-
plaquette hopping amplitudes (t′/t) increases. The results are
obtained for two different fixed chemical potentials, µ = −1.5
and -2.5. The filled symbols show the average sign and the
empty symbols denote the evolution of the average density
ρ. Note that ρ varies slowly in most of the range of t′/t and
only increases significantly towards one for t/t′ . 0.5. The
bandwidth is kept fixed at 6 for all values of t′/t.
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FIG. 13: (Color online) Same as Fig. 1 but for the triangular
geometry and with different parameters, which are noted in
the panels.

previous cases. The same is true of the Kagome lattice
in Fig. 14, except that there is a persistent bump in 〈S〉
for ρ slightly less than quarter filling. (A similar feature
was noted for chains.) The structure in the average sign
is somewhat more asymmetric about half filling than the
triangular case. One feature which does not seem to be
shared with other geometries is the existence of an abrupt
change in 〈S〉 appearing here at ρ ≈ 1.1, so that it is
well behaved for most densities ρ & 1.1. The scalings
with the cluster size and β of the average sign for these
non-bipartite geometries, shown in the bottom panels of
Figs. 13 and 14, follow a similar pattern as for the other
bipartite geometries.

IV. FURTHER ANALYSIS

We now discuss possible patterns which emerge from
these datasets. We focus on three areas: the role
of the density of states, the contribution of individual
spin components to the sign problem, and spatial
entanglement. A fourth feature of 〈S〉, scaling in the
vicinity of the PHS point, was discussed previously.
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FIG. 14: (Color online) Same as Fig. 1 but for the Kagome
geometry and with different parameters, which are noted in
the panels.

A. Role of the U = 0 Density of States

It seems plausible that the noninteracting density of
states could play an important role in the sign problem.
In this subsection we make a few observations on that
possibility.
The square and honeycomb lattices have quite

dramatically different U = 0 densities of states, especially
near ω = 0 where the DOS diverges logarithmically
for the square lattices, and vanishes linearly for the
honeycomb lattice. Yet, if we compare the behaviors of
〈S〉 as a function of filling in Figs. 3 and 10, we see little
qualitative difference. Both evolutions exhibit a rapid
fall-off from 〈S〉 = 1 at the PHS point ρ = 1, a broad
minimum centered at ρ ∼ 0.8, followed by a recovery to
〈S〉 = 1 in the dilute limit. The differences in DOS are
even more diverse among the other geometries studied
here. However, the special features of the DOS, which
could trend in completely opposite directions, appear to
have little to no effect on the behavior of 〈S〉 here.
Indeed, we have noted already that, more generally,

the different geometries and their associated distinct
densities of states all share a qualitatively similar
behavior of 〈S〉 with doping. The only ‘unique’ geometry
was the one-dimensional case where, for example 〈S〉 did
not recover to one at low densities.
Most of the data we present are for interaction

strengths U at least four times the fermion hopping t,
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FIG. 15: The product of the expectation values of the signs
of the individual spin up and spin down matrices is shown
at half-filling as a function of the ratio of rung to on-chain
hopping for the ladder geometry. ( 〈S↑〉 = 〈S↓〉 by symmetry.)
The signs are well-behaved in the band insulating phase
t⊥/t > 2.

and hence, roughly speaking, at least half the bandwidth
W . These sorts of interaction strengths are the ones
typically studied in examining magnetic, pair, and charge
correlations in Hubbard models. The conclusion of the
observations above seems to be that U & W/2 brings
the system far enough from the U = 0 limit that
most features of the noninteracting DOS are no longer a
controlling factors in the sign problem. Apparently, the
space and imaginary time fluctuations of the Hubbard-
Stratonovich field X (i, t), whose effect on the fermions
increases with U through the parameter λ of Eq. 4,
smear out effects of the U = 0 energy levels on 〈S〉.
This appears consistent with a comparison of Fig. 3(a) of
this paper with Fig. 10(a) in Ref. 10 for 4 × 4 Hubbard
lattices. With βU constant, the sharpness of the feature
near ρ = 0.6 is significantly reduced when U is increased
from 4 to 6.

This lack of dependence on the DOS is the case even
for a flat band, where the very large delta function in
the DOS might have been expected to have an especially
discernible impact on 〈S〉. However, in the case of the
Lieb lattice (Fig. 9), 〈S〉 behaves completely smoothly
through the edge of the flat band at ρ = 2/3. We do
note that broad features in the U = 0 DOS do appear to
have some correlation with the behavior of 〈S↑〉 = 〈S↓〉.
For example, for the chain, square, and cubic lattices, we
observe that 〈Sσ〉 tends to be smaller when a “smoothed”
DOS is larger (not shown). Behavior near half-filling for
bipartite lattices is additionally mediated, as discussed
previously, by the fact that at half-filling 〈S〉 = 1 by
symmetry.
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FIG. 16: (Color online) The product of the average signs for
each spin specie on the 1/5-depleted square lattice at half
filling as a function of t′/t.

B. Spin Components

Thus far, we have focused almost exclusively on the
total sign 〈S〉. As commented in Sec. IIB, assuming there
is no ‘off-diagonal’ term in the Hamiltonian, allowing
the mixing of different spin species, the fermionic trace
results in separate determinants for each σ. Here, we
do a further analysis of the signs of the individual spin
components. We have two goals: first, we would like
to examine the correlations between the up and down
determinants for the same HS configurations. Second,
as in the case of the ladder or the 1/5-depleted square
geometry, the spin-resolved sign may offer some insight
into the potential connection of the average sign to other
observables and phase transitions that occur in the PHS
regimes (half filling).
We start with the second objective. We consider a

ladder geometry with intra-chain hopping t and inter-
chain (rung) hopping t⊥. The U = 0 band structure is
ǫ±(kx) = ± t⊥ − 2t coskx, so that the ladder is a BI for
t⊥/t > 2 at half-filling, and a metal for t⊥/t < 2. Figure
15 shows the product 〈S↑〉〈S↓〉 as a function of t⊥/t for
ρ = 1 (where 〈S↑S↓〉 = 1) and U = 4 for β = 4, 5 and
6. There seems to be some evidence that entering into
the metallic phase at t⊥/t = 2 coincides with an increase
in the number of negative determinants. The t⊥/t = 0
limit is also interesting. It corresponds to two decoupled
1D chains. Evidently, even the individual determinants
are free of negative signs at half-filling.
Unlike for the ladder geometry, the product of the

average signs for the two spin species does not display
any signature at the (magentic) phase transitions for the
1/5-depleted square lattice. This can be inferred from
Fig. 16 where 〈S↑〉〈S↓〉 at half filling is plotted vs t′/t for
U = 6 and β = 4. Similar to the total sign away from
half filling (Fig. 12), this quantity also decreases from one
in the large t′/t decoupled dimers region to near zero in
the small t′/t plaquette region. There are two quantum
phase transitions23 for this value of the interaction at
t′/t ∼ 0.65 and t/t′ ∼ 0.77. However, the average signs
vary smoothly around these values with no special feature
(at this temperature) that can be attributed to the phase
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FIG. 17: Correlations between the average of the product
of the up and down determinant signs and the product of
the averages. Top panel: square lattice (PHS case). Bottom
panel: triangular lattice (non-PHS case). The data indicate
that, for the most part, the signs of the up and down
determinants are independent, except at the PHS density
ρ = 1.

transitions in the ground state.

With this in mind, we analyze the correlations between
the up and down average signs for the square and
triangular lattices in Fig. 17. In the former geometry, at
half-filling, because of PHS there is a perfect correlation
of the up and down signs, i.e., 〈S〉 = 1, which differs
substantially from 〈S↑〉〈S↓〉. Correlations remain in
the neighborhood of the PHS point. However, for
densities ρ . 0.8 (and, by symmetry, ρ & 1.2), 〈S〉 =
〈S↑〉〈S↓〉 to a high degree of accuracy, indicating that
the signs of the spin up and spin down matrices for
given HS configurations are essentially independent. It
is interesting that the density at which correlations
disappear roughly coincides to where the sign problem
is the worst.
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We expect the absence of the PHS to alter the
relationship between the total sign and its individual
components at half filling. This issue is examined in the
triangular lattice results in the bottom panel of Fig. 17.
The determinant signs are generally independent over
the entire density range, with 〈S〉 = 〈S↑〉〈S↓〉, except
for a small region around three quarter filling, ρ ≈ 1.5.
This is evidently related to the bumps in 〈S〉 already
noted in Fig. 13, and provides additional insight into
that phenomenon: The increase in 〈S〉 is associated,
at least in part, with a larger correlation of the two
determinant signs. Interestingly, the latter seems to be
taking place close to where the peak in the DOS is,
suggesting a possible connection, however, a similar but
less prominent bump also appears around ρ ∼ 0.7, where
there is no feature in the DOS.

C. Spatial Entanglement

Our data have supported the exponential decay of the
sign with N (Fig. 7 for the cubic lattice is inconclusive,
perhaps due to the shorter lengths of the sides). Here, we
point out that there is a limit in which this phenomena
can be rigorously established. Specifically, we observe
that the sign must decay exponentially withN for lattices
consisting of decoupled clusters (by, for example, setting
the inter-cluster hopping tij to zero). Clearly the average
sign of the entire system will be the product of the signs
of the subclusters. If the subclusters are identical, an
exponential decrease of the average sign with system
size (number of subclusters) trivially follows. One can
then ask what is the effect of linking the clusters. If
the connection is through non-zero inter-cluster hopping,
a ‘world-line’ picture would generally suggest the sign
should get even smaller, as the fermion paths are allowed
additional opportunity to exchange. In fact, precisely
this would happen as a lattice of decoupled chains in the
x direction with zero hopping in the y direction, ty = 0,
is converted into a 2D lattice by turning on ty. The
ty = 0 limit has no significant sign problem in world-line
approaches, whereas large ty does.

In DQMC, the opposite can occur: the linking
(‘entanglement’) of spatial clusters mitigates the sign
problem. This can be seen in several Hubbard
Hamiltonian geometries which contain decoupled clusters
as a limiting case. The simplest is the ladder
geometry where t⊥ = 0 corresponds to two independent
chains. Other examples are the ‘plaquette’ model
studied by Scalapino52, Kivelson,53 and others,54–57,66

as a description of superconductivity arising from pair
binding on 2× 2 plaquettes, and the 1/5-depleted square
lattice23,58,59 for which the results in the left panel of
Fig. 12 show the improvement of the sign by increasing
the inter-plaquette hopping t′ from zero.

V. CONCLUSIONS

The sign problem remains one of the fundamental
challenges in computational physics. This paper
has focused on the sign problem in determinant
quantum Monte Carlo. Our goal has been to bring
together data for a collection of geometries (hypercubic,
ladder, depleted square, Lieb, honeycomb, Kagome,
and triangular lattices) and parameter (temperature,
interaction strength, and density) ranges that are, at
present either not available or, at best, scattered through
the literature. There are other cases one could study.
However, this extensive set already enables us to make
some general inferences about the sign problem, at least
in the specific case of the DQMC, which may have other
applications as well.
We first considered the general behavior of the sign 〈S〉

as a function of inverse temperature β = 1/(kBT ) and
of lattice size N . Arguments for exponential behavior
have been made in this regard involving the winding of
world lines, in approaches where such paths are sampled
in the simulation. However, it has been noted that this
reasoning does not necessarily transfer to the auxiliary
field approach of DQMC, where it is difficult to see
how to map the problem onto a sum over world line
paths of an effective Hamiltonian with local interactions.
Without such a theoretical basis, it is of interest to
explore numerically the scaling of 〈S〉 with β and N for
a variety of cases, to determine the general behavior.
Previous work regarding β used the Hubbard model

on 3 × 2 lattices67 and 4 × 4 lattices6,7 finding an
exponential decay of 〈S〉 with β for large β. Our data,
on considerably larger spatial lattices and for a variety
of different geometries, is also consistent with a large
β exponential decay, with a small β regime throughout
which 〈S〉 ≈ 1, and eliminates ‘shell effects’ seen in
smaller lattices.
We next explored the scaling of 〈S〉 with lattice size

N . Previous work, comparing 2D 4× 4, 6× 6, and 8× 8
Hubbard lattices7,10 and 3D 4 × 4 × 4 and 6 × 6 × 6
lattices7 was inconclusive. In both the 2D and 3D
cases, for example, for some parameter ranges 〈S〉 was
actually worst for the smallest systems studied. Using
larger lattice sizes and differing geometries, our results
are clearly consistent with an exponential decay of 〈S〉
with N for large N . In a few but not all cases, we also
found a small N regime in which 〈S〉 ≈ 1, similar to what
was seen for β. Data based on an examination of 〈S〉 as a
function of U were consistent with a similar exponential
decay of 〈S〉 with U , for U sufficiently large.
As is well known, the sign problem is ‘cured’ in special

particle-hole symmetric cases like the half-filled Hubbard
model on a bipartite lattice, where the determinants
always come in pairs which share the same sign. This
paper presented a more general study of correlations
between the signs. Near half-filling, for the square lattice,
we found 〈S〉 > 〈S↑〉 〈S↓〉, where 〈Sσ〉 is the average sign
of a single spin determinant, see Eq. 6. This indicates
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the development of strong correlations between the signs
of the up and down determinants,
A closely related issue is the precise form of the decay

of 〈S〉 close to the half-filled ρ = 1 PHS point where
〈S〉 = 1. We found a rapid decay, consistent with the
form 〈S〉 = ea|ρ−1| and that “a”becomes increasingly
large and negative with U and with β. This indicates
a rapid loss of the positive correlations between up and
down determinants as one moves away from half filling.
Lastly, we considered the effect of “entanglement”,

where initially decoupled clusters were linked together
with fermion hopping terms. This linking increased 〈S〉
improving the sign problem, in complete contrast to what
one would expect in a “world line” picture, where the
additional windings available due to the extra hopping
terms would typically be expected to worsen the sign
problem.
Another significant feature of this work is that

the geometries being studied have a wide range of
noninteracting densities of states. A crucial conclusion of
our work, evident in comparing the top panels of Figs. 2-
7 is that, despite the wide variation in the DOS, on
bipartite lattices, the behavior of the sign with density
is almost “universal” in the sense that it always falls
rapidly away as the lattice is doped, attains a minimum
in the vicinity of ρ ≈ 0.8 and then recovers. This
observation is of interest because of the rather different
physics expected of strongly correlated electrons on these
geometries. The only exception to this universality is
seen in Fig. 1, for the one dimensional chain.
Overall, features in the U = 0 DOS associated with

special behavior at an isolated energy seem to have little
effect on 〈S〉. This may be due to the “smoothing out” of
these features by the HS field fluctuations which increase
with increasing U . There does, however, seem to be some
indication that a larger value of a “smoothed” DOS is
associated with smaller average signs 〈S↑〉 = 〈S↓〉 of the
determinants of the matrices of individual spins.
Another interesting possibility for further exploration

is that of a linkage between 〈S〉 and the spectral
function at the Fermi level, A(ω = 0). Here A(ω)
is related to the time dependent Green’s function via
G(τ) =

∫

dτ e−ωτA(ω) / ( eβω + 1 ) and equals the
density of states N(ω) in the non-interacting limit. The
spectral function incorporates the effects of U and hence,
potentially, might correlate better with the sign. There
are some hints that this is the case, for example, on a
square lattice the U = 0 density of states diverges at half-
filling yet the low-temperature A(ω) vanishes for all U

and the sign behaves perfectly. Indeed, the sign behaves
well in a range of chemical potentials µ within the Mott-
Slater gap. One could imagine pursuing this possible
connection more closely through computing the spectral
functions for the various geometries and parameter values
considered here. However, this would be a major
task beyond the scope of this paper, involving the
measurement of the imaginary-time dependent Green’s
function and its analytic continuation to real space. In
addition, because it is more difficult to obtain A(ω), as
compared to the noninteracting density of states, it is
unclear what the utility of the discovery of a connection
between A(ω) and the sign would be.

Despite the data and interpretation presented here,
the sign problem remains a big mystery. Of particular
interest is the possible relation between 〈S〉 and the
underlying physics of correlated electrons. For example,
early in the development of DQMC, Hirsch pointed out37

a mapping between the spin-spin correlation function, a
property solely of the Hubbard Hamiltonian itself, and a
correlation function of the Hubbard-Stratonovich field X .
Since the fluctuations in X ultimately determine the sign
problem, this suggests the possibility that the behavior
of 〈S〉 might be related to some appropriate observable.

We end on a speculative note in this regard. The
unfortunate coincidence (if it is a coincidence) that for
the square lattice 〈S〉 is worst behaved very close to the
most interesting ‘optimal’ doping, where Tc is largest
in the cuprate superconductors, has often been opined.
One thing we observe here is that this dip in 〈S〉 at
ρ ≈ 0.8 is absent in d = 1 but appears already in
the ladder geometry. Since Hubbard ladders appear
to show signatures of d-wave pairing51 the possibility
of a deep connection between the fermion sign and
superconductivity in the Hubbard Hamiltonian remains
a possibility.
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