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We identify qualitative trends in the stacking sequence dependence of carrier-carrier interaction
phenomena in multilayer graphene. Our theory is based on a new approach which explicitly exhibits
the important role in interaction phenomena of the momentum-direction dependent intersite phases
determined by the stacking sequence. Using this method, we calculate and compare the self-energies,
density–density response functions, collective modes, and ground-state energies of several different
few layer graphene systems. The influence of electron–electron interactions on important electronic
properties can be understood in terms of competition between intraband exchange, interband ex-
change and correlation contributions that vary systematically with stacking arrangement.

Introduction — Multilayer graphene has attracted con-
siderable attention recently because of exotic chiral fea-
tures in its electronic structure and the possibility of fu-
ture electronic device applications[1–4]. The band struc-
ture of a multilayer system is qualitatively dependent on
its stacking sequence, opening up the possibility of en-
gineering electronic properties by selecting a desired ar-
rangement. In this Letter we use an approach in which
momentum-direction dependent intersite phases deter-
mined by the stacking sequence are explicitly exhibited
to show that this qualitative dependence is inherited by
carrier-carrier interaction phenomena.
Because the number of π-bands in a multilayer

graphene system is proportional to the number of layers,
and because π-band wavefunctions are not isotropic in
momentum space, accurate evaluation of physical quan-
tities which require integrations over momentum space,
for example quasiparticle energy spectra and density–
density correlation functions, rapidly becomes more diffi-
cult as layer number increases. To mitigate this problem
and to make the relationship between stacking arrange-
ment and interactions more transparent, we introduce a
momentum-direction dependent unitary transformation
which makes the single-particle Hamiltonian isotropic. In
addition to making accurate many-electron perturbation
theory calculations practical for multilayer stacks, this
approach facilitates understanding of some qualitative
trends in the stacking arrangement dependence of quasi-
particle energy spectra, plasmon dispersion and damping,
and carrier thermodynamic properties.
Rotational transformation of multilayer Dirac Hamil-

tonian — Our calculation is based on the minimal con-
tinuum model for multilayer graphene which retains only
a Dirac model for hopping within each layer and only
nearest-neighbor interlayer hopping. Different stack-
ing sequences are specified by different interlayer near-
neighbor arrangements. The Hamiltonians for these
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minimal models can be made isotropic by multiplying
wavefunction components by stacking and momentum-
direction dependent phase factors. To illustrate how this
transformation works, we consider first the example of
Bernal stacked bilayer graphene, in which one sublattice
in the first layer (say 1B) is a near neighbor of the oppo-
site sublattice in the second layer (say 2A). The Hamilto-
nian at finite wavevector k is then expressed in the (1A,
1B, 2A, 2B) basis as

H(φk) =









0 ~vke−iφk 0 0
~vkeiφk 0 t⊥ 0

0 t⊥ 0 ~vke−iφk

0 0 ~vkeiφk 0









,

(1)

where k =
√

k2x + k2y, φk = arctan(ky/kx), v is the bare

Dirac velocity, which is related to the nearest-neighbor
intralayer hopping amplitude by t = 2~v/

√
3a ∼ 3 eV

(a = 0.246 nm is the lattice constant), and t⊥ ∼ 0.1t
is the nearest-neighbor interlayer hopping parameter. It
is easy to see that the eigenvalues of this Hamiltonian
are independent of φk and that all eigenvalues satisfy
Ψ(φk) = (c1A, c1Be

iφk , c2Ae
iφk , c2Be

2iφk)t ≡ U(φk)Ψ(0),
where the {ci} depend on k only and can be obtained by
diagonalizing H at φk = 0. The locking between inter-
site phases and momentum direction in these spinors is
reminiscent of the properties of spinors in chiral systems
and will be referred to below as sublattice pseudospin
chirality. The unitary operator U(φ) is a diagonal ma-
trix whose diagonal components (1, eiφ, eiφ, e2iφ) are de-
termined by the bilayer stacking. The phase difference
eiφ between the 1A and 1B components of the wavefunc-
tion, and between the 2A and 2B components, comes
from the monolayer-like intralayer coupling, whereas the
zero phase difference between the 1B and 2A components
comes from the momentum-independent interlayer cou-
pling. If we know the wavefunction at a specific angle, we
can easily obtain the wavefunction at an arbitrary angle
by attaching site-dependent phase factors determined by
the stacking sequence.
We can easily generalize from the bilayer case to mul-
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tilayer graphene with an arbitrary stacking order. Eigen-
states at momentum orientation φk satisfy

Ψ(φk) = (c1Ae
iP1Aφk , c1Be

iP1Bφk , · · · )t = U(φk)Ψ(0),
(2)

where H(0)Ψ(0) = εΨ(0). H(φk) = U(φk)H(0)U−1(φk)
has matrix elements

Hij(φk) = Hij(0)e
i(Pi−Pj)φk , (3)

and eigenvalues ε that are independent of φk. By com-
paring the matrix elements in Eq. (3) with those in the
original Hamiltonian, we can determine the phase fac-
tor chirality parameters {Pi}. In general two sites con-
nected by nearest-neighbor interlayer hopping have the
same phase and within a layer PB = PA +1. Using these
two rules, {Pi} is completely determined by the stacking
sequence. Figure 1 illustrates their application in multi-
layer structures with up to four layers. We explain below
how these band structure properties influence electron-
electron interaction physics in multilayer graphene sys-
tems.

(c) P1A P1B P2A P2B P3A P3B P4A P4B

A 0 1
AB 0 1 1 2
ABC 0 1 1 2 2 3
ABA 0 1 1 2 0 1
ABCA 0 1 1 2 2 3 3 4
ABCB 0 1 1 2 2 3 1 2
ABAB 0 1 1 2 0 1 1 2
ABAC 0 1 1 2 0 1 -1 0

FIG. 1. Stacking diagrams and phase factor chirality pa-
rameters {Pi} for (a) ABC and (b) ABA graphene. (c)
Phase factors for all stacking arrangements from monolay-
ers to tetralayers. We have chosen to set the phase factor of
the sublattice 1A to zero. These results are for valley K. For
valley K′ the chirality parameters change sign.

Exchange self-energy—Our goal in this Letter is to ad-
dress interaction effects in moderate carrier density mul-
tilayer graphene systems, which are are weakly correlated
two-dimensional Fermi liquids in which electron-electron
interaction effects can be reliably addressed using pertur-
bation theory. At leading order the electron self-energy
is given by the unscreened exchange contribution:

Σex(k, s) = −
∑

s′

∫

d2k′

(2π)2
Vk−k′fs′,k′F s,s′

k,k′ , (4)

where fs,k is the Fermi function for the band s and

wavevector k, F s,s′

k,k′ = |〈s,k|s′,k′〉|2 is a wavefunction

overlap factor, and Vq = 2πe2/ǫ0q is the two-dimensional
Coulomb interaction. (We note that the Coulomb inter-
action between layers with the layer separation d is given
by Vq(d) = Vqe

−qd. Due to the small layer separation
we approximate Vq(d) ≈ Vq for the analytic calculations.
The full numerical calculations using Vq(d) do not change
the results qualitatively.) It is conventional to absorb the
self-energy at the Dirac point (k = 0) in the absence of
carriers into the zero of energy.
To understand the consequences for interaction physics

of multilayer wavefunction chiral properties, it is instruc-
tive to first consider the chiral two-dimensional elec-
tron system (C2DES) Hamiltonians[5] that provide a
low-energy effective theory of multilayer graphene. The
Hamiltonian of a C2DES with the chirality index J is

HJ (k) = t⊥







0
(

~vke−iφ
k

t⊥

)J

(

~vkeiφk

t⊥

)J

0






, (5)

and yields eigenenergies εs,k = st⊥ (~v|k|/t⊥)J , and

eigenspinors |s,k〉 =
(

s, eiJφk

)t
/
√
2, where s =

±1 for positive and negative energy states respec-

tively. For a C2DES with the chirality J , F s,s′

k,k′ =
1
2 [1 + ss′ cosJ(φk − φk′ )] = 1

2 (1 + ss′nk · nk′), where
nk = (cos Jφk, sinJφk) is the pseudospin direction at
k characterized by the chirality index J . Note that the

overlap factor F s,s′

k,k′ for a C2DES has the form of Heisen-
berg interactions between pseudospins with orientation
Jφk and Jφk′ [6].
In Fig. 2(a) intraband and interband contributions to

the conduction band exchange self-energy of a C2DES are
plotted. In Fig. 2(b) pseudospin chirality is illustrated by
plotting the spin-1/2 pseudospin orientation appropriate
for two-component spinors. As the chirality increases,
the magnitude of each contribution is suppressed be-
cause pseudospin orientation changes more rapidly with
wavevector. Especially, the interband exchange is sup-
pressed more strongly owing to the contribution from
states occupying the infinite sea of negative energies. In
Figs. 2(c) and (d) we compare C2DES exchange self-
energies with those of ABC and ABA graphene multi-
layers. At low carrier densities in ABC graphene, the
relative chiral index of the dominant wavefunction com-
ponents is 3 and the exchange self-energy resembles the
weak form found in a C2DES with J = 3; as the density
increases, interlayer hopping becomes less important, and
the exchange self-energy eventually approaches that of a
C2DES with J = 1. At low densities, ABA graphene
is described[5] by a direct product of chiral gases with
J = 1 and J = 2.
Density–density response functions and collective

modes — Figure 3 plots loss functions Im[−ε(q, ω)−1]
for several different multilayer graphene structures. Here
ǫ(q, ω) is the dielectric function which we approximate
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FIG. 2. (a) Exchange self-energies and (b) conduction band
pseudospin direction (s = +1) for C2DESs with J = 1, 2, 3, 4.
Exchange self-energies of (c) the lowest conduction band
(s = +1) of ABC trilayer graphene for n = 1011, 1013 cm−2,
and (d) the lowest (s = +1) and second lowest (s = +2) con-
duction bands of ABA trilayer graphene for n = 1012 cm−2.
(The bands of the ABA multilayer structures are shown in the

inset.) Here Σ0 = 2e
2
kF

ǫ0π
and we use the effective fine structure

constant α = e
2

ǫ0~v
= 1 and momentum cutoff qc = 1/a.

using the weak coupling random phase approximation
(RPA) expression ǫ(q, ω) = 1− VqΠ0(q, ω), and Π0(q, ω)
is the non-interacting electron density–density response
function:

Π0(q, ω) = gsv
∑

s,s′

∫

d2k

(2π)2
fs,k − fs′,k+q

~ω +∆s,s′

k,k+q + iη
F s,s′

k,k+q ,

(6)
where gsv = gsgv = 4 is the spin-valley degeneracy,

∆s,s′

k,k+q = εs,k − εs′,k+q, εs,k is the eigenenergy for the
band index s and wavevector k, and η is a positive in-
finitesimal number. The black thick lines in Fig. 3 plot
the boundaries of electron–hole continua within which
ImΠ0(q, ω) is non-zero and electron–hole excitations are
allowed. When ǫ(q, ω) = 0, the loss function has a δ-
function peak corresponding to plasmon collective exci-
tations. When the plasmon modes enter the electron–
hole continuum, they can decay into single electron–hole
pairs through the Landau damping process. In multi-
layer graphene, plasmon modes decay through interband
transitions. The shark-fin structures around ω = 0 re-
flects from the chiral nature of the wavefunctions which
lead to suppressed momentum-dependent scattering[7].
Ground State Energy — The ground-state energy is

the sum of the non-interacting kinetic energy and inter-
action (exchange-correlation) energies. The exchange-
correlation energy can be expressed in terms of the

FIG. 3. Loss function Im[−ε(q, ω)−1] of (a) ABC, (b) ABA,
(c) ABCA, and (d) ABAB stacked multilayer graphene for
n = 1012 cm−2 and α = 1 with η = 5 × 10−5εF. The thick
black lines indicate boundaries of the electron–hole continua
and the insets in each panel show the energy band struc-
ture. In the ABA structure and in other multilayer struc-
tures with mirror symmetry, some interband transitions do
not contribute to plasmon Landau damping, as indicated by
dotted lines in panel (b).

density-density response function[8] by applying the
integration-over-coupling-constant method and appeal-
ing to the fluctuation-dissipation theorem. The RPA ap-
proximation to the exchange-correlation energy is justi-
fied in part by the relatively large spin-valley flavor de-
generacy gsv = 4 which makes the RPA bubble-diagram
contributions to the energy more dominant[8]. For tech-
nical reasons it is convenient to separate the first-order
exchange-correction to the interaction energy and higher
order corrections commonly referred to as the corre-
lation energy. The dependence of the exchange and
RPA correlation energies on carrier density can then
be expressed[9, 10] as integrals along the imaginary fre-
quency axis:

εex = − ~

2n

∫

d2q

(2π)2

∫

∞

0

dν

π
VqδΠ0(q, iν), (7)

εcorr =
~

2n

∫

d2q

(2π)2

∫

∞

0

dν

π

[

VqδΠ0(q, iν)

+ ln

∣

∣

∣

∣

1− VqΠ0(q, iν)

1− Vq Π0(q, iν)|n=0

∣

∣

∣

∣

]

,

where δΠ0(q, iν) = Π0(q, iν) − Π0(q, iν)|n=0. We use
the momentum cutoff qc = 1/a to remove the ultraviolet
divergences in the momentum integrals.

Using these expressions, we find that in terms of the di-
mensionless coupling constant αF = e2/ǫ0~vF = (v/vF)α
where vF is the Fermi velocity, the exchange energy is
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given by

εex = ~vFkFC1αF =
e2

ǫ0
kFC1, (8)

and the correlation energy for small αF has the form of

εcorr = ~vFkF
(

C2α
2
F + · · ·

)

, (9)

whereas in the strong coupling limit (αF ≫ 1),

εcorr = ~vFkF (D1αF +D0 + · · · ) . (10)

The coefficients {Ci} and {Di} in these expressions have
weak density dependence through the response function
and the momentum cutoff.

FIG. 4. Comparison between the ground-state exchange en-
ergies (left panel) and correlation energies (right panel) of
several different multilayer graphene (thick lines) structures
and C2DES systems (dotted lines) as a function of carrier
density for α = 0.05.

To address multilayers, we first discuss the case of
C2DES models whose exchange and correlation energies
exhibit a systematic dependence on their chirality index
J . As we see from Eq. (8) that the exchange energy is
approximately proportional to kF irrespective of the in-
teraction strength. The positive value of C1 for J = 1
reflects the dominance in this case of interband exchange.
For J > 1, the interband contribution is suppressed be-
cause of the larger chirality indices and the exchange en-
ergy turns negative (C1 < 0). For the correlation en-
ergy in the strong coupling limit, we find from Eq. (10)
that εcorr = (e2/ǫ0)kFD1 + JεFD0 + · · · , where εF is the
Fermi energy. Note that C1 = −D1; thus for J > 1 εcorr
is positive (D1 > 0), whereas for J = 1 εcorr is negative
(D1 < 0). In the weak coupling limit, we see from Eq. (9)

that εcorr ∝ vFkFa
2
F ∝ k2−J

F .
Figure 4 illustrates these properties of C2DES models

and compares these exchange-correlation energy proper-
ties with those of multilayer graphene systems. For multi-
layer graphene, at low densities, the exchange and corre-
lation energies follow those of the largest J C2DES model

contained within its low-energy bands because they are
responsible for the largest density of states (DOS). For
example, for ABA stacking the exchange and correlation
energies at low densities follow those of a J = 2 C2DES
because a J = 2 C2DES has a larger DOS than a J = 1
C2DES. As the carrier density increases, interlayer hop-
ping becomes less important and the exchange and cor-
relation energies begin to approach those of monolayer
graphene.

Summary and Discussion — In this Letter we have ex-
ploited the simple dependence of band wavefunctions on
momentum orientation to simplify many-electron pertur-
bation theory calculations for multilayer graphene, and to
bring out the relationship between stacking sequence and
carrier-carrier interaction phenomena in this interesting
class of materials. By explicit calculations for a variety of
different structures we have shown that the exchange self-
energies and related exchange-correlation energy features
in multilayer graphene systems follow those of C2DES
models at low carrier densities, but cross over to be more
similar to those of monolayer graphene as carrier densi-
ties increase. The rotational transformation of the chiral
wavefunction is very general and can be applied even in
the presence of site energy variations or remote hopping
terms, unless momentum-dependent hopping terms do
not appear in the Hamiltonian. For example, if the re-
mote interlayer hopping term γ2 is included in the Hamil-
tonian, it modifies {ci}, but not the angular part of the
wavefunction in Eq. (2).

The model we employ, however, does not include
momentum-dependent remote interlayer hopping terms.
We also use the weak-coupling RPA in the calculation.
Both limit the applicability of our calculations to mod-
erate to high carrier densities, and at very low carrier
densities correlations frequently become strong and lead
to broken symmetry ground states not captured by the
RPA[11].

Our theory, however, captures important observable
effects produced by interactions which strongly depend
on the stacking sequences such as plasmon collective ex-
citations and self-energies. The dependence of ground
state energies on carrier and spin densities are responsi-
ble for renormalized electronic compressibility and spin
susceptibility, respectively. For example, the electronic
compressibility κ is given by κ−1 = n2dµ/dn, where
µ = ∂(nεtot)/∂n is the chemical potential of the interact-
ing system, and εtot is the total ground-state energy per
particle. In an ordinary parabolic band two-dimensional
electron system the compressibility famously becomes
negative at low carrier densities[12]. In contrast, for a
C2DES we find that in the low-density strong-coupling
limit, κ0/κ ≈ 1 + J(J + 2)D0/2 with D0 > 0 for J = 1
and D0 < 0 for J > 1. (Here κ0 is the non-interacting
compressibility.) It follows that for a J = 1 C2DES, the
electronic compressibility is strongly suppressed by inter-
actions due to the interband exchange contribution and
remains positive[10]. For a J > 1 C2DES, the interband
exchange contribution is suppressed with the chirality;
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thus, the electronic compressibility is enhanced by the
interactions. Interestingly, we find that for J ≥ 5, the
compressibility can be negative in the low-density limit,
suggesting an instability toward other ground states,
whereas in the absence of correlation, this occurs for
J ≥ 2. For multilayer graphene, at low carrier densities,
the compressibility follows the trend of the correspond-
ing C2DES, but as the carrier density increases, the com-
pressibility follows that of monolayer graphene with sup-
pressed compressibility[13, 14], showing non-monotonic
behavior arising from competition between the intraband
exchange, interband exchange, and correlation.

In conclusion, our new approach allows us to effectively
calculate the quasiparticle and thermodynamic proper-
ties of interacting many-body chiral systems. We show
that as the chirality increases, the exchange contribu-
tion to the single particle energy is suppressed and the
correlation contribution increases, indicating that the
exchange-correlation is controlled by the stacking ar-

rangement. Our results suggest that correlation effects
play a more important role in a system with a large chi-
rality; thus, we expect that rhombohedral graphene with
periodic ABC stacking could show exotic interaction-
induced phenomena such as ordered states and non-Fermi
liquid behavior[11].
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