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We study the Kondo effect in three-dimensional (3D) Dirac materials and Weyl semimetals. We
find the scaling of the Kondo temperature with respect to the doping n and the coupling J between
the moment of the magnetic impurity and the carriers of the semimetal. We consider the interplay
of long-range scalar disorder and Kondo screening and find that it causes the Kondo effect to
be characterized not by a Kondo temperature but by a distribution of Kondo temperatures with
features that cause the appearance of strong non-Fermi liquid behavior. We then consider the effect
of Kondo screening, and of the interplay of Kondo screening and long-range scalar disorder, on the
transport properties of Weyl semimetals. Finally we compare the properties of the Kondo effect in
3D and two-dimensional (2D) Dirac materials like graphene and topological insulators.
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In Weyl and Dirac semimetals (SMs)1–7 the conduction
and valence bands touch at isolated points of the Bril-
louin zone (BZ) named “Weyl nodes” in Weyl SMs and
“Dirac points” (DPs) in Dirac SMs. Around these points
the electronic excitations behave as three-dimensional
(3D) massless Dirac fermions characterized by a density-
independent Fermi velocity vF. Weyl SMs are expected
to exhibit unique properties8–10 and to have surface
states forming “Fermi arcs”3,4,11–18. The eigenstates of
the bare Hamiltonian are non-degenerate in the case of
Weyl SMs1,3–5. Conversely, in Dirac SMs the eigenstates
are doubly degenerate, i.e. each Dirac point corresponds
to two copies of overlapping Weyl nodes with opposite
chiralities19. The linear dispersion around the nodes is
expected to give rise to anomalous transport properties
in both 3D Dirac and Weyl SMs4,20. Graphene21–23 and
the surface states of 3D topological insulators (TIs)24,25

constitute the two-dimensional (2D) counterpart of 3D
SMs24,25.

At low temperature, magnetic impurities strongly af-
fect the properties of any electron liquid. The “Kondo
effect”26,27 is characterized by a temperature scale TK:
when the temperature (T ) is larger than TK the electrons
of the host material are only weakly scattered by the
impurity; for T < TK the (antiferromagnetic) coupling
grows non-perturbatively and leads to the formation of a
many-body singlet with the electron liquid, which com-
pletely screens the impurity magnetic moment.

In this work we show that the unique band structure
of 3D Dirac and Weyl SMs strongly affects the nature of
the Kondo effect in these systems. We (i) obtain the de-
pendence of TK on the doping level of the SM and on the
strength of the antiferromagnetic electron-impurity cou-
pling J , (ii) show that the interplay of linear dispersion
around the nodes, Kondo effect, and long-range scalar
disorder induces a strong non-Fermi liquid (NFL) behav-
ior28–31 in these systems, (iii) obtain the effect of the
Kondo screening, and of the interplay of Kondo screening
and long-range scalar disorder, on the transport proper-

ties and on the magnetic susceptibility of SMs. These
quantities can be used to address experimentally the
Kondo effect and the NFL behavior. Finally we present
a systematic comparison of the properties of the Kondo
effect between 3D and 2D Dirac SMs32–45.

In Dirac and Weyl SMs the low-energy states around
one of the DPs are described by the Hamiltonian H0 =

ĉ†kσ(~vFk ·τσσ′−µδσσ′)ĉkσ′ , where ĉ†kσ (ĉkσ) creates (an-
nihilates) an electron with momentum k and spin (or
pseudospin) σ, and µ is the chemical potential. Here-
after we set ~ = 1. For TIs and Weyl SMs (graphene and
3D Dirac SMs) τσσ′ is the vector formed by the 2 × 2
Pauli matrices in spin (pseudospin) space. The contri-
bution of Fermi arcs to the Kondo effect in Weyl SMs
is negligible, since it requires a flip of the electron spin,
and consequently a jump between different surfaces of
the SM. Thus, the differences between Weyl and Dirac
SMs, besides the extra spin degeneracy gs = 2 of Dirac
eigenstates, turn out to be inessential for our purposes.

In the presence of diluted magnetic impurities the sys-
tem is described by the Hamiltonian H = H0 + HJ

where HJ = J
∑

r,R ĉ
†
rστσσ′ ĉrσ′ · Sδ(r − R), with S

the magnetic moment of the impurities, {R} their po-
sitions, and J the strength of the (antiferromagnetic)
coupling between the impurities and the carriers. To
treat this term we use a large-N expansion46,47, by which
S is expressed in terms of auxiliary creation (annihila-

tion) fermionic operators f̂†σ (f̂σ) satisfying the constraint

nf =
∑
σ f̂
†
σ f̂σ = 1, with σ = 1, . . . , Nσ. We set Nσ = 2

at the end of the calculation, which corresponds to the
case of a magnetic impurity with |S| = 1/2. In terms

of the f̂ -operators the coupling term HJ takes the form

HJ = J
∑

k,k′,σ ĉ
†
kσ ĉk′σ′ f̂

†
σ′ f̂σ.

The large-N expansion allows a mean field treatment
of the Kondo problem46, and is known to return accurate
and reliable results for the case of diluted magnetic im-
purities46–48. We decouple the quartic interaction term

HJ via a Hubbard-Stratonovich field s ∼
∑

k,σ〈f̂†σ ĉkσ〉,
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which describes the hybridization between “localized”

(f̂) and “itinerant” (ĉ) electronic states. The constraint
nf = 1 is enforced by the introduction of a Lagrange
multiplier µf , which plays the role of the chemical po-
tential of the f -electrons. Approximating s and µf as
static (mean-)fields, we finally obtain the effective action

Seff=
1

kBT

 2

π

∫
dε

arctan
[
π
2
|s|2N (ε+µ)

ε−µf

]
eε/(kBT ) + 1

+
|s|2

J
− µf

 ,

(1)
where the integral is bound between −D− µ and D− µ,
D is a cut-off corresponding to half the bandwidth of the
SM, N (ε) = V Nwε

2/(2π2~3v3
F) is the density of states

(DOS) with Nw the number of DPs, and V the volume
of the system. The corresponding Seff for the 2D case
is obtained by replacing N (ε) → V Nw|ε|/(2π~2v2

F). By
minimizing Seff within the saddle point approximation47

we obtain the self-consistent equations for |s|2 and µf .
We identify TK as the highest temperature for which

the self-consistent equations have a non-trivial solution.
Depending on the value of µ we can have two distinct
situations. For µ = 0, i.e. when the chemical potential
of the 3D SM lies exactly at the DP, we obtain

TK = D

√
3

π

√
1− 2

N (D)J
, µ = 0 . (2)

Eq. (2) is valid only for J larger than the critical value
Jcr = 2/N (D); TK vanishes when this condition is not
met. A similar result is found in 2D, for which one ob-
tains TK = D

[
1 − 1/(N (D)J)

]
/ ln(4)32,33,37,43,49. In

the 2D case Jcr = 1/N (D). Numerical renormalization
group (NRG) calculations34 show that, for N (ε) ∼ |ε|a
(with a > 1/2) and in the presence of perfect particle-
hole symmetry, the Kondo effect cannot be realized for
any value of J . The previous results should be intended
to describe 2D and 3D SMs close to, but not exactly at, a
particle-hole symmetric situation. This is likely the most
realistic condition given that in real systems typically
there is no particle-hole symmetry. Local fluctuations
take the local µ away from the Dirac point almost ev-
erywhere in the sample. Moreover, in many systems like
graphene and TIs (in 2D) or the Weyl SM Cd2As3

50 (in
3D) the Fermi velocities of the conduction and valence
bands are different.

When µ 6= 0, in the limit kBTK � µ� D and J . Jcr

we obtain

TK = D exp

[
1− 2/(JN (D))

2µ2/D2

]
, µ 6= 0 . (3)

In 2D39 and for J . Jcr we have instead TK =
κ(µ)e[1−1/(N (D)J)]/|µ/D|, where κ(µ) = µ2/D [κ(µ) = D]
for µ > 0 [µ < 0]. For J & Jcr, TK can be obtained
numerically. Fig. 1 shows TK for 3D and 2D SMs as a
function of J (both smaller and larger than Jc) and for
different values of µ > 0.
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FIG. 1. (Color online). TK as a function of Ĵ = JN (D) for
different values of µ/D for a 3D, a), and 2D, b) Dirac SM.

We now investigate the effect of long-range scalar dis-
order on the Kondo effect. In Dirac SMs, differently from
“standard” metals, charged impurities induce51–53 long-
range carrier density inhomogeneities54,55. Such inho-
mogeneities have been observed in direct imaging exper-
iments in graphene56–58 and TIs24,59,60. Since the DOS
of 3D Dirac SMs scales with the density, as ∼ n2/3 in
3D and ∼ n1/2 in 2D, the long-range fluctuations of the
carrier density reflect on the DOS and therefore on TK,
Eq. (3). The Kondo effect is not characterized anymore
by a single value of TK, but by a distribution of Kondo
temperatures P (TK)44. A similar situation was predicted
to occur in metals close to a metal-insulator transition
(MIT)28.

We consider a Gaussian density distribution Pn(n) cen-
tered around the average doping n̄, with standard devi-
ation σn (proportional to the number of dopants), i.e.

Pn(n) = exp
[
−(n− n̄)2/(2σ2

n)
]
/(
√

2πσn). This assump-
tion for Pn(n) has been shown to be well justified for the
case of 2D graphene61–63 and we expect it to be a rea-
sonable model also for 3D SMs. Using this expression for
Pn(n) and the fact that µ ∼ n1/3, from Eq. (3) we obtain

P (3D)(TK) =
3D3T−1

K

8
√
πσ3

µ

√√√√ (
1− Jc/J

)3
ln5(kBTK/D)

∑
λ=±1

e
− (µ3−λµ̄3)2

2σ6
µ ,

(4)
where µ̄ = vF(6π2n̄/Nw)1/3, σµ = vF(6π2σn/Nw)1/3, and
µ ≡ µ(TK) is obtained by inverting Eq. (3). In so do-
ing, we neglected the change of the local DOS due to
the scalar part of the potential of the magnetic impu-
rity, which is significant only when µ ∼ 0. Due to the
strong carrier density inhomogeneities induced by the
long-range disorder, even when n̄ = 0 the area of the
sample where µ ∼ 0 has measure zero. Therefore, the
change of the DOS can be neglected.

We recall that in 2D |µ| ∼ n1/2. The major compli-
cation in inverting the relation TK(µ) in this case is due
to the asymmetric prefactor κ(µ), which we approximate
as κ(µ) = D. In this way we obtain a lower bound for
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FIG. 2. (Color online). T̄KP (T̄K), T̄K ≡ kBTK/D, for a 3D,
a), and 2D, b), SM with vF = 108 cm/s, D = 0.5 eV, J =
0.6 Jcr, Nw = 2 and different values of n̄ [in units of cm−3

in a), cm−2 in b)]. In a) σn = 1016 cm−3 and gs = 1, in b)
σn = 1011 cm−2 and gs = 2.

P (2D)(TK).

P (2D)(TK) =

√
2D2

√
πσ2

µTK

(1− Jc/J)2

| ln3(kBTK/D)|

∑
λ=±1

e
− (µ2−λµ̄2)2

2σ4
µ ,

(5)
where µ ≡ µ2D(TK). Eqs. (4) and (5) show explicitly
that, in the limit TK → 0,

P (3D)(TK) ∝ T−1
K | ln(TK)|−5/2e−µ̄

6/(2σ6
µ) , (6)

P (2D)(TK) ∝ T−1
K | ln(TK)|−3e−µ̄

4/(2σ4
µ) . (7)

Our approach is valid as long as the size of Kondo cloud
for TK ≥ T is smaller than the correlation length of the
disorder potential. Figure 2 shows the profile of P (TK)
for different values of n̄ in 3D and 2D, panel a) and b),
respectively. It is interesting to notice that the scaling
for TK → 0 that we find for the 2D case, Eq. (7), is effec-
tively indistinguishable from the scaling P (TK) ∝ Tα−1

K
with α = 0.2 that was found by fitting NRG results in
Ref. 44. This result shows the good agreement in 2D
between the NRG and large-N expansion and therefore
confirms the reliability of the two approaches even in the
delicate regime induced in 2D Dirac semimetals by the
presence of carrier density inhomogeneities. This agree-
ment also suggests that even in 3D the large-N expansion
should provide reasonably accurate result for P (TK).

Equations (6)-(7) show that in the presence of long-
range disorder there is always a large fraction of the sam-
ple whose TK is extremely small. As a consequence at any
finite T a significant fraction of carriers is not “bound” to
the magnetic impurities. From Eqs. (4) and (5) we deter-

mine the number of free spins as nfr(T ) =
∫ T

0
dTKP (TK)

and in the limit of T → 0 we find

nfr(T ) ∝ | ln(T )|−3/2e−n̄
2/(2σ2

n) in 3D , (8)

nfr(T ) ∝ | ln(T )|−2e−n̄
2/(2σ2

n) in 2D . (9)

Note that the number of free spins goes to zero loga-
rithmically as T → 0. Therefore the magnetic suscepti-
bility χm(T ) ∝ nfr(T )/T diverges at low temperature. At
odds with the magnetic susceptibility of a normal Fermi
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FIG. 3. (Color online). a), b) ρ
(EMT)
K (T ) for the case in

which µ̄ = 60 meV in 2D (Ĵ = 0.98) and 3D (Ĵ = 1.77)

respectively. c), d) ρ
(EMT)
K (T ) for the case in which n̄ = 0

(J < Jcr), in 2D and 3D respectively. In this plot σn is in
units of cm−3 in the 3D case, and of cm−2 in the 2D one.

liquid, χm(T ) does not converge to any finite value for
T = 0 and, away from T = 0, does not scale with T as
∼ 1/T (Curie-Weiss law)64. This is a clear signature of
the development of a NFL behavior. We observe that
in Dirac SMs the divergence of χm(T ) is stronger than
what was found for metals close to a MIT28. Note also
that both the distribution P (TK) and the number of free
spins contain the factor exp

[
− n̄2/(2σ2

n)
]
, which encodes

the effects of both doping and disorder. If the system is
strongly doped (i.e. if n̄ � σn), the exponential fac-
tor strongly suppresses the NFL behavior. The density
fluctuations are indeed too small and the Kondo effect
is completely controlled by the average Kondo temper-
ature. In this situation, χm diverges only at extremely
small temperatures. On the contrary, when σn & n̄, the
exponential factor is of order of the unity, and nfr can be
quite large.

We now discuss the effect of our results on the trans-
port properties of 3D and 2D Dirac materials. The cou-
pling term HJ induces a self-energy correction, Σ(ε),
for the SM quasiparticles (QPs). The imaginary part
of Σ(ε) gives the relaxation rate 1/τ(ε) of the QPs
due their hybridization with the f electrons. We find
1/τ(ε) = 4nimp/

[
πN (ε + µ)

]
where nimp is the density

of magnetic impurities.

Notice that τ(ε) does not depend on the hybridiza-
tion |s|2. The factor |s|2 due to the interaction ver-
tices between electrons and impurity states is canceled
by the opposite factor ∼ 1/|s|2 stemming from the spec-
tral weight of impurity states at the Fermi energy. Using
the Boltzmann-transport theory and the expression of
τ(ε), we can estimate the Kondo resistivity ρK for the
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3D case at T = 0:

ρK(T = 0) =
h

e2

(
32gs

3π2N2
w

)1/3
nimp

n4/3
. (10)

It is interesting to compare the scaling given by Eq. (10)
to that of the resistivity due to scalar disorder (ρ). for
short-range scalar disorder ρ is independent of n4. For
long-range disorder (due to charged impurities) ρ4 has
the same scaling with respect to nimp and n as ρK(T =
0). The same happens in the 2D case, for which ρK =
(h/e2)[4nimp/(πNw)]n−1 38.

To obtain ρK(T ) at finite T it is necessary to keep
higher order terms27 in the coupling J and to take into
account electron-phonon scattering events. We find that
in general, within the Bloch-Grüneisen regime for the
electron-phonon contribution and for T > TK, ρK(T ) is
given by the following expression:

ρK

ρ0
=

[
1 +

1

4

(d− 1)π2S(S + 1)

ln2(T/TK) + π2[S(S + 1)]/4
+AphT

2+d

]
.

(11)
where d is the dimensionality of the system (2 or 3), ρ0 ≡
ρK(T = 0) and ρ0AphT

2+d is the phonon contribution
to the resistivity. This expression is equal to that valid
for standard 2D and 3D metallic system. The unique
dispersion of Dirac and Weyl SMs affects ρ(T ) indirectly
through the dependence of TK on n, J , and Nw. Note
that in general, also Aph depends on n.

The expression of ρK given by Eq. (11) is valid for
an homogenous system. To take into account the ef-
fect of the scalar disorder on ρK(T ) we use the ef-
fective medium theory (EMT)63,65,66. In the EMT
the resistivity of the inhomogeneous system is equal

to that of an homogenous “effective medium” [ρ
(EMT)
K ],

and is determined by solving the integral equation∫
dTKP (TK)

ρ
(EMT)
K (T )−ρK(T,TK)

ρ
(EMT)
K (T )+(d−1)ρK(T,TK)

= 0.

In the remainder for the 2D case we use parame-
ter values appropriate for graphene: vF = 108 cm/s,
D = 0.5 eV, Nw = 2, and spin degeneracy gs = 2. In
3D we consider the case of an isotropic linear disper-
sion with a Fermi velocity equal to that of graphene,
D = 0.5 eV, Nw = 2 and gs = 1, parameters that
roughly approximate the case of Cd2As3

7. We then as-
sume Ĵ ≡ JN (D) = 0.98 and Aph = 4×10−6 meV−4 for

the 2D case, and Ĵ = 0.98 and Aph = 4 × 10−7 meV−5

for the 3D case.

Figures 3a) and b) show the results for ρ
(EMT)
K , for the

2D and 3D case respectively, when µ̄ = 60 meV (n̄ =
2.647× 1011 cm−2 in 2D, n̄ = 2.561× 1016 cm−3 in 3D)

and Ĵ is set to a value such that for the homogenous case
we have TK = 6 meV [Eq. (3)], i.e. of the same order of
the values observed experimentally in graphene67. We see

that for σn � n̄, ρ
(EMT)
K (T ) exhibits the nonmonotonic

behavior, characterized by a minimum for T ∼ TK, that is

the signature of the Kondo effect. However for σn & n̄ the

profile of ρ
(EMT)
K (T ) changes dramatically: the minimum

of ρ
(EMT)
K (T ) first becomes shallower, moving to lower

values of T , and then eventually disappears. In both 2D
and 3D Dirac SMs, in the presence of long-range disorder,

ρ
(EMT)
K (T ) may not show any qualitative signatures of the

Kondo effect even though in a large fraction of the sample
the magnetic impurities are Kondo screened.

We now consider the case in which µ̄ = 0. Considering
that the we have chosen values of J < Jcr, in the homoge-

nous limit TK → 0 and therefore ρ
(EMT)
K (T ) does not

exhibit any minimum at low T . This picture, however,
is qualitatively modified in Dirac materials when long-
range scalar disorder is present, as shown in Figs.3 c)
and d): in the presence of density inhomogeneities, even

for n̄ = 0 and J < Jcr, ρ
(EMT)
K (T ) can exhibit a minimum

signaling the presence of Kondo screening in a significant
fraction of the sample.

In conclusion, we have studied the Kondo effect in
3D Dirac and Weyl semimetals. In the absence of long-
range, disorder-induced, carrier density inhomogeneities
the Kondo effect is characterized by the Kondo temper-
ature TK, the crossover temperature below which the
Kondo screening takes effect. When the chemical poten-
tial µ is at the Dirac point we find that no Kondo effect
can take place unless the coupling J between magnetic
impurities and conduction electrons is larger than a crit-
ical value Jcr = 2/N (D). In this case TK ∝

√
1− Jcr/J .

For µ > 0, TK depends exponentially on µ and J .
In the presence of long-range disorder we find that the

Kondo effect is not characterized by a single crossover
temperature TK, but by a distribution of Kondo tem-
peratures P (TK). In the limit TK → 0, P (TK) ∝
T−1

K | ln(TK)|−5/2 in 3D and P (TK) ∝ T−1
K | ln(TK)|−3 in

2D. This implies that the magnetic susceptibility diverges
slower than ∼ 1/T for T → 0, and that it does not con-
verge to any finite value at zero temperature, a clear
signature of a strong NFL behavior28.

We have then studied the effect of Kondo screen-
ing, and of the interplay of Kondo screening and long-
range scalar disorder, on the transport properties of Weyl
semimetals. We find that for T = 0 the Kondo resistiv-
ity due to the presence of magnetic impurities scales as
ρK ∝ nimp/n

4/3. We have then obtained the expression
of ρK for finite T and found that when the scalar disorder
is weak ρK(T ) exhibit the typical minimum characteristic
of the Kondo effect. However, we find that in the pres-
ence of strong scalar-disorder ρK(T ) might not show any
qualitative signatures of the Kondo effect even though in
a large fraction of the sample the magnetic impurities are
Kondo screened and viceversa exhibit a minimum even
in the limit, n̄ = 0 and J < Jc, when in the homogenous
system no Kondo-effect is present.

This work was supported by DOE grant DE-FG02-
05ER46203 (AP, GV), by ONR grant ONR-N00014-13-
1-0321 (ER), and by a Research Board Grant at the Uni-
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28 V. Dobrosavljević, T. R. Kirkpatrick, and B. G. Kotliar,
Phys. Rev. Lett. 69, 1113 (1992).

29 E. Miranda, V. Dobrosavljević, and G. Kotliar, Journal
of Physics: Condensed Matter 8, 9871 (1996).

30 E. Miranda, V. Dobrosavljević, and G. Kotliar, Phys. Rev.
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