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We study the S = 1/2 Heisenberg model on the triangular lattice with nearest and next nearest
neighbor interactions J1 and J2 with the density matrix renormalization group, on long open cylin-
ders with widths up to 9 lattice spacings. In an intermediate J2 region 0.06 . J2/J1 . 0.17, we find
evidence for a spin liquid (SL) state with short range spin-spin, bond-bond and chiral correlation
lengths, bordered by a classical 120◦ Néel ordered state at small J2 and by a two sub-lattice collinear
magnetically ordered state at larger J2. Focusing on J2/J1 = 0.1, we find a number of signatures of
a gapped SL phase.

PACS numbers: 75.10.Jm, 73.43.Nq, 75.10.Kt

In Anderson’s paper introducing the resonating valence
bond (RVB) state[1], the prototypical example of a spin
liquid (SL)[2], the ground state of the triangular lattice
nearest neighbor Heisenberg model was argued to be a
likely candidate. Later, a variety of analytical and nu-
merical studies[3–6] demonstrated that this system has
three sublattice 120◦ long range antiferromagnetic order.
More recent numerical studies[7–9] have confirmed this
result, and more accurately determined the magnetiza-
tion, with M ∼ 0.2.

It is natural to include small second neighbor J2 terms
to the Hamiltonian, in addition to the nearest neighbor
terms with coupling J1, to see if this additional frustra-
tion induces a spin liquid state. The corresponding clas-
sical phase diagram has a single phase transition point
at J2 = 1/8 (setting J1 = 1 here and below) between
the 120◦ phase and a large number of degenerate four
sublattice magnetically ordered states. This degeneracy
is broken by quantum fluctuations within spin wave the-
ory, selecting a two sublattice collinearly ordered state
through the order by disorder mechanism.[10, 11]

One might expect an intermediate phase to appear
near the classical critical point at J2 = 1/8. The lim-
ited number of studies on this question, which have usu-
ally relied on approximations with uncertain reliability,
have given conflicting results, particularly on the na-
ture of a possible disordered phase and the location of
the phase boundaries.[12–15] Here, we try to resolve the
nature of this possible intermediate state using DMRG
methods.[16] We do find a spin liquid intermediate phase,
gapped with fairly large singlet and triplet gaps, which is
bordered by the expected magnetic phases, the
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ordered state (120◦ classical Need order pattern) at J2 <
0.05 ∼ 0.07 and a two sub-lattice collinear ordered state
at J2 & 0.17. The SL state away from the phase bound-
aries at J2 = 0.1 has very short range magnetic, bond
and chiral correlations. We also observe a dimerization
pattern of bond strengths on odd cylinders and obtain
two different topological sectors on even cylinders. This
behavior is in a number of ways similar to that observed
in the Z2 spin liquid state of the kagome Heisenberg

model.[17, 18] A possible Z2 SL state on the triangular
lattice was treated analytically in the early 90’s.[19, 20]
However, in contrast to the kagome, it has a strong ten-
dency towards spatial anisotropy in the bond strengths.

We study the Hamiltonian

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj (1)

where 〈i, j〉 and 〈〈i, j〉〉 run over nearest and next nearest
neighbor pairs of sites. We set J1 = 1 and consider only
J2 > 0. We study open-ended cylinders, with the axis
along the x direction. If one of the three bond directions
lies along the x(y) direction, we call it XC(YC) cylinder.
An XCn cylinder has n sites along the zigzag y-direction,
while a YCn cylinder has a circumference of n vertical
bonds.

The triangular lattice, with six J1 and six J2 bonds,
has more connecting bonds than other lattices recently
studied with DMRG. This both increases the number
of Hamiltonian terms and increases the entanglement,
which is to first order governed by the area law. For ex-
ample, a vertical line through the YCn cylinder cuts 2n
near-neighbor bonds; thus, one would expect a greater
entanglement entropy in this system than in a square,
honeycomb, or kagome lattice with the same width. This
means we have to keep more states m for the same ac-
curacy, while the greater number of Hamiltonian terms
increases the computational and memory cost for a given
m. The widest cylinders that we can calculate accurately
are YC9 and XC10, keeping up to M=6400 states, which
produces a truncation error that is always less than 10−5.

First we present one calculation which shows all three
phases along a single cylinder. In Fig. 1, we vary J2 spa-
tially from 0 (left edge) to 0.24 (right edge) on a YC6
cylinder, where we label the possible phase transition
points in this model. At J2 . 0.06, we see the

√
3×
√

3
magnetically ordered state, with a diminishing order pa-
rameter as one nears the transition. For large J2 values,
we see a two sub-lattice collinear ordered phase consis-
tently across various cylinders, which resembles the Néel
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FIG. 1: For a YC6 cylinder, we vary J2 with position, from J2 = 0 on the left edge to J2 = 0.24 on the right edge. We
also apply a pinning magnetic field along both the x and z directions on the left edge to favor the classical 120◦ order. Two
approximate phase transition lines are shown. The size of the arrow represents local measurement of 〈S〉 =

√
〈Sx〉2 + 〈Sz〉2

with the direction of the angle given by tan−1[〈Sz〉/〈Sx〉], and the widths of lines proportional to |〈Si · Sj〉+ 0.18|. Solid lines
along bonds means the bond measurement is negative, i.e. a stronger than average bond, while dashed lines indicate bonds
that are weaker than average.

order on a tilted square lattice, consistent with spin wave
theory.[11]

For 0.06 . J2 . 0.16 on this YC6 cylinder, there is
a region with very small magnetic moments, and with a
nearly uniform nearest neighbor bond strength pattern.
Below we will study in detail the point J2 = 0.1, near the
center of the intermediate phase. We find that all of our
results are consistent with this phase being a gapped SL.

We now focus on J2 = 0.1, in the center of the non-
magnetic phase. To understand the results it is essential
to distinguish the different possible topological sectors
for a finite cylinder with open ends. (We consider an
even number of sites.) Infinitely long cylinders are either
even or odd, based on the number of sites in a 1D unit
cell. For example, a YCn cylinder is even if n is even.
Call this type of parity C. In addition, another parity
arises based on a near-neighbor dimer picture. Given
any dimer covering, if we cut the cylinder with a verti-
cal line not intersecting any sites, the number of dimers
cut gives a another parity. Call this parity D; we also
refer to it as the even or odd (topological) sector. For
a finite cylinder, assuming perfect dimer coverings, the
D parity is determined by how the left and right ends
are terminated, and moving a site from the left end to
the right (or vice-versa) switches the topological sector.
In a C-odd cylinder, the two D-parity sectors are related
by a translation of one 1D unit cell, so the bulk proper-
ties are identical. In a C-even cylinder, the two D-parity
sectors are significantly different, but the bulk properties
become identical as the cylinder width increases in a Z2
SL. For finite width, a ground state of the higher energy
sector may be able to fall into the lower energy sector,
through the creation of a spinon at each end of the sys-
tem. The C-parity is a rigorous concept associated with
the Lieb-Schultz-Mattis theorem. It is not obvious that
the D parity is a useful concept for every spin liquid, but
for both the kagome and the triangular SL found here,

FIG. 2: The higher-energy even (a) and the lower-energy odd
(b) sector ground states for a YC6 cylinder with J2 = 0.1,
where we subtract −0.18 from all the bonds. The odd and
even sector systems differ primarily by the removal of a single
site at each edge; in addition, we needed to make the higher
energy system shorter to avoid falling into the low energy
sector through the creation of two end spinons. In the plot
the bond thickness is restricted to a maximum; otherwise,
many edge bonds would be much thicker. (c) Central portion
of the ground state on the XC6 cylinder. The solid (dashed)
bonds have strength 〈Si ·Sj〉 = −0.287/−0.157. (d) A similar
central region for a YC5 cylinder. The solid (dashed) bonds
have strength 〈Si · Sj〉 = −0.158/− 0.126.

the classification appears to work perfectly.

In Fig. 2 we show results for the ground states for both
sectors for the (C-even) YC6 cylinder. Here we see that
the lower energy sector has a very uniform bond strength
pattern (bottom panel), whereas the higher energy sector
is much less uniform. This behavior is seen in all the
C-even cylinders, in both this triangular system and in
the kagome Heisenberg system, thought to be a Z2 spin
liquid.[17]

For a Z2 spin liquid, these two sectors in a C-even
cylinder should become degenerate in the 2D limit, with
the energy separation depending exponentially on the
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width of the cylinder. Here, for YC6, extrapolating in
the truncation error and in the cylinder length, we find
an energy per site for the lower-energy odd sector of
E0 = −0.52096(1). For a long enough cylinder, the even
sector produces end spinons and falls into the odd sec-
tor. The end spinons cost a finite energy, of order the
triplet spin gap, but being in the wrong sector in the
bulk costs an energy proportional to the length of the
system. Thus short system even sector ground states are
stable. Longer systems, during the course of a DMRG
simulation, may stay in the even sector ground state for
a number of sweeps, but then as we increase the number
of states keptm, they may suddenly fall into the lower en-
ergy sector by producing two end spinons. (We can also
prepare the initial DMRG state to make it start off in the
two spinon sector, in which case there is no sudden fall.)
For example, for a YC6 cylinder with length Lx = 30,
we have observed the sudden drop near m ∼ 3000, but
this depends on a variety of details of the DMRG simu-
lations. Thus, estimating the higher energy ground state
energy cannot be done as accurately as the low energy
sector. (The DMRG calculations also converge faster and
with smaller truncation errors for the lower energy sec-
tor.) Using shorter cylinders, for YC6 we find an even
sector energy of E1 = −0.5152(2), higher than the odd
sector by about 0.0058(2) per site, or about 1.1%. The
magnetic correlations, the bond-bond correlations, and
the chiral correlations for the YC6 low energy sector are
all very short ranged, with correlation lengths roughly
1 ∼ 2 lattice spacings.[21]

Similar behavior is seen for the C-even YC4 and YC8
cylinders. However, whereas for YC6 the bond strengths
in the three bond directions were almost identical, for
YC4 they are highly anisotropic. For YC4, the ground
state is in the even sector, while the odd sector energy
is higher by about 3%. In the even sector, the diago-
nal bond strength (−0.045) is almost ten times weaker
than the vertical bond strength (−0.442). In the odd
sector, the opposite happens: the diagonal bond (−0.23)
is three time larger than vertical bonds (−0.08). It ap-
pears that this spin liquid state is highly susceptible to
bond anisotropy, and the small circumference of the YC4
cylinder elicits very large anisotropic responses.

On the YC8 cylinder, the ground state is in the odd
sector with an energy 0.6% lower than the even sec-
tor. The odd sector has uniform bond strengths in the
cylinder center, but like YC4 it has a significant bond
anisotropy, with vertical bond strength -0.225 and hori-
zontal -0.159. (This strong tendency towards anisotropy
on such a large lattice is completely absent in the kagome
system.) The higher energy even sector has nonuniform
bond strengths, looking like there are strings connecting
the cylinder two ends.[21]

Comparing YC4, YC6, and YC8, we see that the en-
ergy difference between the two sectors falls steadily with
increasing width. For a gapped Z2 SL, the energy split-

ting should decay exponentially with increasing the cylin-
der width. Our results are consistent with this exponen-
tial decay, with a decay length of about 1.7 lattice spac-
ings (not shown). The YC cylinders can have significant
bond anisotropy, although for YC6 it is very small. Com-
paring YC4 and YC8, the strength of the anisotropy is
falling rapidly with width, while for YC6 it is anoma-
lously small.

On the C-even XC cylinders, such as XC4 and XC8,
anisotropy is also observed. (XC6 is an odd cylinder, so
we discuss that below.) With the XC cylinder geome-
try, finite size effects make the horizontal bonds weaker
than the two diagonal bonds. The anisotropy is less pro-
nounced on XC8 than on XC4.

We have tried to measure the topological entangle-
ment entropy to more directly measure the topological
order for the SL state. However, because of the strong
anisotropy, the entanglement entropy for various cylin-
ders cannot be linearly extrapolated versus the cylinder
width for our current range of widths.

For C-odd cylinders, the dimer picture predicts two
degenerate ground states which differ only by a hori-
zontal translation, thus obeying the Lieb-Schultz-Mattis
theorem. These two states are always visible in our re-
sults through bond strength distortions, as they are for
the kagome SL. These distortions decrease in intensity
with cylinder width, as expected. Fig. 2 (c-d) shows the
dimerization patterns on the XC6 and YC5 cylinders.
Similar dimerized patterns are also observed on all other
C-odd XC and YC cylinders.

To quantify the bond distortion, we define the dimer-
ization order parameter D as the difference between the
strong and weak bonds along the two diagonal directions,
for both YC and XC cylinders. We find that for all C-odd
cylinders D is almost constant in the cylinder center, in-
dicating long range dimerization order, and decreases for
wider cylinder. In contrast, on C-even cylinders D decays
exponentially away from the left and right edges.[21] The
behavior is quite similar to that of the kagome SL and
provides additional evidence in support that the state is
a spin liquid.

We display results for triplet spin gap in Fig. 3 for J2 =
0.1. The gaps are typically two to three times as large as
that of the kagome system (∆T ∼ 0.14, [18]). The gaps
show relatively minor finite size behavior, compared to
their magnitude. Each of these gaps in the main part of
the figure is for Lx = 20; one should extrapolate these
to Lx → ∞, and the inset shows this extrapolation for
YC6. The gap is proportional to 1/L2

x, as expected for a
simple massive particle (e.g. a particle in a 1D box). The
correction to the Lx = 20 results is small and we expect
that the main figure would only be slightly changed if it
used extrapolated results. Note that for wider cylinders,
we need to constrain the spin excitation to the cylinder
center, since otherwise low energy edge excitations might
hide the bulk gap (again, as one must do for the kagome).
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FIG. 3: The spin triplet gap for various long cylinder geome-
tries at J2 = 0.1 with Lx = 20. The inset shows the linear ex-
trapolation of spin triplet gap for YC6 cylinders versus 1/L2

x.
The triplet gap is roughly ∆T = 0.357 for an infinitely long
YC6 cylinder.

A conservative estimate for the bulk 2D triplet gap would
be 0.3(1) for J2 = 0.1, and it is hard to imagine it being
zero.

One can look at the bond and particularly the spin pat-
terns for the lowest energy triplet excitations. On even
cylinders, the spin excitation looks like a single particle,
which we might interpret as two tightly bound spinons.
However on odd cylinders, the spin excitation typically
looks more like two separate spinons, and seems more
complicated than on even cylinders, with more Lx depen-
dence of the gap.[21] We have only calculated the spin sin-
glet gap for the YC6 and YC8 cylinders. In the kagome
system, the singlet gap is small, about 0.05. Here, it is
much larger: ∆s = 0.30 for YC6 and ∆s = 0.26 for YC8.
Overall, our results strongly support a fully gapped SL
state, instead of the gapless SL state in Ref. [14].

The finite gaps, short correlation lengths, and topo-
logical sector behavior are all qualitatively similar to the
kagome system and strongly indicate a gapped spin liq-
uid. However, the directional anistropy of the bonds ap-
parent in most cylinders is unlike the kagome, and raises
the question of whether it persists in the 2D limit—which
would make it a “nematic spin liquid”[22]. To try to
understand the finite size effects associated with bond
anisotropy, we have studied systems where we strengthen
all the near-neighbor exchange couplings J along one par-
ticular direction and measure the response in the spin-
spin correlation pattern. For the normally isotropic YC6
cylinder, increasing the J ’s along one diagonal direction
by 5% increases the corresponding bonds by roughly 30%
and decreases the other diagonal bonds by roughly 30%—
a rather large response. For the XC8 cylinder, which is
normally quite anisotropic, if we strengthen the J ’s on
the weaker (horizontal) bonds by about 3%, the weaker
bonds increase by about 50% and the system becomes ap-
proximately isotropic. These results indicate a large sus-
ceptibility associated with a tendency towards nematic-
ity. This tendency is a key property of this system, inde-

pendent of whether the system actually breaks rotational
symmetry in the thermodynamic limit. Ref. [22] theo-
retically studied the phase transition between a Z2 SL
state and different valence bond solid (VBS) orders on a
triangular lattice. They found that the transition from
a columnar or resonating plaquette VBS order can ei-
ther be first order or there could be two transitions with
an intermediate phase. The intermediate phase would
host a nematic Z2 spin liquid that breaks 2π/3 lattice
rotation symmetry. Is the triangular system in such a
nematic spin liquid state? The anisotropy generally de-
creases with system width in the system sizes we can
study, but the behavior is irregular, and the effects still
large on the largest widths. Answering this question will
require future studies on larger systems.

In summary, we conclude that there is a gapped spin
liquid state in the triangular lattice Heisenberg model
with next nearest neighbor exchange J2 = 0.1. This
phase is bordered by a three sublattice 120◦ Néel ordered
state at J2 < 0.05 ∼ 0.07 and a two sublattice magnetic
collinear ordered state at J2 & 0.17.[23] This phase has
fairly large gaps, very short correlation lengths, and topo-
logical behavior very similar to that seen in the kagome
Heisenber spin liquid, although we have not been able
to measure whether there is a topological entanglement
entropy. Unlike the kagome, the system has a strong ten-
dency towards nematicity, and whether rotational sym-
metry is broken in two dimensions, making it a nematic
spin liquid, remains to be determined.
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After we finished our work, we are aware of two papers
working on the same model with DMRG [24, 25], where
the spin liquid state is also found [25].The classification
of Z2 spin liquid states are subsequently proposed on Ref.
[26, 27].
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