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Since the very first experiments, superconducting circuits have suffered from strong coupling to
environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art
experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function
of time. We present measurements of such fluctuations in a 3D-Transmon circuit and develop a
qualitative model based on interactions within a bath of background two-level systems (TLS) which
emerge from defects in the device material. In our model, the time-dependent noise density acting on
the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy
fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support
the model by providing experimental evidence of such energy fluctuations observed in a single TLS

in a phase qubit circuit.
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I. INTRODUCTION

Superconducting qubits' are well on the way towards
achieving the prerequisites for fault-tolerant quantum
computation schemes? . With the advent of highly
coherent superconducting circuits for quantum applica-
tions, previously neglected sources of environmental noise
become important. One such cause of decoherence are
spurious two-level systems (TLS), which are believed to
be present in large numbers in the amorphous dielectric
oxide layer covering the superconducting films®>%. En-
sembles of TLS naturally explain the low-temperature
properties of glasses”® and are used as a universal model
for 1/ f-type low-frequency noise in electric circuits®!0.

Virtually all designs of superconducting qubits tested
so far show a pronounced frequency dependence in their
relaxation rates'' !4, which indicates strongly coloured
high-frequency noise acting on the circuits'®. A natural
explanation of these observations relies on weak inter-
actions between the circuit dynamics and spurious en-
vironmental TLS, possibly located in the disordered di-
electric covering these circuits. For coupling strengths
that are much weaker than the individual decoherence
rates of qubit and defect, the effect of the TLS on the
qubit will be that of a strongly peaked high-frequency
noise spectrum. In other experiments, strongly coupled
coherent TLS are often found to cause avoided level cross-
ings in superconducting circuits which include Josephson
junctions®%. Those TLS are believed to reside in the di-
electric forming the tunnelling barrier inside the circuits
Josephson junctions, enabling their stronger coupling to

the circuit dynamics. Otherwise they are conjectured to
be of the same origin as the TLS observed as resonances
in the high-frequency noise spectrum. Using supercon-
ducting qubits as probes, it is possible to fully charac-
terise the properties of the strongly coupled defects, for
example by measuring their level-structure and coherence
times!'6 18,
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Figure 1. (Color online) Fluctuations in time of the relaxation
rate ['1 of a superconducting 3D-Transmon qubit. Errorbars
show the 95% confidence interval of the fits, the dotted red
line indicates the mean value of all measurements and the
dashed black line is a moving average over 10 samples to em-
phasize the multivalued character of the jumps. Each individ-
ual point in this plot required a measurement time of ~ 1 min.

In this work, we discuss the origin of time-dependent
fluctuations in the energy relaxation time 7j, which
are observed in superconducting 2D-Transmons'?, flux



qubits?® and 3D-Transmons'?, as shown in Fig. 1. The
paper is organised as follows: Section II starts by mo-
tivating this work and our theoretical model for time-
dependent fluctuations in the relaxation rate of super-
conducting circuits. Section III then describes the exper-
iments from which our data originates. In the following
part IV we develop the model and present the main re-
sults. The discussion in section V presents implications
and possible tests of the model and considers possible al-
ternative explanations of the data. The paper is followed
by an appendix summarizing details of the experiments,
additional experimental data, and providing more details
on the theoretical calculations.

II. MOTIVATION

Qubit relaxation may occur through its weak coupling
to environmental TLS whose characteristic eigenenergies
are comparable to the qubit’s energy splitting. The en-
vironmental noise spectral density originating from cou-
pling to a single such TLS is strongly peaked around its
eigenfrequency. A natural approach to explain the fluc-
tuations in the qubit relaxation rate is thus to assume
random changes in the energy splitting of individual two-
level defects, c.f. Fig. 2. Our model for the origin of
the fluctuations is then based on the presence of a large
number of interacting TLS at both low and high eigenfre-
quencies. Due to the interactions between TLS, thermal
switching of the state of low-frequency TLS will then lead
to fluctuations in the energy splitting of high-frequency
TLS, providing a qualitative description of the observed
data. This model is further underpinned by our direct ob-
servation of fluctuations in a high-frequency TLS’ energy
splitting, which occurs on time scales comparable with
the qubit’s T fluctuation, see Fig. 3. In the following, we
will indicate TLS with eigenenergies much larger than the
thermal energy as TS (tunnelling systems), while those
at energies much lower than temperature will be named
TF (thermal fluctuators).

Our model provides a qualitative description of the
origin of fluctuations in the electrical susceptibility of
mesoscopic circuits, an area which has recently started to
attract attention from both experiment and theory?! 23,
We also note that interactions between TLS have recently
been observed directly in two strongly coupled defects?*
and that such coupling has been invoked as a model of
noise before, e.g. to explain the line-width broadening
and spectral diffusion of ultrasonic excitations of TLS en-
sembles in glasses?®26 as well as spectral blinking of dye
molecules?” and quantum dots?®. More recently, Refs. 29
and 30 make a connection between slow fluctuations in
the resonance frequency of superconducting resonators
causing phase noise, and ensembles of interacting TLS
leading to fluctuations in the energy splitting of high-
frequency TS, much along the same lines as we describe
here. While in that work the real part of the suscepti-
bility was considered, leading to fluctuations in the level
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Figure 2. (Color online) Illustration of the conjectured mech-
anism behind fluctuations in I'y. We plot the noise spectral
density C'(w), Eq. (2), of a single high-frequency TS as a func-
tion of frequency w. The qubit level splitting is indicated as
wq and the TS energy as E. Fluctuations in F, as indicated by
the arrow and the dashed contours, may cause strong changes
in the noise spectral density at the qubit frequency, leading to
significant changes in the qubit relaxation rate I't o« C'(wq)-
The inset shows an illustration of the interaction between a
central high-frequency TS (red, centre) with a surrounding
bath of low-frequency TF (black), where the interaction is
limited to a small spatial range indicated by the grey-shaded
region.

splitting of a resonator, here we are concerned with its
imaginary part that is responsible for energy dissipation.

III. EXPERIMENTAL EVIDENCE

The fluctuations of the T3-time reported here (Fig. 1)
were measured in a superconducting qubit in the 3D-
Transmon design'®, with an average relaxation time 7}
of ~ 80 ps. In our 3D-Transmon circuit, the qubit en-
ergy, i.e. the level splitting of its two lowest levels, is
fixed at wq/2m = 3.58 GHz and not tuneable as in other
designs®! %, Each datapoint results from a series of indi-
vidual measurements, each time resonantly exciting the
qubit and detecting the qubit population after waiting
for some time t. The resulting traces where fitted to an
exponential decay curve oc e Tf. The observed fluctua-
tions of the qubit’s relaxation rate I'y do not show any
apparent structure, with the largest experimentally re-
solvable fluctuation rate given by the inverse of the time
it takes to obtain a single value of T}, here ~ 1 min.
Additional datasets are shown in appendix B.

In a second experiment, we use a superconducting
phase qubit to directly monitor the properties of a single
high-frequency TS that is strongly coupled to a supercon-
ducting phase qubit. Figure 3 (a) shows measured time-
dependent fluctuations of the TS’ energy level splitting
which occur on similar timescales as the above discussed
qubit fluctuations. Here, the TS’ resonance frequency FE
was repeatedly measured by varying the frequency of a
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Figure 3. (Color online) (a) Change in TS energy E as a
function of time measured in a superconducting phase qubit.
Errorbars indicate the 95% confidence interval of the fits, the
red dotted line is the average over the samples shown and the
black dashed line is a moving average over 10 samples. (b)
shows two Lorentzians in the escape probability of the qubit
P(]1)) at two different times as an example of the change in
TS energy. Here the dots are the raw data and the solid lines
are the result of a fit to the data. Vertical dashed lines in (a)
indicate the measurement times for the two curves shown.

long microwave pulse applied to the qubit circuit with a
pulse amplitude that was large enough to allow for di-
rect excitation of the TS excited state!”. During the
microwave pulse, the qubit was kept far detuned from
the TS. After the pulse, qubit and TS were brought into
resonance in order to swap the TS excitation into the
qubit, whose population was then read out. Details of
this technique can be found in Refs. 17 and 24 as well as
appendix A.

IV. THEORETICAL MODEL
A. TLS as sources of fluctuating noise

In the following, we describe our model explaining the
observed fluctuations in the relaxation rate I'y = 1/T7 of
superconducting circuits. We first note that in a mas-
ter equation description of dissipative quantum dynam-
ics, the relaxation rate of a qubit is proportional to the
unsymmetrized spectrum of its environment at the fre-
quency of the qubit’s level-splitting, I'y oc C(w,)3¢. Here
we assume effectively zero temperature, kpT < hwg, so

that thermal excitations can be neglected. It is then our
goal to relate fluctuations in the energy of a single TS to
changes in the high-frequency noise acting on the super-
conducting circuit and to further characterise the fluc-
tuations in terms of parameters of the experiments and
the TLS distributions. We start by describing a single
TLS as a quantum two-level system using the tunnelling
Hamiltonian”8

. 1 1
Hris = ——z¢e0, + §A0'x , (1)
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where € is the asymmetry energy between the two wells
and A is the tunnel splitting. The Pauli-matrix o, here
describes the position of a particle on either side of a
double-well potential, and o, induces transitions between
the wells. Diagonalizing yields Hrrg = 7Eaz with the
level-splitting F = v/e2 + A2. Here and in the following
we use the convention i = 1, so that all energies are
expressed in units of angular frequencies.

The TS observed in high-frequency noise spectra are
believed to be charged entities interacting with the su-
perconducting circuits via their electric dipole moment
o 0.°. Assuming weak qubit-TS coupling, their effect on
the qubit will be that of strongly coloured noise, where
the spectral density can be calculated from the Fourier
transform of the two-time correlation function of their
coupling operator o, ®. We obtain

Cw) = / dt e (o, (1), (0))
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with the TLS’ equilibrium steady-state population

(0,) = tanh (E/2kgT), the intrinsic TLS relaxation rate
v1 and 3 = %’yl +7,, where 7, is the pure dephasing rate
of the TLS. Here, tanf = A/e defines the TLS’ mixing
angle. Eq. (2) is composed of three parts, each of which is
relevant for TLS in different parameter regimes. The first
line describes low-frequency noise due to random switch-
ing of the TLS and is most pertinent for low-frequency
TF with E < kgT. The second term is a high-frequency
contribution which is sharply peaked around the TLS
energy and is most pronounced for TS with £ > kgT.
Since those TS are mostly resting in their ground state,
they are able to absorb energy from the qubit. It is this
contribution that gives rise to the observed resonances in
the noise spectrum''~® and in which we are mostly inter-
ested. The final term contributes at negative frequencies
and describes the ability of the TLS to excite the qubit by
transferring an excitation to it. For both high-frequency
TS in thermal equilibrium as well as low-frequency TF,
this term will not contribute.



For simplicity, we assume the environmental noise at
frequencies close to the qubit level splitting w, is domi-
nated by a single, weakly coupled high-frequency TS at
energy E ~ wq. We further assume this T'S is interacting
with a large number of other TLS which are located in
its close spatial vicinity. This is the situation illustrated
in Fig. 2 and the one most relevant to experiment!! '3
If the distribution of TS at high frequencies is dense!'®29,
our results still hold but have to be additionally averaged
over the high-frequency distribution. We model the inter-
action between all TLS in the sample by a Hamiltonian
of the form

.1 .
H = 502 Zj:gjo'z,jy (3)

where g; is the coupling strength between the high-
frequency TS and all other TLS, indicated by the index
j. Coupling of the type Eq. (3) can be caused e.g. by
electric dipole coupling or strain-mediated interaction,
where the asymmetry-energy of either TLS depends on
the relative position of the other TLS in their respective
double-well potentials?*. With such an interaction, the
energy splitting of any TLS depends on the instantaneous
state of all TLS in a certain range around it, determined
by the microscopic origin of their interaction, c.f. inset
to Fig. 2.

We are looking at fluctuations in the qubit relax-
ation rate due to slow fluctuations in the TS energies
E. In order to calculate expectation values and statis-
tics, we write the level splitting of an individual TLS in
the form £ = Ey — Zj gj0..;, now depending on the
state of all other TLS via the mutual interaction g; from
Eq. (3). Here we focus on a high-frequency TS with
Ey > kpT,v2, such that (6,) = —1 and the result-
ing spectral density is strongly peaked around the TS
eigenenergy F, c.f. Eq (2). We defined the undisturbed
TS level splitting as Ey = V&2 + A2 with the parameters
¢ and A from Eq. (1).

We can further write the qubit relaxation rate due to
its coupling to a single high-frequency TS as I'y o< 44.
Here, the relaxation rate induced by a single TS is given
by the high-frequency components of its spectral density,
c.f. Eq. (2), as

272
ﬁ . (4)
Y22 + (wg — )
Assuming the interaction between individual TLS to be
weak, g; < 2, we can expand this to first order as

Y =10 + 90> " gi6..5+0(g?), (5)
;

Ay = cos? 0

with the coefficients

2
(0) — o2 2 6
Ve cos Z+ (0 —Eo)?’ (6)
1) — a,y‘l _ COS2 0 472(“”‘1 — EO) (7)

qa 87E E=FE, - (722 + (wq _ E0)2)2 .

Egs. (5) - (7) will be the basis for our further calculations.

B. Distribution of TLS parameters

For tunneling TLS one usually assumes flat distribu-
tions for both the asymmetry energy ¢ as well as the
tunneling barrier height™®. Since the tunneling energy A
depends exponentially on the barrier, the resulting dis-
tribution in TLS parameters is P(e, A) ~ 1/A. The TLS
relaxation rates are then also distributed log-uniformly,
P(y1) ~ 1/, since the tunnelling strength depends
mainly on the size of the tunnelling barrier. In Ref. 15
it was found that a linear or super-linear distribution in
€ would naturally explain both low- and high-frequency
parts of the noise spectrum acting on the qubit as stem-
ming from the same ensemble of TLS. For the sake of
generality, we will therefore assume the distribution of
TLS parameters as

&
A

with o > 0 and the constant A needed for normalization.
For non-interacting TLS, the distribution is usually as-
sumed to be flat, o = 078, but might be different from
zero in the more realistic case of interacting TLS!%:2°.
Without loss of generality we restrict the integration to
the positive real axis. The distribution of inter-TLS cou-
pling strengths g; depends strongly on the physical model
of their interaction. It is important to note that the cou-
pling strength ¢ in most models can be both positive or
negative, meaning the coupling between the TLS can ei-
ther raise or lower the energy of the respective partners.
For the dipole coupling model this reflects the fact that
the relative orientation of the dipoles can be both parallel
as well as antiparallel.

P(e, A)dedA = A —dedA (8)

C. General considerations

In the calculations one has to carefully separate the
different timescales of the problem. The measurement
protocol fixes three distinct scales, which have to be com-
pared to the fluctuation rates of individual low-frequency
TF to determine the nature of their contribution to the
fluctuations in the qubit’s relaxation rate I'y. First, there
is the time it takes to do a single measurement of the
qubit population, ty,6as, where many such measurements
are averaged to obtain each point in a complete relax-
ation curve. Fluctuating TF that are faster than 1/tmeas
will not contribute since they average out even for a sin-
gle measurement. Second, there is the time to measure
a single point of a curve, tpeing. Fluctuations that are
faster than 1/¢peint, but slower than 1/tmess will act as
an effective broadening of the high-frequency TS reso-
nance, increasing its line-width . The slowest timescale
is given by the duration of the measurement of a com-
plete Ty curve, tp,. TF dynamics slower than 1/tpeint
but faster than 1/t7, will lead to jitter in the energy re-
laxation curve, contributing additional noise in the fit of
Ti. Finally, slow TF that fluctuate at frequencies that



are smaller than 1/t7, will be the ones responsible for
the low-frequency fluctuations visible in the T7 data, see
Fig. 1. Note that the microscopic origin of these small
switching rates is so far unclear?®. For the very slow fluc-
tuations observed in experiments, on timescales ~ min,
to the best of our knowledge no microscopic model ex-
ists. A possible candidate might be collective behaviour
of large ensembles of TLS that form clusters®™3®, but
clear experimental confirmation of this effect is missing
so far.

In the following we will be interested in calculating
the temperature and frequency dependence of the qubit
relaxation rate due to its coupling to individual TS, av-
eraged over TLS parameter distributions, as well as the
spectrum of the fluctuations in I'y. Due to the considera-
tions above, the temperature dependence will be strongly
influenced by the thermally activated part of the TF dis-
tribution, contributing via the TS linewidth ~». Follow-
ing Refs. 15 and 29 we find the temperature dependence
of the dephasing rate due to a bath of low-frequency TFs
as v o< T, where o characterizes the TLS distribu-
tion.

D. Average relaxation rate

We now turn to calculating the average of the qubit’s
relaxation rate using the distributions introduced above.
We concentrate here on fluctuations originating from the
low frequency contributions from TF with small level
splitting, £ < kT, since those are the ones directly ob-
servable in experiment. Noting that for TLS in thermal
equilibrium (6,) = cos® (0,) = cosftanh (E/2kpT), we
can directly write down the mean value of the qubit relax-
ation rate due to the high-frequency TS to lowest order
in the inter-TLS coupling strength g as

. E;
(Bq) = ’Yéo) + ’yél) Zgj cos f; tanh —2 (9)

2%kpT
J

where the sum includes all other two-level defects that a
single high-frequency TS interacts with. In the calcula-
tion of the average rate (9,), we immediately notice that
J dg gP(g) = 0, since we integrate an odd function over
an even range. Therefore we simply find

(Fa) =" (10)

i.e., the average contribution to the relaxation rate from
a single TS is given by it’s spectrum centred around its
undisturbed level-splitting Fy. For the temperature de-
pendence of the ensemble-averaged qubit relaxation rate
we then find

ow < 72
s ow > Y9 ’

275 T—(a+1)
(T'y) o iR {Ta+1

where dw = wy — F is the detuning between qubit and
TS, and we distinguish between the case where qubit and
TS are nearly resonant and when they are far detuned.

(11)

E. Rate fluctuation spectrum

The spectrum of fluctuations of the qubit relaxation
rate is then related to the Fourier transform of the rate
correlation function as

Gal3u(0),, = [ dte " (3,213, 0)
= () S i s 05000, (12)

Jil

where, in evaluating the correlator, we restrict ourselves
to the low frequency contribution of the TLS autocor-
relation function Eq. (2), i.e. we focus on TFs with
E < kpT. Additionally we assume that different TLS
are uncorrelated, (o, jo.;) = 0. We are also only inter-
ested in the bare fluctuations of the rate, so we have al-
ready subtracted the mean value above. For more details
on the calculations, see appendix C, where we addition-
ally discuss the case when the TF switching is solely due
to interactions with phonons.

For the average over the coupling strength, one finds
J dg g*P(g) o const, where the constant is mainly deter-
mined by the maximum possible coupling strength and
thus by the minimal distance between TLS and the mi-
croscopic origin of their interaction. Performing the aver-
age over the mixing angle 6 also contributes a constant,
with the exact value again depending on details of the
microscopic TLS model. The average over TF energies
can be written as

E T
E P(E) | 1 — tanh? ~ E E® = Tt!
/d ( )( e (QkBT» /0 ;

(13)

contributing to the temperature dependence of the final
result. Still assuming small interaction strength between
TLS, g < 72, we can now distinguish three regimes re-
lated to the initial detuning between our qubit and the
high-frequency TS, dw = wy — Ey. For qubit and high-
frequency TLS near resonance, dw < 72, we find that

7,51) o dw/73, while in the regime of intermediate detun-

ing, dw ~ 72, one finds fy(gl) o 1/42. In the far detuned
regime, dw > 7o, we finally have 75” o Yo /6w?. Finally,
adopting the standard assumption for tunnelling TLS,
P(y1) ~ 1/71, the frequency dependence of the fluctua-

tion spectrum is determined by

YMax
/ dyi P(1)
0

Here the maximum relevant switching rate yarax is given
by the time of a single T}-measurement. All faster fluc-
tuations will be averaged out in the observations, leading
to the behaviour ~ 1/w for w < Ypax-

Thus, we find the temperature and frequency depen-
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dence of the T fluctuation-spectrum as

T—5(at1) dw < ¥g
(T1(H)11(0)),, oc w™t § T3t dwr~ s, (15)
T2(a+1) Sw > ¥

where (...)  denotes the Fourier transform of the two-
time correlation function of the relaxation rate I'y. These
results hold for small inter-TLS coupling g; < 2. The
opposite case g; > 72 corresponds to on-off switching
and is excluded by the experimental data. In the inter-
mediate regime, g; ~ 72, the overall temperature depen-
dence will be given as an average over our results.

V. DISCUSSION
A. Implications and tests of the model

Our model can be directly tested by measuring the
relaxation rate at different qubit level splittings and in-
ferring the time and frequency dependence of the noise
spectrum acting on the qubit. By using a frequency-
tunable qubit, the fluctuations in the noise spectral den-
sity might be directly resolvable in time and frequency,
depending on the time-scale of a single measurement of
the relaxation time T7. Even for non-tuneable qubits it
is possible to probe the noise spectral density in close
vicinity of the qubit frequency by measuring the decay
of Rabi oscillations of the qubit, c.f. appendix D and
Ref. 39. Another possibility is to apply external driving
to saturate the TF responsible for the fluctuations in TS
energy. If an electric field is applied resonantly with the
relevant low-frequency TF, it will lead to oscillations with
the Rabi frequency depending on the detuning between
drive tone and TF energies, the TF dipole moments and
the electric field strength at their position. Assuming
the resulting Rabi frequency is fast compared to the du-
ration of a single 77 measurement, the effect would be
to raise the average (I';) while at the same time reduc-
ing the amplitude of its fluctuations. This is because
the resonant driving of initially very slow TF will alter
their contribution towards a simple line-width broaden-
ing of the high-frequency TS. In experiments with 3D-
Transmon qubits this could be achieved by careful engi-
neering of the cavity modes, such that there exists a suit-
able low-frequency mode exhibiting strong electric field
components spatially close to the qubit. In other qubit
architectures this might be possible within existing ex-
perimental setups'”. In our Transmon qubit sample, this
experiment proved unfeasible due to design restrictions
in the employed cavity. Additional verification could be
achieved by a systematic characterisation of the fluctua-
tions of 77 at a variety of experimental temperatures 7.
An additional challenge arrises from the fact that the ex-
act temperature dependence is connected sensitively to
the qubit-TS detuning dw, c.f. Eq. (15), which also has
to be determined in this case.

B. Alternative models

Possible alternative models for the fluctuating noise
spectrum include fluctuations of the quasiparticle density
in the superconductor. Quasiparticle tunnelling across
the circuit’s Josephson junctions can induce relaxation
and dephasing®®, and explains well the temperature de-
pendence of qubit relaxation rates for elevated sample
temperatures. In contrast to our model, which depends
on a structured noise spectrum as background, the quasi-
particle induced noise is flat at high-frequencies. Follow-
ing Ref. 40 we calculate the fluctuations in quasiparticle
density required to effect the observed variance in the re-
laxation time of Transmon qubits. For the parameters of
our sample, we find the fluctuation in the quasiparticle
volume density required to change the relaxation rate by
1 kHz as dng, ~ 0.5/pum?, see appendix E for details.
From the geometry of our sample, it then follows that
this change would require the number of quasiparticles
present on either one of the qubit islands to fluctuate
by 6Ny, =~ 1.5 x 10*. We are not aware of any mecha-
nism leading to symmetric fluctuations in the quasipar-
ticle number of this magnitude.

Another possible model is that in the 3D-Transmon
sample used to obtain Fig. 1, the qubit level splitting
might fluctuate in time, e.g. due to changes in the crit-
ical current of the circuits Josephson junction*!42. To-
gether with the observed strong structure in the noise
spectrum!! ™13 this could also explain the fluctuations in
the qubit relaxation. Here we again have to be mind-
ful of the timescales involved. Fast fluctuations of the
qubit energy, i.e. faster than the Rabi frequency used to
excite it (in our experiments /27w ~ 4 MHz), will not
lead to the observed slow fluctuations in the relaxation
rate, but rather average out over the measurement time
tr,. Their effect would be such that the observed qubit
relaxation rate would no longer depend on the noise spec-
trum at a single frequency, but rather an average over the
spectrum at a range of frequencies. Intermediate energy
fluctuations, faster than 1/ty, but slower than the Rabi
frequency, will lead to a different qubit energy at each
point of a single measurement and thus manifest as an
additional source of noise in the fit parameters. Very slow
fluctuations in the qubit energy, on the same timescales
as the variations in 77 will, in addition to potentially
impacting the qubit relaxation rate, also influence the
resonance condition for the Rabi pulse used to excite the
circuit for each measurement. From our experimental
data we obtain the excitation amplitude as a fit param-
eter for each measurement, c.f. appendix B. While there
are fluctuations visible in these parameters, they are gen-
erally of small amplitude and not highly correlated with
the observed T; variations. We therefore conclude that
while this mechanism might be present, its effect is likely
to be smaller than the one associated with fluctuating
TLS.



VI. CONCLUSION

In this paper we present a simple model of interact-
ing TLS which offers a qualitative understanding of the
observed fluctuations in the relaxation times T3 of super-
conducting quantum circuits. The model is grounded in
our experimental observations, grants a clear route to-
wards further confirmation, and provides a way to verify
and refine the existing microscopic TLS models. More-
over, our model clearly indicates that parasitic TLS are a
limiting factor for the stability of today’s best performing
superconducting circuits. A better understanding of this
decoherence source is thus vital for further improving the
fidelity of superconducting quantum circuits.
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APPENDIX A: SAMPLE PARAMETERS AND
EXPERIMENTAL REMARKS

A. Observation of Ti-fluctuations of a
3D-Transmon

The three-dimensional cavity resonator used in this
work was machined from bulk aluminium 6061. The cav-
ity has a nominal size of 18.6 mm x 15.5 mm x 4.2 mm
engineered to give a resonant frequency of approximately
12 GHz. Two bulk head SMA connectors are used as
input and output ports. The loaded quality factor of
the waveguide cavity is 3 x 10*, with the output connec-
tor stronger coupled than the input connector in order
to guarantee a high signal-to-noise ratio. The sample is
shielded with a cryoperm can that is thermally anchored
to the mixing chamber of the dilution refrigerator.

The qubit manipulation and readout pulses are deliv-
ered to the cavity via a single coax line filtered by a 10 dB
attenuator at each temperature stage of the refrigerator.
Input and output ports are directly connected to SMA
filters made of eccosorb in order to block infrared radia-
tion and thermalize the central conductor of the coupling
connectors.

The output readout signal is amplified by a chain of
cryogenic and room temperature amplifiers for a total
gain of 60 dB. A low pass filter and two cryogenic cir-
culators are used between the sample and the cryogenic
amplifier. The qubit state is readout via the dispersive
shift of the waveguide cavity*?.

The qubit is fabricated on sapphire substrate via alu-
minium double angle evaporation. Two rectangular pads
of 350 pm x 700 pm, separated by 50 um, are connected
by a 1 pm wide aluminium strip with a Josephson junc-
tion of size 0.1 ym x 0.1 pgm. The chip has a total size of
3.0 mm x 6.7 mm and is kept in place in the waveguide
cavity by small pieces of indium. The qubit is placed at
the maximum of the electric field of the first cavity mode.

The qubit used in this work has an energy gap w, /2w of
3.5825 GHz, and anharmonicity (~ E¢/2m) of 171 MHz.
The qubit is designed to work in the Transmon regime,
with E;/Ec ~ 6144,

For the T} measurements reported here, the qubit was
resonantly excited with a microwave pulse amplitude
leading to the Rabi frequency of Q/2r = 3.5714 MHz,
corresponding to a m-pulse duration of 140 ns.

B. Observation of TLS frequency fluctuations

Our theoretical model to explain time-dependent fluc-
tuations in the energy relaxation time of superconduct-
ing qubits is based on their near-resonant coupling to
high-frequency TLS, with the additional assumption that
those TLS themselves experience resonance frequency
variations due to their interaction with thermally fluc-
tuating defects at low frequencies. In this work, we in-
clude first experimental evidence that individual high-



frequency TLS may indeed show resonance frequency
fluctuations in time as shown in Fig. 3.

In order to access TLS individually, we exploit their
strong coupling to the state of a superconducting phase
qubit when they are residing in the amorphous tunnel
barrier of the qubit’s Josephson junction. We were us-
ing a phase qubit sample that has been developed in
the group of Prof. J. Martinis at University of Cali-
fornia, Santa Barbara, USA, with sample parameters as
described in Ref. 45.

We recorded the Lorentzian resonance curve of the
TLS by varying the frequency of a long microwave pulse
applied to the circuit while the qubit was kept far de-
tuned from the TLS. As described in Ref. 17, this allows
one to resonantly drive TLS while they remain effectively
decoupled from the qubit dynamics. To read out the TLS
quantum state, the qubit is first prepared in its ground
state and then tuned into the TLS resonance. This re-
alises an iSWAP operation that maps the TLS state onto
the qubit, where it can be measured.

Some of the TLS that were investigated with this
method showed time-dependent fluctuations of their res-
onance frequency that were large enough to be resolved
spectroscopically. Often, we observe telegraph-signal like
switching of TLS resonance frequencies between two sim-
ilar values, indicating coupling to one dominating ther-
mally activated TLS at low frequency.

To characterise the internal TLS parameters, tun-
nelling energy A and asymmetry energy € were measured
by recording the strain dependence®® of its resonance fre-
quency and performing a hyperbolic fit to the equation
E = /A% 4+ €2, Figure 3 was obtained on a TLS that
had A/27 = 7.056 GHz and whose asymmetry energy
was tuned to €/2m = 918 MHz. At this asymmetry, this
TLS had an energy relaxation time of 77 = 590 ns and
a dephasing time of about 75 ~ 500 ns. The sample
temperature was kept at 33 mK.

APPENDIX B: ADDITIONAL EXPERIMENTAL
DATA

Figure A1 shows two examples of measured relaxation
curves of the 3D-Transmon qubit and the fits to the data.
We fit the measurements to decay curves of the form
Ae~T'* + B with the free parameters A, B and I';. We
show one trace where the fit converged with a very small
standard error (a) and another where the convergence
was worse (b). The second trace might be better fit by
assuming a double exponential decay where at some time
the decay rate changed spontaneously due to a change in
the environmental noise spectrum (not shown).

Figs. A2-A4 show the full datasets of the fluctuations in
the relaxation rate I'y measured in our 3D-Transmon at
three different experimental temperatures. We also show
the histograms for the probability of occurrence of a par-
ticular value of I'; for all three temperatures as well as
the fluctuations in the fit amplitude A and background B.
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Figure Al. Examples of decay curves taken at 30 mK. Points
are experimental data of the qubit excitation probability
P(]1)) as a function of time after an initial 7-pulse applied at
t = 0, normalised to lie between 0 and 1. The red curve is the
result of a fit of the data to the function P(|1)) = Ae T+ B,
with free parameters A, B and I'1. We show one curve with
minimum standard error in the decay amplitude A — B (a)
and another curve with maximum error (b). The lower curve
might be better described not by purely exponential decay, if
for example during measurement of the data the noise spec-
trum shows a sudden jump.

The later two show some fluctuations, but are relatively
flat on the scale of the changes observed in I'y. Ampli-
tude fluctuations might be explained if the qubit’s level
splitting varies in time, which, together with a strongly
coloured high-frequency noise spectrum provides an al-
ternative model for the fluctuations in the qubit’s relax-
ation rate (c.f. main text). From the data in Figs. A2-
A4, we conclude that this mechanism might be present
but is weak and not the main contribution. Additionally,
we show the two-time correlation function of the relax-
ation rate as well as its Fourier transform. We fit the T7-
fluctuation spectrum to two different functions and show
the results in the plots. The red dashed lines are from
the best fit to the function A/w®, corresponding to a 1/ f-
type frequency distribution as it is expected from a dense
distribution of low-frequency TLS%!5 The blue dashed
lines are results from a fit to a zero-frequency Lorentzian
~ Av/(7?+w?), as it would result from a single dominant
low-frequency TLS, c.f. Eq. (2). For our data presented
here, the temperature dependence of the fluctuation am-
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plitude is inconclusive and does not give any indication if
our model is accurate. On the other hand, the frequency
dependence of the correlations seems to follow roughly a
1/w dependence, which can be explained in the terms of
our model.
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Figure A2. Experimental data on Ti fluctuations in the 3D-
Transmon sample at a temperature of 30 mK. (a) shows the
relaxation rates I'; from fits of the experiments to an expo-
nential decay curve, P(|1)) = Ae™"'* + B, with error bars
corresponding to the 95% confidence interval of the fits. The
black dashed lines are a moving average over 10 points and
the red dotted lines are the mean values over the full dataset.
The inset shows a histogram of the probabilities of values for
the relaxation rate I'y. (b) shows the time evolution of ex-
citation amplitudes A and background B from the same fits,
including error bars and moving averages in black. (c¢) depicts
the absolute value of the Fourier transform of the two-time
correlation function of the relaxation rates (I'1(¢)I'1(0)) in a
log-log-plot, with the inset showing the correlation function
itself. The red (blue) dashed curve is the result of a fit of the
data to a A/w®-spectrum (Lorentzian spectrum A~y /(v*4w?))
with fit parameters A = 0.097 and o = 0.58 (A = 0.18 and
~v = 0.34 mHz), for details see text.
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Figure A3. Same as Fig. A2, data taken from experiments
performed at a temperature of 50mK. Fit parameters in (c)
are A =0.079 and o = 0.79 (A = 0.087 and v = 0.052 mHz)
for red (blue) dashed line.

APPENDIX C: MODEL CALCULATIONS

Here we give additional details on the calculations of
the mean value and spectrum of the T;-fluctuations in a
superconducting circuit due to interactions within a bath
of spurious background TLS.
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Figure A4. Same as Fig. A2, for a sample temperature of
100mK. Fit parameters in (c¢) are A = 0.067 and o = 0.45
(A =0.36 and v = 4.91 mHz) for red (blue) dashed line.

TLS parameter distribution

Rewriting Eq. (8) in terms of the TLS level-splitting
E and the mixing angle § = arctan A /e, we find

cos® 0

P(E,0)dEd) = A E*——=dEdf.

sin

(A.1)
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When describing the full distribution of TLS for all ener-
gies, we integrate the tunnel splitting A between Anin 2
0 and Apax and the asymmetry energy e between ey, =
0 and epax. We find for the integration bounds in the
new variables: Oy, = arctan Angin/eMax 2 0, OMax =
arctan Anax/emvin = 7/2 and Enin = /A, + Sy =
Anins EMax = /A%y + €3ax- Here, Anpiy is defined
by the minimum tunneling barrier below which the de-
scription as a two-level system breaks down and FEpyjax
provides an upper bound on the TLS level-splitting.

As an example for the distribution of the inter-TLS
coupling strength g, we write the probability distribution
in the case where the interaction is mediated by dipolar
interaction with |g| ~ 1/r3. One finds

or 4
P(g)dg = P(T)a—gdg =polg| ®dg, (A.2)

where we assumed a constant TLS density in space pg.

Calculating the average

We here give some of the intermediate steps of the
calculations of the average qubit relaxation rate and rate
fluctuations spectrum.

With the thermal occupation of a TLS in equilibrium,
(6,) = cosO{o,) = cosOtanh (E/2kpT), we can directly
write the mean value of the qubit relaxation rate to lowest
order in the inter-TLS coupling strength g as

E;
Zg] cos 0 tanh kT

J

7(0) (gl) /dg df dE P(g,0, E)g cosf tanh ——

(Ag) =7 +

E
2k5T
(A.3)

where the sum includes all other two-level defects that a
single high-frequency TS is interacting with. Due to the
symmetric distribution in inter-TLS coupling strength g,
the above integral will evaluate to zero.

For the spectrum of fluctuations of the relaxation rate
we then calculate the Fourier transform of the rate cor-
relation function as



where, in evaluating the correlator, we restrict ourselves
to only the low frequency contribution of the TLS auto-
correlation function Eq. (2), i.e. we focus on TFs with
E < kpT. Additionally we are assuming that different
TLS are uncorrelated, (o, jo.;) = 0 and, since we are
only interested in the bare fluctuations of the rate, we
have already subtracted the mean rate.

Finally, adopting the standard assumption for tun-
nelling TLS, P(y1) ~ 1/, the frequency dependence
of the fluctuation spectrum is determined by

YMax 2
/ dm P(%)i
0 71

2 + w2
IMax 1
_ 2 arctan 2 N , W < YMax A5)
w e W > YMax

Here the maximum relevant switching rate vyyrax is given
by the time of a single Tj-measurement. All faster
fluctuations will be averaged out in the observations,
leading to the behaviour ~ 1/w for w < YMmax. In the
opposite case w > YMax, i-e. Wwhen we observe the
fluctuations on timescales that are short compared to
1/9Max, the spectrum will show a 1/w? dependence.

Phonon induced TS switching

Alternatively to the generic thermally activated
switching mechanism discussed previously, one can as-
sume a microscopic model for the TLS relaxation rate
~1. For example for coupling to phonons, and omitting
irrelevant prefactors, one arrives at”

2 E
1 X A E ()th
’y C (2k

BT> x 2T E?sin? 0,

(A.6)
where in the second step we already assumed that the
relevant energies of the switching TF are smaller than
temperature, £ < T. Since the relaxation rate in this
expression depends mainly on the TF mixing angle 6,
the restriction on small switching rates will be realised
by confining 6 to small values around zero, effectively
limiting the value of the coupling strength between the

(")
- (75”)229]2-0052 0 {1—tanh2 <2kE§Tﬂ a2+ w2
(")

2 E 2
(1) E P E 2 2 1— h2 71
Yq /dg dod d’Yl (ga 9, 771)9 cos” 0 |: tan 2kpT 712 + w2’
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2m,

(A4)

(

relevant low-frequency TF and their phonon bath. Phys-
ically, Eq. (A.6) implies that phonons do not induce
switching in TLS with small tunnelling matrix element
A. Performing the energy integration in the average we
then get

E 2’)/1
dEP(E)(1—tanh® [ — | ) —+—
/ ( >< o (2T>) 77+ w?
T 2 .2
;:4,/ IEE® 4TE.sin 0
0 4T2E4 sin™ 6 + w?
4T+ 5in% 9
(3 + a)w?

: (A7)

where we expanded the integral to leading power in tem-
perature T. Combined with the previous results for the
prefactor 751), this leads to the overall temperature and

frequency dependence of the relaxation rate correlator

T2 dw < e
(¥4,i(0)94,i(2)),, o w2 T3 ;o 0w~ Y2
T2a+5 ow > Y2,i

(A.8)

For the remaining integration over the mixing angle,
one finds

HMax GMax
/ dOP(0)sin? 0 = / df sin § cos® 0
0 0

1 — cos™® Oyrax

A.
e (a9)

where Oyiax is determined from Eq. (A.6) and the value
of the maximum observable switching rate vax. In
this case the temperature and frequency dependence to
leading order in temperature is entirely contained in
Eq. (A.7).

Effective inter-TLS interaction range

Here we give a rough estimate of the maximum inter-
TLS distance which still allows noticeable interactions
between them. We assume the TLS to be realised as



microscopic electric dipoles of uniform dipole size d; =
le x 1071% m, where e is the charge of a single elec-
tron®18. Then, assuming parallel orientation of the two
TLS and using the relation between dipole magnitude
and coupling strength

g 1

2 471'5057«

(dl,LdQ,L — Sdl’”dg’H) , (A.lO)

we can estimate the maximum distance to effect a mini-
mum coupling strength of gy, = 1 MHz (c.f. Fig. 3) as
Max = 110 x 1072 m. The volume in which TLS are in-
teracting strongly enough is thus Vs ~ 5.6 x 10721 m?3.
Assuming an overall TLS density of 10?/(um3GHz)%1'3,
this leads to the effective frequency density of TLS in the
interaction region of a single TLS of p ~ 107! /GHz. We
note that the density obtained in Refs. 6 and 13 refers
only to high-frequency TS, and a much higher density is
expected for low-frequency TF?15,

APPENDIX D: RABI-SPECTROSCOPY

When using non-frequency-tuneable qubits like single
junction Transmons, it is still possible to probe the form
of the noise spectrum in close spectral vicinity of the
qubit transition frequency. To this end one can make use
of the fact that for a driven system, the frequencies of the
noise spectrum relevant for decoherence will be shifted by
the applied driving frequency. This effect can be thought
of as a result of interaction of the dressing of the system
states with drive photons, or similarly in the context of
sideband transitions. The following derivation is based
on the work in Ref.3, more details can be found there.

For a two-level system driven with Rabi driving
strength Qg at frequency wy we write the Hamiltonian

N 1 N N
H = -wqo, + Qpcoswgt 0 + Hgys B + Hp,

: (A.11)

with the qubit level-splitting w,, the bare Rabi frequency
Qo and driving frequency wy. For the system-bath cou-
pling term, we take
- 1 . 1 N
Hgysp = §b‘|0’zX|| + §bJ_0'wXJ_ , (A.12)

where the qubit level splitting is coupled to the bath vari-
able X with coupling strength b and additionally the

bath variable X 1 might induce transitions between the
qubit states due to its coupling with strength b, . Here
the bath coupling constants b are assumed to be small
with respect to the other energies in the problem, such
that we can use perturbation theory in the strength of the
system-bath coupling term Hgysp. We will not specify
the exact form of the bath Hamiltonian Hp but simply
assume that is of a suitable form to induce Markovian
decoherence, i.e. it possesses a very large number of de-
grees of freedom and equilibrates on a timescale that is
much shorter than all system timescales. Moving into a

13

rotating frame at the drive frequency, we then find the
decoherence rates as

. 1 S (Wd)

r - 2 < 2 XL*

o =sin® By, + 5 cos” S SXJ_(wq) )
1, 1 g2 O (Wa £ 92)
r, = 5 COS Bya+ 4(1 sin )" 7 Sx,(wg)
_ 1 2 1 . 2 SXL(wd _Q)
It = 5 cos Bya+ 1 (1 +sin )" m Sx. (wg)

(A.13)

where we defined the rates

1 1
Yo = ibﬁSXH ©0) » = ibﬁSXH @

1

M= 7biSXL (wq) ’

> (A.14)

and we used the Rabi-frequency Q = /Q3 + (w, — wq)?.
Here, we introduced the symmetrized correlation func-
tions for the bath variables X, defined as

Sx(w) = 3 (Cx(w) + Cx(-w)) (A.15)

where Cx (w) = [70_dt e ™7 (X(7)X(0)),, and the av-
erage (..),, is over the steady state of the bath. For an
environment in thermal equilibrium, the unsymmetrized
noise spectrum will follow a detailed balance relation,
Cx(w) = e P“Cx(w), with the inverse temperature
B = 1/kgT. The angle § in these expressions defines
the relationship between drive strength Qg and detun-
ing between drive frequency and qubit splitting and is
defined as tan 8 = Q¢ /(wqy — wa).

The two rates v, and <, can be determined in inde-
pendent experiments, measuring relaxation from decay
of the qubit excited state and decay of Ramsey fringes.
vq on the other hand can potentially be estimated us-
ing 7, and assuming a 1/f-type dependence of the low-
frequency noise spectrum.

In a Rabi experiment, the decay of the oscillations will
be proportional to e~'2* with 'y =T, + 3(I'; +T'}) and
thus measurements of the Rabi oscillations at different
drive strengths can be used to infer the noise spectrum
in the vicinity of the qubit transition frequency wy.

APPENDIX E: QUASIPARTICLE DENSITY
FLUCTUATIONS

Experimentally it was found that the temperature
dependence of the relaxation rates of superconducting
qubits could be well explained when assuming interacting
with thermally excited quasiparticles*®. In this theory,
the low temperature limit of the relaxation time 73 stems
from assuming a remaining density of non-equilibrium
quasiparticles, the origin of which is not yet understood.
Following the ideas developed in Ref.4?, we conjecture



that a fluctuating quasiparticle density, i.e. due to re-
combination events or tunnelling to an outside reservoir,
might lead to the observed fluctuations in relaxation time
T1. We calculate the required fractional changes in den-
sity as well as in terms of absolute number of quasipar-
ticles for a given qubit design.

The following calculations follow closely the theory of
Ref.4°, and we here only repeat their main steps for clar-
ity. To derive the effects of the interaction between quasi-
particles and superconducting circuits, we start with a
low-energy Hamiltonian describing tunnelling of quasi-
particles across a Josephson junction at phase difference

P
A . . P
Hr =it g sin Eaﬁgaf’w +h.c. (A.16)

n,m,o

where t is the tunnelling amplitude and the operators
aﬁ,/gR destroy a quasiparticle in state n with spin ¢ in the
left /right lead. Eq. (A.16) is valid as long as the qubit
energy w as well as the characteristic energy JE of the
quasiparticles is much smaller than the superconducting
gap Age, a condition which is well satisfied in experi-
ments. Starting from this equation, the authors in Ref.4?
derive the quasiparticle linear response function and thus
the complex admittance of the Josephson junction due to
quasiparticle tunnelling.

Using the golden rule, we write the transition rates
between qubit states due to quasiparticle tunnelling as

2
] (A.17)

Tiny = |Gilsin £ 1) Syp(wir)
where w;; = w; —wy is the energy splitting between qubit
states |7) and |f) and Sgp(w) is the quasiparticle spectral
density, which can be calculated from the complex admit-
tance via the fluctuation-dissipation theorem. For low
temperature, 7' < Ay, and high frequencies w;y > dF,
one finds

8E; [2A4
Sqp(w) = xqu w

(A.18)

with the junction’s Josephson energy E; and the frac-
tional quasiparticle density normalized to the density of
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Cooper pairs x4, = ngp/2v0As. Here vy is the density
of states of electrons in the leads, which we assume to be
the same on both sides.

For the case relevant to experiments, where a single
junction 3D-Transmon was used, the relaxation rate due
to quasiparticles can then be calculated as

w2 2A
Iy = 2ta, [25sc (A.19)
wq 27 w1o

with the junction’s plasma frequency w, = v/8E;Ec and
its charging energy Fc. Eq. (A.19) directly relates a
qubit’s relaxation rate to the density of quasiparticles.
From Eq. (A.19), we can extract the fractional quasipar-
ticle density x4, with the value for the superconducting

gap of thin-film aluminium!:

A/27 2 200 peV ~ 50 GHz =~ 3.2 x 1072* J.  (A.20)
Then, for a relaxation time of 73 = 100us, corresponding
to I'y = 10 x 10%/s (c.f. Fig. 1 in the main text) we find
the canonical value of z,, ~ 5 x 107".

We want to use the relative quasiparticle density de-
termined above to calculate the actual number of quasi-
particles interacting with the qubit sample. For this
we need the electron density of states at the Fermi
edge for aluminum, which we take from literature as
vy = 4.65 x 10"m=3J~1%7. We thus find the quasipar-
ticle volume density for the above used relaxation rate
Iy =10 x 103/s as

Ngp = 200AscTgp ~ 5 x 10¥m ™3 (A.21)

The 3D-transmon used in the experiments consists of
two paddles of dimensions 350 x 1076700 x 1076120 x
10~%m?3, with a total volume of V4; ~ 3 x 10~ 4m3. We
then find

SNy = Vi ngp/10 = 1.5 x 10* (A.22)

as the number of quasiparticles that, for the sample used,
leads to a change in the relaxation rate of 6Ty = 1x10%/s.



