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Abstract 

A tight-binding potential model which goes beyond the Slater-Koster two-center 
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reconstructions, and the structures of clusters and liquids of C and Si can be well 
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3-center interaction and crystal field effect are very important for improving the 

transferability of tight-binding models in describing the structures and properties of 

materials over a broad range of bonding configurations.   

 

PACS Numbers: 31.15.bu, 71.15.-m, 61.50.Lt, 61.20.Ja 

 

 
* wangcz@ameslab.gov 

§ wencailu@jlu.edu.cn 

 

 



 2

I. INTRODUCTION 

The tight-binding (TB) method is an important empirical method, which has 

attracted continuous interests for many years since it was proposed by Slater and 

Koster in 1954 [1-16]. The main advantage of the TB method is its fast computational 

speed due to the use of minimal basis set and parameterized Hamiltonian and overlap 

matrices. However, the transferability of the TB parameterization has been the key 

bottleneck hindering wide-spread applications of the TB method. As an extension of 

the empirical TB method towards density functional theory (DFT), the density 

functional based TB (DFTB) method [17-22] is in popular use today. The DFTB 

method was proposed in 1995 [17], shortly afterwards it was modified from 

non-self-consistent redistribution of charges (non-SCC) [17,18] to SCC version [19] 

in which a second-order expansion of the DFT total energy functional with respect to 

charge density fluctuations is employed. In the DFTB method, a parameter-free 

expression of two-center Hamiltonian matrix within a basis (usually a minimal basis) 

of confined atomic orbitals can be explicitly derived [17]. However, a 

parameterization for repulsive terms is still required.  

The DFTB and most of the commonly used TB potential models so far are based 

on the two-center approximation of Hamiltonian proposed by Slater and Koster [1], 

which assumes that the potential part of the Hamiltonian is a sum of spherical 

potentials centered on the pair of atoms. Using a transformation that brings the wave 

functions from first-principles calculations onto a set of quasiatomic minimal basis 

orbitals (QUAMBOs), Lu et al. [15] and Chan et al. [16] were able to extract accurate 

Hamiltonian and overlap matrix elements directly from first-principles wave functions. 

These Hamiltonian matrix elements down-folded from the DFT calculations can 

include the multi-center interaction and large basis effects. It was found that although 

the TB overlap matrix elements can be well described by the Slater-Koster two-center 

integrals, the two-center approximation is not adequate for the Hamiltonian matrix 

elements [15,16].  

Many studies over the past twenty years have also indicated that the 

transferability of the TB models based on the two-center approximation of 
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Hamiltonian is limited, particularly for structures with metallic behavior [9-14]. 

Several empirical approaches to include 3-center interactions, e.g. by rescaling the 

hopping between a pair of atoms according to bonding environments of the pair, have 

been proposed [9-14]. Although such environment-dependent TB models have shown 

some improvements over the previous two-center TB models, ad hoc empirical 

functions have to be introduced to mimic the 3-center interaction and crystal field 

effect.  

In this paper, we proposed a 3-center TB (3c-TB) potential model which goes 

beyond the two-center TB model and includes explicitly 3-center interaction and 

crystal field effect. Applications of the model to carbon and silicon indicate that the 

model exhibits good accuracy and transferability in describing various carbon and 

silicon structures including bulk phases, surfaces, clusters, and high temperature 

liquids.  

 

II. 3c-TB POTENTIAL MODEL 

The binding energy of a system in our 3c-TB potential model is represented by 
0

,
bind n i rep

n occ i occ

E Eα
α

ε ε
∈ ∈

= − +∑ ∑                            (1) 

where ε0
iα are the energy levels for atomic valence orbital α of atom i. As a stationary 

approximation, also known as the “Harris-Foulkes” approximation [23,24], to the 

self-consistent density functional theory (DFT) with frozen-core potentials, εn are the 

eigenvalues of a non-self-consistent one-electron equation of the form [25]  
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In Eq. (2), nv(r) is the valence density, Vnucl the ion potential, VH the Hartree potential,  
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Then, Erep in Eq. (1) is expressed by  
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In Eq. (5), Zvi, Zvj are the numbers of valence electrons on the atoms i and j at Ri and 

Rj, nvi
0 the valence density of isolated free atom, and Exc the exchange-correlation 

functional. Thus, Erep is a repulsive energy function which includes the ion-ion 

repulsive energies and the subtraction of the over-counting of the Hartree interactions 

and a correction of the electron exchange-correlation in both n
n occ

ε
∈
∑  and 0

,
i
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α
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in Eq. (1).  

For a set of the sp3 minimal basis orbitals, the Hamiltonian matrix elements in the 

Slater and Koster two-center formulae [1] can be expressed by 
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in which cx, cy, and cz are directional cosines defined by cx= (xj−xi)/rij, cy = (yj−yi)/rij, 

and cx = (zj−zi)/rij , and hss, hsp, hppσ, and hppπ, are called hopping integrals.  

In our 3c-TB potential model, the important 3-center interaction is explicitly 

included into the TB Hamiltonian matrix to calculate the band-structure energy. The 

3-center potential part of the Hamiltonian, H3c, involving the potential (−VA) on the 

third-party atom A, can be expressed as  
3 *

, ( ) ( ) ( )c
i j i i A A j j

A
H V dα β α βφ φ= − − − −∑∫ r R r R r R r               (7) 

where i and j are the pair of atoms and iαφ and iβφ  represent quasiatomic orbitals. 
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We can expand iαφ and iβφ on (i, j) into a set of the quasiatomic orbitals Aλφ  on A: 

,( ) ( ) ( ) ( ) ( )i i A A i i A A A i A ASα λ α λ λ α λ
λ λ

φ φ φ φ φ− ≈ − − − = −∑ ∑r r r R r R r R r R                

(8) 

In Eq. (8), S is the overlap matrix in the space of non-orthogonal minimal basis 

orbitals. Under the spherical approximation for −VA, we have  
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where indices {n, l} represent principle and angular quantum numbers and φR is the 

radial part of orbital φ. If we only hold the large diagonal terms with n = n′ and thus λ 

= λ′, then 
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Thus, the 3-center interaction can be approximated by a sum of products of two 

hoppings (Bs).  

Similarly, the crystal field effect on the on-site Hamiltonian matrix elements can 

also be evaluated using the same formula as Eq. (10) with i = j:  

, , ,
cf
i i i A A i

A
H C Cα β α λ λ β

λ
= −∑                              (12) 

By including the corrections of 3cH  and cfH , the TB Hamiltonian matrix elements 

become 

{ }2 3
( ) , ,( )c c

ij i j i j i jH H Hα β α β≠ = +                          (13) 

{ }0
,( )cf

ii i i iH Hα αβ α βε δ= +                             (14) 

For the sp3 quasiatomic minimal basis, Eqs. (13) and (14) can be expressed in the 
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following matrix forms  
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(16) 

Therefore, the 3-center and crystal field terms are explicitly included in the 

Hamiltonian matrix. 

The distance dependence of the two-center integral is modeled by  

3 42 ( ) 2
1(or ) [(1 ) 1]a r aah s a r eμ μ

− −= − −                        (17) 

where r is the distance between two atoms, and a1 to a4 are 4 parameters obtained by 

fitting to the first-principles calculated data. In this work, the angular dependence of 

Slater-Koster approach (Eq. (6)) is adapted for all two-center integrals including the B 

and C terms in the 3-center interaction and crystal field, thus the symmetry properties 

inherited from the basis orbitals are correctly incorporated. However, the angular 

dependence of the TB potential in our 3-center model is different from that in the 

Slater-Koster theory due to the B × B and C × C terms. 

Figure 1 illustrates the main difference between the present 3c-TB potential model 

and traditional Slater-Koster two-center TB model. According to the Slater-Koster 

theory, when the standard sp3 atomic orbitals are used as a basis for the local 

geometry as shown in Fig. 1 (e.g. a Si3 cluster), the hopping matrix elements 2
1 ,2

c
s pzH ,

2
1 ,2

c
py pzH and their conjugated terms between atoms 1 and 2 should be zero. In 
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addition, the on-site TB matrix elements should be all zero except for the diagonal 

ones which are equal to the s and p atomic orbital energies. However, for the Si3 

cluster with the geometry shown in Fig. 1, the Hamiltonian matrix elements 

down-folded from the DFT-PBE calculations and based on the QUAMBOs (Table I) 

show that these matrix elements are far from being zero. Moreover the crystal field 

also leads to a splitting of three p-orbital energy levels which are degenerate in the 

Slater-Koster theory. Note that the Hamiltonian matrix down-folded from the 

DFT-PBE calculations using the QUAMBO analysis contains the 3-center interaction, 

crystal field effect, and also large basis effect, and it reproduces exactly the occupied 

molecular orbital energy levels or the valence bands. It is obvious from Table I that 

the 3c-TB Hamiltonian matrix H3c-TB of Si3 captures the non-zero matrix elements 

that were missed in the Slater-Koster two-center approximation. These results suggest 

that the angular dependence of the Hamiltonian matrix elements is more general and 

robust in the present 3c-TB potential model than in the Slater-Koster two-center 

approach.  

Although the QUAMBOs down-folded from a large basis deform with their 

bonding environment, the overlap matrix of QUAMBOs [15] can be pretty well 

described by the Slater-Koster two-center form  

2
, ,

c
i j i jS Sα β α β=                                          (18) 

Thus the 3c-TB overlap matrix is still evaluated by a two-center formalism. 

In previous studies, the repulsive energy function Erep was usually approximated 

by pairwise potentials or pairwise potentials multiplied by environment-dependent 

screening factors [12,13,17,19,26,27]. In this paper, we introduce an explicit 3-center 

term into Erep  

3 3

,

1 ( )
2

c c
rep ij iA Aj

i j A
E χ χ χ= −∑ ∑                               (19) 
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4

323
1( ) e

aa racor a rχ χ −=                              (20) 

where χ is a pairwise repulsive potential, and χ3c represents the environment- 
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dependent effect caused by the third-party atom A.  

In addition we have 3 parameters rmax, rmathc and rmin to describe the interaction 

range (see Table II), in which rmax is the cutoff distance of the interaction, rmatch is the 

starting point at which an attenuation function is multiplied, i.e., for rmatch < r < rmax 

the hoppings (h, hB and hC), overlap (s), and repulsive functions (χ and χ3c) are in the 

form 

        2cos ( ) ( )
2

match
match max

max match

r r r r r
r r

πμ μ −= × < <
−

             (21) 

where μ indicates h, hB, hC, s, χ and χ3c. The interaction range is large enough so that 

the 3c-TB potential for carbon can also describe the interaction between the graphite 

layers. Besides, one parameter rmin is set to avoid the possible abnormal behavior of 

hopping or overlap expressions at small interaction distances. For r < rmin we hold μ(r) 

= μ (rmin) (μ = h, hB, hC and s), while the repulsive terms χ and χ3c are not submitted 

to this setup, i.e., 

min min( ) ( ) ( and , , and )B Cr r r r h h h sμ μ μ= < =              (22) 

The approximations in the 3-center interaction and crystal field effect in the 

3c-TB potential model are from the spherical assumption of the potential −VA on the 

third part atom and the expansion of the minimal basis orbitals of the interacting pair 

of atoms (i, j) by the minimal basis orbitals Aλφ  at the third-party atom site. Enough 

basis orbitals on the site A in Eq. (8) would be required for accurate expansion of 

atomic orbitals iαφ  and iβφ . In this paper, only minimal basis orbitals with s, px, py 

and pz characters are used to develop the 3c-TB potential model for C and Si. The 

errors due to the approximation discussed above will be compensated through the 

parameter fitting.  

The 3c-TB potential model described above is applied to determine the 3c-TB 

parameters for carbon and silicon by fitting to a first-principles DFT database 

including the binding energies, band structures or molecular orbital energy levels, and 

Hamiltonian and overlap matrix elements of various structures. For each potential 

model, 22, 10, and 8 parameters are used to describe the 3c-TB Hamiltonian matrix, 



 9

the overlap matrix, and the repulsive energy terms, respectively. There are also 2 

parameters for s and p orbital energies (εs and εp), and 3 parameters (rmax, rmatch and 

rmin) describing the interaction range as denoted in Table II  

 

III. 3c-TB CALCULATED RESULTS FOR C AND Si COMPARED WITH THE 

DFT RESULTS  

A. Bands for several crystalline phases 

Figures 2 and 3 show the calculated band structures for C in the diamond, 

graphene, simple cubic (SC), and body-centered cubic (BCC) structures, and Si in the 

diamond, SC, BCC and face-centered cubic (FCC) structures, by using the 3c-TB, the 

DFTB+ [19,22], and the DFT-PW91 implemented in VASP [28,29]. In the DFT 

calculations, plan-wave basis sets corresponding to the kinetic energy cutoffs of 400 

eV (C) and 245 eV (Si) were adopted. The calculations of binding energies and 

charge consistency before the band structure calculations were performed using the 

Monkhorst-Pack mesh k-points grid of 12 × 12 × 12 for diamond, BCC and FCC, 12 

× 12 × 1 for graphene, 16 × 16 × 16 for SC , and 10 × 10 × 20 for the β-tin structure.  

The 3c-TB potential model describes well the valence bands of C and Si. The 

Dirac point in the graphene bands is also well reproduced by the 3c-TB calculation. 

Due to the adoption of the minimal basis set in the 3c-TB and DFTB methods, the 

conduction bands from the first-principles calculations cannot be reproduced 

accurately by the 3c-TB and DFTB calculations. The band gaps of C and Si in the 

diamond structures are 4.56 (C) and 1.47 eV (Si) by 3c-TB, compared with the band 

gaps of 6.90 eV (C) and 1.27 eV (Si) by DFTB and 4.15 eV (C) and 0.64 eV (Si) by 

DFT-PW91. It is also interesting to note that although the band gap for silicon in the 

diamond structure is larger than that from the DFT-PW91 calculation, the indirect 

band gap feature, which is very difficult to be reproduced by semi-empirical and 

minimal basis calculations, is well described by the 3c-TB potential model.  

 

B. Binding energies of crystalline phases and surfaces 

The comparison of the binding energy curves from the 3c-TB, DFTB and DFT 
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calculations for C and Si in various crystalline structures is shown in Fig. 4. In 

general, the 3c-TB and the DFTB methods reproduce well the first-principles DFT 

calculation results, suggesting that they exhibit a good transferability over a wide 

range of bonding environments. For the metallic phases (e.g. SC. BCC, FCC), the 

3c-TB gives a better description of the binding energy curves than the DFTB does 

(Fig. 4), indicating that the effects of 3-center interactions and crystal field are 

important for systems with metallic behavior. 

We have also tested the accuracy and transferability of the 3c-TB potential model 

by applying it to studying various reconstructions on C (100) and C (111) as well as 

Si (100) and Si (111) surfaces. The surface energies of the C (100) 2 × 1 symmetric 

dimer raw and C (111) 2 × 1 Pandey π-bonded chain reconstructed surfaces from the 

3c-TB calculations are 1.96 and 1.39 eV per surface atom, respectively, which are in 

good agreement with the first-principles calculated results of 2.12 and 1.346 eV [30]. 

For the Si (100) surface, the surface energies of the (1 × 1), asymmetric (2 × 1) and c 

(4 × 2) surface structures obtained from our calculations are 1.98, 1.21 and 1.15 eV 

per surface atom, respectively, in good agreement with the DFT calculated results of 

2.174, 1.321 and 1.285 eV [31]. For the Si (111) surface, the 3c-TB potential model 

predicts that the surface energies of the (1× 1), (2 × 1) π-bonded chain, and (7 × 7) 

dimer–adatom–stacking-fault (DAS) are 1.343, 1.089, and 1.061 eV per surface atom, 

respectively, which compare well with the first-principles calculated results of 1.435, 

1.141 and 1.073 eV [31], showing that the (7 × 7) is the most stable structure among 

the Si (111) surface reconstructions from the present 3c-TB calculations.   

 

C. Binding energies of clusters 

Another challenging test for the accuracy and transferability of TB potentials is 

the studies of clusters. Accurate predictions of energy orders of various cluster 

isomers are very challenging because bonding characters on cluster surface are 

complex and many cluster isomers are close in energy. Using the 3c-TB potentials 

developed above, we have studied the energy orders of a series of carbon cluster 

isomers in the range of 6 to 34 atoms [32-35] and silicon cluster isomers in the size 
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range of 7 to 78 atoms [36,37]. For carbon clusters, isomers with linear, ring, cage, 

plate and bowl motifs [32-35] have been considered. These clusters were fully relaxed 

using the 3c-TB method.  

As we can see from Fig. 5, the energy orders of various C and Si cluster isomers 

predicted from the 3c-TB and DFTB methods in general agree well with those from 

the DFT calculations performed using the GAUSSIAN03 package [38]. The good 

agreements between the 3c-TB and DFT binding energies per atom (Eb) or between 

the DFTB and DFT Ebs can also be seen from Fig. 6, in which the scatter plots of 

Eb
3c-TB versus Eb

DFT or Eb
DFTB versus Eb

DFT can be accurately fitted by a linear 

function with very small standard errors. For carbon clusters, the standard errors are 

9.5×10-4 and 12.6×10-4 eV for the 3c-TB and DFTB, respectively. For silicon clusters, 

these errors are 3.8×10-4 (3c-TB) and 6.3×10-4 eV (DFTB). The geometries of the 

clusters after the TB relaxations are also very similar to those from the first-principles 

DFT calculations as one can see from the examples shown in Fig. 7. One exception 

for the lowest energy structure in the small cluster range is C6. The 3c-TB and DFTB 

calculations predict that the linear structure of C6 is lower in energy than the D3h ring 

structure, while most of ab initio calculations show that the D3h ring structure is 

slightly more stable than the linear one and the two isomers are close in energy [32]. 

In the experiment, the linear structure of C6 has been observed [39,40].  

 

D. MD simulations - Liquids  

We have also performed molecular dynamics (MD) simulations to study the 

structures of carbon and silicon in the liquid state. The simulations were performed 

with a cubic unit cell containing 512 atoms and with periodic boundary conditions. 

The atoms were initially arranged in random positions within the cubic unit cell. In 

this work, the test for liquid carbon has been performed at a density of 2.9 g/cm3 and 

a temperature of 5000 K in order to compare with the available first-principles MD 

simulations result [41]. Hot carbon liquid was first prepared at 7000 K and then 

cooled down to 5000 K to measure the structural properties. For liquid silicon, the 

MD simulation was performed at a density of 2.53 g/cm3 and a temperature of 1793 K 
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where the results from the first-principles MD simulation [42] are also available for 

comparison. For liquid silicon, the system was firstly heated to 2500 K to have the 

liquid phase well prepared and then cooled down to 1793 K and well thermally 

equilibrated at this temperature. The MD trajectories were collected for more than 

5000 MD steps for statistical mechanical analyses of structure and thermodynamics 

properties of the liquids.  

As we can see from Fig. 8, the results from the 3c-TB simulations agree well 

with those from the first-principles MD simulations. The coordination numbers of the 

liquids, obtained by integration of the g(r) up to their first minimum (1.92 Å for 

carbon and 3.12 Å for silicon), are 3.34 for liquid carbon and 6.39 for liquid silicon. 

The coordination number of 6.39 for liquid Si agrees well the values estimated from 

the first-principles MD simulations [42,43], indicating that liquid silicon at this 

temperature is metallic [43]. The coordination number of 3.34 for liquid carbon 

indicates that the liquid carbon at the density of 2.9 g/cm3 and temperature of 5000 K 

consists of mixed sp2 and sp3 bonds. The ratio of sp2 to sp3 bonds is about 2. 

Considering that the liquid structures are not used in the fitting database to determine 

the parameters, such good agreements suggest that the 3c-TB model has good 

accuracy as well as transferability.  

 

IV. CONCLUSIONS  

We have presented a new 3c-TB potential model with applications to C and Si 

systems. The 3-center interaction and crystal field effect are incorporated through a 

production of two two-center integral expressions. The accuracy and transferability of 

the 3c-TB over bulk structures, surfaces, and especially clusters and liquids were 

shown by the well agreements with the first-principles DFT results. One of the 

important differences between the 3c-TB and the DFTB is that the 3-center integral 

expression and crystal field effect are included explicitly in the 3c-TB potential model 

while the DFTB is based on the two-center Hamiltonian matrix elements. Moreover, 

because our 3c-TB parameters are derived by a data fitting to the first-principles 

calculated results under a large basis set (including the binding energies, band 
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structures or orbital energy levels, and Hamiltonian and overlap matrix elements), the 

effect of large basis set is included. As discussed in the text, the 3-center integrals and 

crystal field are important for accurate description of metallic phases (e.g., SC, BCC, 

FCC phases of C and Si and liquid phase of Si in this paper). We believe that the 

3c-TB potential model described in this paper will be useful for modeling and 

simulation of such systems. While the 3c-TB method was applied to C and Si with the 

sp3 quasiatomic orbitals, an extension of the model to the transition metal elements 

with extra d valence orbitals is straightforward. The good transferability and accuracy 

of the 3c-TB potential model is anticipated to widen its applications in large-scale 

atomistic calculations of nanostructures and materials.  
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TABLE I. Hamiltonian matrices for equilateral triangle Si3 (Si−Si = 2.35 
Å): HPBE is obtained from a deformed minimal basis set of QUAMBOs at 
PBE/6-31G(d), Hfit-Si3 is resulted from the 3c-TB model fitted for only Si3, 
and H3c-TB corresponds to the 3c-TB potential model of Si.a  
 s1 px1 py1 pz1  s2 px2 py2 pz2 

HPBE          

s1 -11.65 0.00 -1.73 -1.02  -4.80 0.00 6.08 -0.51 
px1 0.00 -4.48 0.00 0.00  0.00 -2.45 0.00 0.00 
py1 -1.73 0.00 -6.52 -0.81  -6.08 0.00 4.02 -0.74 
pz1 -1.02 0.00 -0.81 -5.76  -0.51 0.00 0.74 -3.00 
Hfit-Si3 

         

s1 -12.22 0.00 -1.04 -0.60  -4.82 0.00 6.11 -0.48 
px1 0.00 -4.61 0.00 0.00  0.00 -2.46 0.00 0.00 
py1 -1.04 0.00 -6.34 -0.60  -6.11 0.00 4.09 -0.75 
pz1 -0.60 0.00 -0.60 -5.65  -0.48 0.00 0.75 -2.99 
H3c-TB          

s1 -12.72 0.00 -1.07 -0.62  -5.21 0.00 4.50 -0.18 
px1 0.00 -4.59 0.00 0.00  0.00 -2.10 0.00 0.00 
py1 -1.07 0.00 -5.55 -0.33  -4.50 0.00 3.53 -0.22 
pz1 -0.62 0.00 -0.33 -5.17  -0.18 0.00 0.22 -2.10 
aIf we only fit the Si3 matrix elements by the 3c-TB potential model, the fitted matrix elements can 

be close to the DFT-PBE HSi3 matrix elements. When we need to give considerations to all of the 

matrix elements, energies and bands of various bulk and cluster structures, the fitted matrix 

elements would be relaxed.  
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TABLE II. 3c-TB parameters of C and Si for the repulsive energy functions, free 
orbital energies (ε0

s and ε0
p), overlap (s), and hoppings (h, hB and hC) with respect to 

the two and 3-center interaction and crystal field terms.  
 C  Si 

Repulsive energya 
 a1 a2 a3 A4  a1 a2 a3 a4 

χ 248.4353 -2.4382 2.1280 1.0000  344.7310 -3.5743 0.8720 1.0000 
χ3c 0.0000 0.0000 0.0000 0.0000  107.4441 -0.0436 0.1728 5.6406 
Atomic s and p orbital energies 

 ε0
s -14.36 ε0

p -5.16  ε0
s -11.60 ε0

p -4.15 
Overlapa  

 sss ssp sppσ sppπ  sss ssp sppσ sppπ 
a1 -1.4650 0.4066 0.2461 -0.5440  -1.2986 0.5124 0.2746 -1.5103 
a2 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 
a3 1.4823 1.1644 1.2069 1.2188  0.9009 0.9899 0.8758 1.1522 
a4 0.0000 0.6160 1.4659 0.0000  0.0000 1.2779 2.3961 0.0000 
Hoppings for two-center Hamiltoniana 

 hss hsp hppσ hppπ  hss hsp hppσ hppπ 
a1 39.3258 -12.8401 -6.4760 25.8463  27.4672 -8.9278 -3.6520 32.6560 
a2 0.0000 0.0000 0.0000 0.0000  -0.1095 -0.1523 -0.0823 -0.1415 
a3 1.5211 1.4728 1.5035 1.9668  0.9634 1.0553 1.0295 1.4298 
a4 0.0000 0.6139 1.1250 0.0000  0.0000 1.2760 2.2814 0.0000 
B matrix of the 3-center interactiona 

 hB
ss hB

sp hB
ppσ hB

ppπ  hB
ss hB

sp hB
ppσ hB

ppπ 
a1 2.3231 -1.1704 -0.9020 4.8561  2.2000 -1.0444 -0.4220 5.6975 
a2, a3 and a4 are same as those of hss, hsp, hppσ, and hppπ. 
C matrix of the crystal fielda 

 hC
ss hC

sp hC
ppσ hC

ppπ  hC
ss hC

sp hC
ppσ hC

ppπ 
a1 2.6722 -1.3463 -1.0376 5.5858  1.8067 -1.4218 -0.7898 7.7626 
a2, a3 and a4 are same as those of hss, hsp, hppσ, and hppπ. 
Interaction rangeb 

 rmax = 4.8 Å   
rmatch = 4.4 Å 
rmin= 0.7 × a4 (sppσ) = 1.0 Å  

 rmax = 6.5 Å   
rmatch = 6.4 Å 
rmin= 0.8 × a4 (sppσ) = 1.9 Å  

a 3 42 ( ) 2
1 [(1 ) 1] ( , , and )a r aa B Ca r e h h h sμ μ− −= − − = ; 4

323
1( )

aa racor a r eχ χ −= .  
brmax is the cutoff distance for the interaction. rmatch is a starting point at which an attenuation function is added, i.e., 
for rmatch < r < rmax , 2 3cos [0.5 ( ) / )] ( , , , , and )B C c

match max matchr r r r h h h sμ μ π μ χ χ= × × − − = . For r < rmin, set 

( ) ( ) ( , , and )B C
minr r h h h sμ μ μ= = , while χ and χ3c are not submitted to this setup. 
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Figure captions 
 
FIG. 1. (Color online) Illustration of the 3c-TB Hamiltonian model. H2c

1s,,2pz= 0, 
H2c

1py,2pz= 0 in the two-center approximation; but the 3-center corrections H3c
1s,,2pz ≠ 0, 

H3c
1py,2pz ≠ 0; and the crystal field effect Hcf leads to lower s and p orbital energies and 

a splitting of px, py, and pz energy levels. 
  
FIG. 2. (Color online) 3c-TB energy bands (dotted line) of C in the diamond, 
graphene, SC, and BCC structures compared with the DFT-PW91 (solid line) and 
DFTB (circle line) calculated results. 
 
FIG. 3. (Color online) 3c-TB energy bands (dotted line) of Si in the diamond, SC, 
BCC, and FCC structures compared with the DFT-PW91 (solid line) and DFTB 
(circle line) calculated results. 
 
FIG. 4. (Color online) Binding energies per atom (Eb) from the 3c-TB and DFTB 
calculations for C and Si compared with the DFT-PW91 calculated results. The 
DFT-PW91 energies were shifted in order to make the binding energies of the C and 
Si diamond structures consistent with the experimental data of -7.37 and -4.67 eV, 
respectively. For comparison, the DFTB energies were also shifted to make the 
binding energies of diamond structures at equilibrium bond lengths equal to the 
DFT-PW91 values. 
 
FIG. 5. (Color online) Binding energies per atom (Eb) relative to free singlet C or Si 
atoms of the Cn and Sin clusters calculated at 3c-TB, compared with the calculated 
results at DFTB, and DFT-B3LYP/6-31G(d) for C and DFT-PBEPBE/6-31G(d) for Si. 
The absolute binding energies at DFT are much lower than the TB data, since in the 
data fitting of the TB parameters, the DFT energies were shifted upwards to make the 
binding energy of the C and Si diamond structures consistent with the experimental 
values -7.37 eV (C) and -4.67 eV (Si).  
 
FIG. 6. (Color online) Scatter plot of the binding energies per atom from the 
TB/DFTB calculations verses those from the calculations at DFT-B3LYP for Cn and 
DFT-PBEPBE for Sin with n denoted in Fig. 5.  
 
FIG. 7. (Color online) 3c-TB optimized structures of C8,14,20,32 and Si7,10,20,32, 
compared with the DFT-B3LYP/6-31G(d) optimized Cn and DFT-PBEPBE/6-31G(d) 
optimized Sin cluster structures. The atoms in light color for Si32 denote the embedded 
atoms. 
 
FIG. 8. (Color online) Pair correlation function g(r) for (a) liquid carbon and (b) 
liquid silicon obtained from the TBMD simulations using the 3c-TB potential model 
are compared with the first-principles simulated results (Refs. 41 and 42).  
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Hcfs,s= − (Cs,AsCAs,s + Cs,ApyCApy,s)                 Hcfpx,px= − Cpx,,ApxCApx,px  
Hcfpy,py= − (Cpy,AsCAs,py + Cpy,ApyCApy,py)
Hcfpz,pz= − Cpz,ApzCApz,pz

2

H3c1s,2pz= − (B1s,AsBAs,2pz

+ B1s,ApyBApy,2pz + B1s,ApzBApz,2pz)

Z

2

H3c1py,2pz= − (B1py,AsBAs,2pz 
+B1py,ApyBApy,2pz + B1py,ApzBApz,2pz) 
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FIG. 1. (Color online) Illustration of the 3c-TB Hamiltonian model. H2c
1s,,2pz= 0, H2c

1py,2pz= 0 in 
the two-center approximation; but the 3-center corrections H3c

1s,,2pz ≠ 0, H3c
1py,2pz ≠ 0; and the 

crystal field effect Hcf leads to lower s and p orbital energies and a splitting of px, py, and pz energy 
levels.  
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FIG. 2. (Color online) 3c-TB energy bands (dotted line) of C in the diamond, graphene, SC, and 
BCC structures compared with the DFT-PW91 (solid line) and DFTB (circle line) calculated 
results.  
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FIG. 3. (Color online) 3c-TB energy bands (dotted line) of Si in the diamond, SC, BCC, and FCC 
structures compared with the DFT-PW91 (solid line) and DFTB (circle line) calculated results. 
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FIG. 4. (Color online) Binding energies per atom (Eb) from the 3c-TB and DFTB calculations for 
C and Si compared with the DFT-PW91 calculated results. The DFT-PW91 energies were shifted 
in order to make the binding energies of the C and Si diamond structures consistent with the 
experimental data of -7.37 and -4.67 eV, respectively. For comparison, the DFTB energies were 
also shifted to make the binding energies of diamond structures at equilibrium bond lengths equal 
to the DFT-PW91 values.  
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FIG. 5. (Color online) Binding energies per atom (Eb) relative to free singlet C or Si atoms of the 
Cn and Sin clusters calculated at 3c-TB, compared with the calculated results at DFTB, and 
DFT-B3LYP/6-31G(d) for C and DFT-PBEPBE/6-31G(d) for Si. The absolute binding energies at 
DFT are much lower than the TB data, since in the data fitting of the TB parameters, the DFT 
energies were shifted upwards to make the binding energy of the C and Si diamond structures 
consistent with the experimental values -7.37 eV (C) and -4.67 eV (Si).   
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FIG. 6. (Color online) Scatter plot of the binding energies per atom from the TB/DFTB 
calculations verses those from the calculations at DFT-B3LYP for Cn and DFT-PBEPBE for Sin 
with n denoted in Fig. 5.  
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FIG. 7. (Color online) 3c-TB optimized structures of C8,14,20,32 and Si7,10,20,32, compared with the 
DFT-B3LYP/6-31G(d) optimized Cn and DFT-PBEPBE/6-31G(d) optimized Sin cluster structures. The 
atoms in light color for Si32 denote the embedded atoms.  
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FIG. 8. (Color online) Pair correlation function g(r) for (a) liquid carbon and (b) liquid silicon 
obtained from the TBMD simulations using the 3c-TB potential model are compared with the 
first-principles simulated results (Refs. 41 and 42).  
  

 

 
 
 

 
 


